
Induction and Recursion

Chapter 5

With Question/Answer
Animations

© 2019 McGraw-Hill Education. All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education.

© 2019 McGraw-Hill Education

Chapter Summary

• Mathematical Induction

• Strong Induction

• Well-Ordering

• Recursive Definitions

• Structural Induction

• Recursive Algorithms

• Program Correctness (not yet included in overheads)

© 2019 McGraw-Hill Education

Mathematical Induction
• Section 5.1

© 2019 McGraw-Hill Education

Section Summary 1

• Mathematical Induction

• Examples of Proof by Mathematical Induction

• Mistaken Proofs by Mathematical Induction

• Guidelines for Proofs by Mathematical Induction

© 2019 McGraw-Hill Education

Climbing an Infinite Ladder

Suppose we have an infinite ladder:

1. We can reach the first rung of the ladder.

2. If we can reach a particular rung of the
ladder, then we can reach the next rung.

From (1), we can reach the first rung. Then
by applying (2), we can reach the second rung.
Applying (2) again, the third rung. And so on.
We can apply (2) any number of times to
reach any particular rung, no matter how high
up.

This example motivates proof by
mathematical induction.

Jump to long description

© 2019 McGraw-Hill Education

Principle of Mathematical
Induction

• Principle of Mathematical Induction: To prove that P(n) is true for all
positive integers n, we complete these steps:

• Basis Step: Show that P(1) is true.

• Inductive Hypothesis: Assume that P(k) is true.

• Inductive Step: Show that P(k + 1) is true for all positive integers k.

• To complete the inductive step, assuming the inductive hypothesis that
P(k) holds for an arbitrary integer k, show that P(k + 1) be true.

• Climbing an Infinite Ladder Example:

• BASIS STEP: We can reach rung 1

• INDUCTIVE HYPOTHESIS: Assume that we can reach rung k

• INDUCTIVE STEP: If we can reach rung k, then we can reach rung k + 1.

Hence, we can reach every rung on the ladder.

© 2019 McGraw-Hill Education

Important Points About Using
Mathematical Induction

Mathematical induction can be expressed as the rule of
inference

() () ()()() ()1 1 ,P k P k P k n P n → + →

where the domain is the set of positive integers.

In a proof by mathematical induction, we don’t assume
that P(k) is true for all positive integers! We show that
if we assume that P(k) is true for some k, then P(k + 1)
must also be true.

Proofs by mathematical induction do not always start at
the integer 1. In such a case, the basis step begins at a
starting point b where b is an integer. We will see
examples of this soon.

© 2019 McGraw-Hill Education

Validity of Mathematical
Induction

• Mathematical induction is valid because of the well ordering property,
which states that every nonempty subset of the set of positive integers
has a least element (see Section 5.2 and Appendix 1). Here is the proof:

• Suppose that P(1) holds and P(k) → P(k + 1) is true for all positive
integers k.

• Assume there is at least one positive integer n for which P(n) is false.
Then the set S of positive integers for which P(n) is false is nonempty.

• By the well-ordering property, S has a least element, say m.

• We know that m can not be 1 since P(1) holds.

• Since m is positive and greater than 1, m − 1 must be a positive integer.
Since m − 1 < m, it is not in S, so P(m − 1) must be true.

• But then, since the conditional P(k) → P(k + 1) for every positive integer
k holds, P(m) must also be true. This contradicts P(m) being false.

• Hence, P(n) must be true for every positive integer n.

© 2019 McGraw-Hill Education

Remembering How Mathematical
Induction Works

Consider an infinite
sequence of
dominoes, labeled
1,2,3, …, where each
domino is standing.

Let P(n) be the
proposition that the
nth domino is knocked
over.

We know that the first
domino is knocked down,
i.e., P(1) is true .

We also know that if
whenever the kth domino
is knocked over, it knocks
over the (k + 1)st domino,
i.e, P(k) → P(k + 1) is true
for all positive integers k.

Hence, all dominos are knocked over.

P(n) is true for all positive integers n.
Jump to long description

© 2019 McGraw-Hill Education

Proving a Summation Formula by
Mathematical Induction

Example: Show that:

Solution:

• BASIS: 𝑛 = 1

• INDUCTIVE HYPOTHESIS: Assume for some k

• INDUCTIVE STEP: Show:

Note: Once we have this
conjecture, mathematical
induction can be used to
prove it correct.

෍

𝑖=1

𝑘+1

𝑖 =
(𝑘 + 1)(𝑘 + 2)

2

෍

𝑖=1

𝑛

𝑖 =
𝑛(𝑛 + 1)

2

෍

𝑖=1

𝑘

𝑖 =
𝑘(𝑘 + 1)

2

෍

𝑖=1

𝑘+1

𝑖 =෍

𝑖=1

𝑘

𝑖 + (𝑘 + 1)

=
𝑘(𝑘 + 1)

2
+ (𝑘 + 1)

=
𝑘 𝑘 + 1 + 2(𝑘 + 1)

2

=
𝑘 + 1 (𝑘 + 2)

2
by I.H.

෍

𝑖=1

1

𝑖 = 1
lhs: rhs: 1(1 + 1)

2
= 1 ✓

© 2019 McGraw-Hill Education

Conjecturing and Proving Correct
a Summation Formula

Example: Conjecture and prove correct a formula for the sum of the first n
positive odd integers. Then prove your conjecture.

Solution: We have:

 We can conjecture that the sum of the first n positive odd integers is n2,

Inductive Proof:

 BASIS: 𝑛 = 1

 INDUCTIVE HYPOTHESIS: Assume 1 + 3 + 5 +⋯+ 2𝑘 − 1 = 𝑘2 for some 𝑘

 INDUCTIVE STEP: Show: 1 + 3 + 5 +⋯+ 2𝑘 − 1 + (2𝑘 + 1) = (𝑘 + 1)2

 1 + 3 + 5 +⋯+ 2𝑘 − 1 + 2𝑘 + 1 = 𝑘2 + 2𝑘 + 1

 = (𝑘 + 1)2

 By induction, we have shown the original statement to be true.

by I.H.

lhs: 1 rhs: 12 = 1 ✓

1 1, 1 3 4, 1 3 5 9, 1 3 5 7 16, 1 3 5 7 9 25.= + = + + = + + + = + + + + =

() 21 3 5 2 1 .n n+ + + + − =

© 2019 McGraw-Hill Education

Classroom Exercise

Prove: 12 + 32 + 52 +··· +(2𝑛 + 1)2=
(𝑛+ 1)(2𝑛+ 1)(2𝑛+ 3)

3
whenever 𝑛

is a nonnegative integer.

© 2019 McGraw-Hill Education

Proving Inequalities1

Example: Use mathematical induction to prove that n <
2n for all positive integers n.

Solution: Let P(n) be the proposition that n < 2n.

• BASIS: P(1) is true since lhs: 1, rhs: 21 = 2, and 1 < 2
✓

• INDUCTIVE HYPOTHESIS: Assume k < 2k, for an
arbitrary positive integer k

• INDUCTIVE STEP: Show: k + 1 < 2k+1

 k + 1 < 2k + 1

 ≤ 2k + 2k

 = 2k+1

Therefore n < 2n holds for all positive integers n.

by I.H.

© 2019 McGraw-Hill Education

Proving Inequalities2

Example: Use induction to prove that 2n < n!, for n ≥ 4.

Solution: Let P(n) be the proposition that 2n < n!

• BASIS: n = 4 lhs: 24 = 16 and rhs: 4! = 24, and 16 < 24 ✓

• INDUCTIVE HYPOTHESIS: Assume 2k < k! for an arbitrary
integer k ≥ 4

• INDUCTIVE STEP: Show (k + 1): 2k+1 < (k + 1)!

()

()

12 2 2

2 ! ()

1 !

1 !

k k

k by the inductive hypothesis

k k

k

+ = 

 

 +

= +

Therefore, 2n < n! holds, for every integer n ≥ 4.
Note that here the basis step is P(4), since P(0), P(1), P(2), and P(3)
are all false.

© 2019 McGraw-Hill Education

Classroom Exercise

Prove: 2𝑛 > 𝑛2 if 𝑛 is an integer greater than 4.

© 2019 McGraw-Hill Education

Proving Divisibility Results

Example: Use mathematical induction to prove that n3 − n is divisible
by 3, for every positive integer n.

Solution: Let P(n) be the proposition that n3 − n is divisible by 3.

• BASIS: P(1) is true since 13 − 1 = 0, which is divisible by 3.

• INDUCTIVE HYPOTHESIS: Assume P(k): k3 − k is divisible by 3,
for an arbitrary positive integer k.

• INDUCTIVE STEP: Show: P(k + 1): (k + 1)3 − (k+ 1) is divisible by 3

() () () ()

() ()

3 3 2

3 2

1 1 3 3 1 1

3

k k k k k k

k k k k

+ − + = + + + − +

= − + +

By the inductive hypothesis, the first term (k3 − k) is divisible
by 3 and the second term is divisible by 3 since it is an integer
multiplied by 3. So by part (i) of Theorem 1 in Section 4.1 ,
(k + 1)3 − (k + 1) is divisible by 3.

 Therefore, n3 − n is divisible by 3, for every integer positive
integer n.

© 2019 McGraw-Hill Education

Number of Subsets of a Finite Set

Example: Use mathematical induction to show that if S is a
finite set with n elements, where n is a nonnegative integer,
then S has 2n subsets.

(Chapter 6 uses combinatorial methods to prove this result.)

Solution: Let P(n) be the proposition that a set with n elements
has 2n subsets.

• BASIS: P(0) is true, because the empty set has only itself
as a subset and 20 = 1.

• INDUCTIVE HYPTHESIS: Assume P(k): every set with k
elements has 2k subsets for an arbitrary nonnegative
integer k.

© 2019 McGraw-Hill Education

Number of Subsets of a Finite Set

INDUCTIVE STEP: Show that a set with k + 1 elements has
2k+1 subsets.

Let T be a set with k + 1 elements. Then T = S ∪ {a}, where a
∈ T and S = T − {a}. Hence |S| = k.

For each subset X of S, there are exactly two subsets of T,
i.e., X and X ∪ {a}.

By the inductive hypothesis S has 2k subsets. Since there
are two subsets of T for each subset of S, the number of
subsets of T is 2 ∙2k = 2k+1 .

Jump to long description

© 2019 McGraw-Hill Education

Tiling Checkerboards

Example: Show that every 2n × 2n checkerboard with one square
removed can be tiled using right triominoes.

A right triomino is an L-shaped tile which
covers three squares at a time.

Solution: Let P(n) be the proposition that every 2n × 2n
checkerboard with one square removed can be tiled using right
triominoes. Use mathematical induction to prove that P(n) is true
for all positive integers n.

• BASIS : P(1) is true, because each of the four 2 × 2 checkerboards
with one square removed can be tiled using one right triomino.

• INDUCTIVE HYPOTHESIS: Assume that P(k) is true: every 2k × 2k
checkerboard with one square removed can be tiled using right
triominoes for some positive integer k.Jump to long description

© 2019 McGraw-Hill Education

Tiling Checkerboards
INDUCTIVE STEP: Show: Consider a 2k+1 × 2k+1 checkerboard with one
square missing can be tiled with right triominoes.

Consider a 2k+1 × 2k+1 checkerboard with one square removed. Split this
checkerboard into four checkerboards of size 2k ×2k,by dividing it in half
in both directions.

Remove a square from one of the four 2k × 2k checkerboards. By the
inductive hypothesis, this board can be tiled. Also by the inductive
hypothesis, the other three boards can be tiled with the square from the
corner of the center of the original board removed. We can then cover the
three adjacent squares with a triomino.

Hence, the entire 2k+1 × 2k+1 checkerboard with one square removed can be
tiled using right triominoes. Jump to long description

© 2019 McGraw-Hill Education

Guidelines:
Mathematical Induction Proofs
Template for Proofs by Mathematical Induction

1. Express the statement that is to be proved in the form “for all n ≥ b, P(n)” for a
fixed integer b.

2. Write out “BASIS STEP.” Then show that P(b) is true, taking care that the
correct value of b is used, with the left- and right-hand sides computed
independently.

3. Write out “INDUCTIVE HYPOTHESIS”. State, and clearly identify, the
inductive hypothesis, in the form “assume that P(k) is true for an arbitrary fixed
integer k ≥ b.”

4. Write out “INDUCTIVE STEP.” State what needs to be shown under the
assumption that the inductive hypothesis is true, i.e., write out P(k + 1).

5. Prove the statement P(k + 1) making use of the assumption P(k). Be sure that
your proof is valid for all integers k with k ≥ b, taking care that the proof works
for small values of k, including k = b.

6. Clearly identify the conclusion of the inductive step where you reach the
conclusion in the “Show” statement.

7. After completing the basis, inductive hypothesis, and inductive step, state the
conclusion, namely, by mathematical induction, P(n) is true for all integers n with
n ≥ b.

© 2019 McGraw-Hill Education

Strong Induction and
Well-Ordering

• Section 5.2

© 2019 McGraw-Hill Education

Section Summary 2

• Strong Induction

• Example Proofs using Strong Induction

• Well-Ordering Property

© 2019 McGraw-Hill Education

Strong Induction

Strong Induction: To prove that P(n) is true for all
positive integers n, where P(n) is a propositional
function, complete three steps:

• Basis Step: Verify that the proposition P(1) is true.

• Inductive Hypothesis: Assume P(j) holds for all j ≤ k

• Inductive Step: Show the conditional statement
holds for all positive integers k.

() () () ()1 2 1P P P k P k    → + 

Strong Induction is sometimes called
the second principle of mathematical
induction or complete induction.

© 2019 McGraw-Hill Education

Strong Induction and
the Infinite Ladder

Strong induction tells us that we can reach all rungs if:

1. We can reach the first rung of the ladder.

2. Assume we can reach the first k rungs.

3. For every integer k, if we can reach the first k rungs,
then we can reach the (k + 1)st rung.

To conclude that we can reach every rung by strong
induction:

• BASIS STEP: P(1) holds

• INDUCTIVE HYPOTHESIS: Assume P(1) ∧ P(2) ∧∙∙∙ ∧
P(k) holds for an arbitrary integer k

• INDUCTIVE STEP: Show that P(k + 1) must also
hold.

We will have then shown by strong induction that for
every positive integer n, P(n) holds, i.e., we can
reach the nth rung of the ladder.

© 2019 McGraw-Hill Education

Proof Using Strong Induction

• Example: Suppose we can reach the first and second rungs
of an infinite ladder, and we know that if we can reach a
rung, then we can reach two rungs higher. Prove that we
can reach every rung. (Try this with mathematical
induction.)

• Solution: Prove the result using strong induction.

• BASIS STEP: We can reach the first step.

• INDUCTIVE HYPOTHESIS: Assume that we can reach
the first j rungs for any 2 ≤ j ≤ k.

• INDUCTIVE STEP: Show that we can reach the (k + 1)st
rung.

• Hence, we can reach all rungs of the ladder.

© 2019 McGraw-Hill Education

Which Form of Induction Should
Be Used?

• We can always use strong induction instead of
mathematical induction. But there is no reason to use
it if it is simpler to use mathematical induction.

• Regular induction is just a special case of strong
induction.

• In fact, the principles of mathematical induction,
strong induction, and the well-ordering property are
all equivalent.

• Sometimes it is clear how to proceed using one of the
three methods, but not the other two.

© 2019 McGraw-Hill Education

Proof of the Fundamental
Theorem of Arithmetic

• Example: Show that if n is an integer greater than 1, then n can be
written as the product of primes.

• Solution: Let P(n) be the proposition that n can be written as a
product of primes.

• BASIS STEP: P(2) is true since 2 itself is prime.

• INDUCTIVE HYPOTHESIS: Assume P(j) is true for 2 ≤ j ≤ k.

• INDUCTIVE STEP: Show that P(k + 1) must be true under this
assumption; two cases need to be considered:

• if k + 1 is prime, then P(k + 1) is true

• otherwise, k + 1 is composite and can be written as the product of
two positive integers a and b with 2 ≤ a ≤ b < k + 1

• by the inductive hypothesis a and b can be written as the
product of primes and therefore k + 1 can also be written as the
product of those primes

• Hence, every integer > 1 can be written as the product of primes.

© 2019 McGraw-Hill Education

Proof Using Strong Induction

• Example: Prove that every amount of postage of 12 cents or more can be
formed using just 4-cent and 5-cent stamps.

• Solution: Let P(n) be the proposition that postage of n cents can be
formed using 4-cent and 5-cent stamps.

• BASIS STEP: P(12), P(13), P(14), and P(15) hold.

• P(12) uses three 4-cent stamps.

• P(13) uses two 4-cent stamps and one 5-cent stamp.

• P(14) uses one 4-cent stamp and two 5-cent stamps.

• P(15) uses three 5-cent stamps.

• INDUCTIVE HYPOTHESIS: Assume that P(j) holds for 12 ≤ j ≤ k, where
k ≥ 15.

• INDUCTIVE STEP: Show that P(k + 1) holds.

• Using the inductive hypothesis, P(k − 3) holds since k − 3 ≥ 12. To
form postage of k + 1 cents, add a 4-cent stamp to the postage for
k − 3 cents. Hence, P(n) holds for all n ≥ 12.

© 2019 McGraw-Hill Education

Proof of Same Example using
Mathematical Induction

• Example: Prove that every amount of postage of 12 cents or more can be formed
using just 4-cent and 5-cent stamps.

• Solution: Let P(n) be the proposition that postage of n cents can be formed using
4-cent and 5-cent stamps.

• BASIS STEP: Postage of 12 cents can be formed using three 4-cent stamps.

• INDUCTIVE HYPOTHESIS: Assume that postage of k cents can be formed
using 4-cent and 5-cent stamps for some k

• INDUCTIVE STEP: Show: P(k + 1) where k ≥ 12

• We consider two cases:

• If at least one 4-cent stamp has been used, then a 4-cent stamp can be
replaced with a 5-cent stamp to yield a total of k + 1 cents.

• Otherwise, no 4-cent stamp have been used and at least three 5-cent
stamps were used. Three 5-cent stamps can be replaced by four 4-cent
stamps to yield a total of k + 1 cents.

• Hence, P(n) holds for all n ≥ 12.

© 2019 McGraw-Hill Education

Well-Ordering Property

• Well-ordering property: Every nonempty set of nonnegative
integers has a least element.

• The well-ordering property is one of the axioms of the positive
integers listed in Appendix 1.

• The well-ordering property can be used directly in proofs

• The well-ordering property can be generalized.

• Definition: A set is well ordered if every subset has a least
element.

• N is well ordered under ≤.

• The set of finite strings over an alphabet using lexicographic
ordering is well ordered.

• We will see a generalization of induction to sets other than the
integers in the next section.

© 2019 McGraw-Hill Education

Recursive Definitions
and Structural

Induction
• Section 5.3

© 2019 McGraw-Hill Education

Section Summary 3

• Recursively Defined Functions

• Recursively Defined Sets and Structures

• Structural Induction

• Generalized Induction

© 2019 McGraw-Hill Education

Recursively Defined Functions

• Definition: A recursive or inductive definition of a
function consists of two steps.

• BASIS STEP: Specify the value of the function at
zero.

• RECURSIVE STEP: Give a rule for finding its value at
an integer from its values at smaller integers.

• A function f(n) is the same as a sequence a0, a1, … ,
where ai, where f(i) = ai. This was done using
recurrence relations in Section 2.4.

© 2019 McGraw-Hill Education

Recursively Defined Functions

Example: Suppose f is defined by:

()

() ()

0 3,

1 2 3

f

f n f n

=

+ = +

Find f(1), f(2), f(3), f(4)

Solution:

() ()

() ()

() ()

() ()

1 2 0 3 2 3 3 9

2 2 1 3 2 9 3 21

3 2 2 3 2 21 3 45

4 2 3 3 2 45 3 93

f f

f f

f f

f f

= + =  + =

= + =  + =

= + =  + =

= + =  + =

Example: Give a recursive definition of the factorial function n!

Solution: ()

() () ()

0 1

1 1

f

f n n f n

=

+ = + 

© 2019 McGraw-Hill Education

Recursively Defined Functions

Example: Give a recursive definition of:

0

.
n

k

k

a
=



Solution: The first part of the definition is

0

0

0

.k

k

a a
=

=

The second part is 1

0 0

1.
n n

k k n

k k

a a a
+

= =

 
= + +  

  n +1

© 2019 McGraw-Hill Education

Fibonacci Numbers

Fibonacci
(1170- 1250)

Example : The Fibonacci numbers are defined
as follows:

0

1

1 2

0

1

n n n

f

f

f f f− −

=

=

= +

Find f2, f3 , f4 , f5 .

2 1 0

3 2 1

4 3 2

5 4 3

1 0 1

1 1 2

2 1 3

3 2 5

f f f

f f f

f f f

f f f

= + = + =

= + = + =

= + = + =

= + = + =

In Chapter 8, we will use the
Fibonacci numbers to model
population growth of rabbits.
This was an application
described by Fibonacci
himself.

Next, we use strong induction
to prove a result about the
Fibonacci numbers.

© 2019 McGraw-Hill Education

Recursively Defined Sets and
Structures

• Recursive definitions of sets have two parts:

• The basis step specifies an initial collection of elements.

• The recursive step gives the rules for forming new elements in
the set from those already known to be in the set.

• Sometimes the recursive definition has an exclusion rule, which
specifies that the set contains nothing other than those
elements specified in the basis step and generated by
applications of the rules in the recursive step.

• We will always assume that the exclusion rule holds, even if it is
not explicitly mentioned.

• We will later develop a form of induction, called structural
induction, to prove results about recursively defined sets.

© 2019 McGraw-Hill Education

Recursively Defined Sets and
Structures

• Example: integers that are positive multiples of 3

BASIS STEP: 3 ∊ S.

RECURSIVE STEP: If x ∊ S, then x + 3 ∊ S

 Initially 3 is in S, then 3 + 3 = 6, then 3 + 6 = 9, etc.

• Example: the natural numbers N

BASIS STEP: 1 ∊ N.

RECURSIVE STEP: If n is in N, then n + 1 is in N.

 Initially 1 is in S, then 1 + 1 = 2, then 1 + 2 = 3, etc.

© 2019 McGraw-Hill Education

Strings

• Definition: The set Σ* of strings over the alphabet Σ:

BASIS STEP: λ ∊ Σ* (λ is the empty string)

RECURSIVE STEP: If w is in Σ* and x is in Σ, then wx  Σ*.

• Example: If Σ = {0,1}, the strings in in Σ* are the set of all
bit strings, λ, 0, 1, 00, 01, 10, 11, etc.

• Example: If Σ = {a,b}, show that aab is in Σ*.

 since λ ∊ Σ* and a ∊ Σ, a ∊ Σ*

 since a ∊ Σ* and a ∊ Σ, aa ∊ Σ*

 since aa ∊ Σ* and b ∊ Σ, aab ∊ Σ*

© 2019 McGraw-Hill Education

String Concatenation

• Definition: Two strings can be combined via the
operation of concatenation. Let Σ be a set of symbols
and Σ* be the set of strings formed from the symbols
in Σ. We can define the concatenation of two strings,
denoted by ∙, recursively as follows.

BASIS STEP: If w  Σ*, then w ∙ λ= w.

RECURSIVE STEP: If w1  Σ* and w2  Σ* and x  Σ,
then w1 ∙ (w2 x)= (w1 ∙ w2)x.

 often w1 ∙ w2 is written as w1 w2

 if w1 = abra and w2 = cadabra, the concatenation
w1 w2 = abracadabra

© 2019 McGraw-Hill Education

Length of a String

• Example: Give a recursive definition of 𝑙 𝑤 , the
length of the string w.

• Solution: The length of a string can be recursively
defined by:

()

() ()

0;

1 if and .

l

l wx l w w x





=

= +  

© 2019 McGraw-Hill Education

Balanced Parentheses

• Example: Give a recursive definition of the set of
balanced parentheses P.

• Solution:

 BASIS STEP: () ∊ P

 RECURSIVE STEP: If w ∊ P, then () w ∊ P, (w) ∊ P
and w () ∊ P

• Show that (() ()) is in P.

• Why is))(() not in P?

© 2019 McGraw-Hill Education

Well-Formed Formulae in
Propositional Logic

• Definition: The set of well-formed formulae in
propositional logic involving T, F, propositional
variables, and operators from the set {¬,∧,∨,→, }.

BASIS STEP: T, F, and s, where s is a propositional
variable, are well-formed formulae.

RECURSIVE STEP: If E and F are well formed formulae,
then (¬ E), (E ∧ F), (E ∨ F), (E → F), (E F), are well-
formed formulae.

• Examples: ((p ∨q) → (q ∧ F)) is a well-formed formula.

• pq ∧ is not a well formed formula

© 2019 McGraw-Hill Education

Rooted Trees

• Definition: The set of rooted trees, where a rooted
tree consists of a set of vertices containing a
distinguished vertex called the root, and edges
connecting these vertices, can be defined recursively
by these steps:

BASIS STEP: A single vertex r is a rooted tree.

RECURSIVE STEP: Suppose that T1, T2, …, Tn are
disjoint rooted trees with roots r1, r2,…, rn,
respectively. Then the graph formed by starting
with a root r, which is not in any of the rooted
trees T1, T2, …, Tn, and adding an edge from r to
each of the vertices r1, r2,…, rn, is also a rooted
tree.

© 2019 McGraw-Hill Education

Building Up Rooted Trees

Trees are studied extensively in Chapter 11.

 Next we look at a special type of tree, the full binary tree.

Jump to long description

© 2019 McGraw-Hill Education

Full Binary Trees

• Definition: The set of full binary trees can be
defined recursively by these steps.

BASIS STEP: There is a full binary tree consisting of
only a single vertex r.

RECURSIVE STEP: If T1 and T2 are disjoint full
binary trees, there is a full binary tree, denoted by
T1∙T2, consisting of a root r together with edges
connecting the root to each of the roots of the
left subtree T1 and the right subtree T2.

© 2019 McGraw-Hill Education

Building Up Full Binary Trees

Jump to long description

© 2019 McGraw-Hill Education

Structural Induction

• Definition: To prove a property of the elements of a
recursively defined set, we use structural induction.

BASIS STEP: Show that the result holds for all
elements specified in the basis step of the
recursive definition.

RECURSIVE STEP: Show that if the statement is
true for each of the elements used to construct
new elements in the recursive step of the
definition, the result holds for these new elements.

• The validity of structural induction can be shown to
follow from the principle of mathematical induction.

© 2019 McGraw-Hill Education

Full Binary Trees

Definition: The height h(T) of a full binary tree T is
defined recursively as follows:

• BASIS STEP: The height of a full binary tree T consisting of
only a root r is h(T) = 0.

• RECURSIVE STEP: If T1 and T2 are full binary trees, then the
full binary tree T = T1∙T2 has height

() () ()()1 21 max , .h T h T h T= +

The number of vertices n(T) of a full binary tree T
satisfies the following recursive formula:

• BASIS STEP: The number of vertices of a full binary tree T
consisting of only a root r is n(T) = 1.

• RECURSIVE STEP: If T1 and T2 are full binary trees, then the
full binary tree T = T1∙T2 has the number of vertices

() () ()1 21 .n T n T n T= + +

© 2019 McGraw-Hill Education

Structural Induction and Binary
Trees

Theorem: If T is a full binary tree, then n(T) ≤ 2h(T)+1 – 1

Proof: Use structural induction.

BASIS STEP: Consider a full binary tree consisting only of a root,
 where n(T) = 1 and h(T) = 0 lhs: 1 and rhs: 20+1 – 1 1 ≤ 1 ✓

INDUCTIVE HYPOTHESIS: Assume n(T) ≤ 2h+1 – 1 for any tree T of
 height h

INDUCTIVE STEP: Show: n(T) ≤ 2h+2 – 1 for tree of height h+1
 we can create a new tree T’ of height h+1 by adding a new root
 with two children of height at most h:
 n(T’) ≤ 2h+1 – 1 + 2h+1 – 1 + 1 by I.H.
 = 2• 2h+1 – 1
 = 2h+2 – 1 ✓

© 2019 McGraw-Hill Education

Recursive Algorithms
• Section 5.4

© 2019 McGraw-Hill Education

Section Summary 4

• Recursive Algorithms

• Proving Recursive Algorithms Correct

• Merge Sort

© 2019 McGraw-Hill Education

Recursive Algorithms

• Definition: An algorithm is called recursive if it solves
a problem by reducing it to an instance of the same
problem with smaller input.

• For the algorithm to terminate, the instance of the
problem must eventually be reduced to some initial
case for which the solution is known.

© 2019 McGraw-Hill Education

Recursive Factorial Algorithm

Example: Give a recursive algorithm for computing n!,
where n is a nonnegative integer.

Solution: Use the recursive definition of the factorial
function.

procedure factorial (n: nonnegative integer)

 if n = 0 then return 1

 else return n∙factorial (n − 1)

 {output is n!}

© 2019 McGraw-Hill Education

Recursive Exponentiation
Algorithm

Example: Give a recursive algorithm for computing an,
where a is a nonzero real number and n is a nonnegative
integer.

Solution: Use the recursive definition of an.

procedure power(a: nonzero real number,
 n: nonnegative integer)

 if n = 0 then return 1

 else return a∙ power (a, n − 1)

 {output is an}

© 2019 McGraw-Hill Education

Recursive GCD Algorithm

Example: Give a recursive algorithm for computing the
greatest common divisor of two nonnegative integers a
and b with a < b.

Solution: Use the reduction

gcd(a,b) = gcd(b mod a, a)

and the condition gcd(0,b) = b when b > 0.

procedure gcd(a,b: nonnegative integers with a < b)

 if a = 0 then return b

 else return gcd (b mod a, a)

 {output is gcd(a, b)}

© 2019 McGraw-Hill Education

Recursive Binary Search
Algorithm

Example: Construct a recursive version of a binary
search algorithm.

Solution: Assume we have a1,a2,…, an, an increasing
sequence of integers. Initially i is 1 and j is n. We are
searching for x.

procedure binary search(i, j, x : integers, 1≤ i ≤ j ≤n)
 m := ⌊(i + j)/2⌋
 if x = am then

return m
 else if (x < am and i < m) then

return binary search(i,m−1,x)
 else if (x > am and j >m) then

return binary search(m+1,j,x)
 else return 0
 {output is location of x in a1, a2,…,an if it appears, otherwise 0}

© 2019 McGraw-Hill Education

Merge Sort

• Merge Sort works by iteratively splitting a list (with
an even number of elements) into two sublists of
equal length until each sublist has one element.

• Each sublist is represented by a balanced binary tree.

• At each step a pair of sublists is successively merged
into a list with the elements in increasing order. The
process ends when all the sublists have been merged.

• The succession of merged lists is represented by a
binary tree.

© 2019 McGraw-Hill Education

Merge Sort

Example: Use merge sort to put the following list in
increasing order: 8,2,4,6,9,7,10, 1, 5, 3

Solution:

Jump to long description

© 2019 McGraw-Hill Education

Recursive Merge Sort

Example: Construct a recursive merge sort algorithm.

Solution: Begin with the list of n elements L.

procedure mergesort(L = a1, a2,…,an)

if n > 1 then

m := ⌊n/2⌋

L1 := a1, a2,…,am

L2 := am+1, am+2,…,an

L := merge(mergesort(L1), mergesort(L2))

{L is now sorted into elements in increasing order}

© 2019 McGraw-Hill Education

Recursive Merge Sort

Subroutine merge, which merges two sorted lists.

procedure merge(L1, L2 :sorted lists)

L := empty list

while L1 and L2 are both nonempty

remove smaller of first elements of L1 and L2 from its list;

put at the right end of L

if this removal makes one list empty

then remove all elements from the other list and append them to L

return L {L is the merged list with the elements in increasing order}

Complexity of Merge: Two sorted lists with m elements
and n elements can be merged into a sorted list using no
more than m + n − 1 comparisons.

© 2019 McGraw-Hill Education

Merging Two Lists

Example: Merge the two lists 2,3,5,6 and 1,4.

Solution:

TABLE 1 Merging the Two Sorted Lists 2, 3, 5, 6 and 1, 4.

First List Second List Merged List Comparison

2 3 5 6 1 4 1 < 2

2 3 5 6 4 1 2 < 4

3 5 6 4 1 2 3 < 4

5 6 4 1 2 3 4 < 5

5 6 1 2 3 4

1 2 3 4 5 6

© 2019 McGraw-Hill Education

Appendix of Image
Long Descriptions

© 2019 McGraw-Hill Education

Climbing an Infinite Ladder-
Appendix

• There is a man climbing an infinite ladder, the steps
of which are numbered with natural numbers from
the bottom. The man can reach step k plus one if he
can reach step k.

Jump to the image

© 2019 McGraw-Hill Education

Remembering How Mathematical
Induction Works- Appendix

• There are dominoes numbered with natural numbers.
The domino with number one falls on the domino with
number two, and the domino with number two falls on
the domino with number three, etc.

Jump to the image

© 2019 McGraw-Hill Education

Number of Subsets of a Finite
Set2- Appendix

• There is field S with circle X inside. S has two
arrows. The first one is from S to field T that has
circle X and element A inside, the second arrow is
from S to field T that has a circle named X union left
brace A right brace inside, which has element A
inside.

Jump to the image

© 2019 McGraw-Hill Education

Tiling Checkerboards1- Appendix

• There are four checkerboards of the size 2 times 2
with one square removed each. The first
checkerboard does not have the left bottom square.
The second checkerboard does not have the right
bottom square. The third checkerboard does not have
the left top square, and the fourth one does not have
the right top square. In each case, the remaining
squares form right triomino.

Jump to the image

© 2019 McGraw-Hill Education

Tiling Checkerboards2- Appendix

• There are four squares forming together a large
square. The right bottom square has a small shaded
square inside.

• There are four squares forming together a large
square, each one has small shaded square inside. In
the left top square, the small square is in the bottom
right corner. In the right top square, the small square
is in the bottom left corner. In the left bottom
square, the small square is in the top right corner.
Thus, these three small squares form a right
triomino.

Jump to the image

© 2019 McGraw-Hill Education

Building Up Rooted Trees -
Appendix

• There are 3 steps of building up rooted trees shown.
Basic step contains one vertex which is a root. The
first step contains several vertices that are added to
the next level. All these vertices are connected to
the root. At the second step, the vertices of the
previous level are the roots for the added vertices of
the next level.

Jump to the image

© 2019 McGraw-Hill Education

Building Up Full Binary Trees -
Appendix

• There are three steps of building up full binary trees
shown. The basic step contains one vertex on the
first level which is the root. Each next level is located
below the previous one. At the first step, two
vertices are added to the next level. They are
connected to the root forming the right and left
branches. At the second step, the vertices of the
second level are the roots for the added vertices of
the third level. The right and the left branches can
be formed in several ways: only from the left vertex,
only from the right, or from both vertices.

Jump to the image

© 2019 McGraw-Hill Education

Merge Sort 2 - Appendix

• There is a binary balanced tree at the top. Its root consists of numbers
8, 2, 4, 6, 9, 7, 10, 1, 5, and 3. At the first step, there are two
branches, the left leads to the vertex containing elements 8, 2, 4, 6,
and 9. The right one leads to the vertex containing elements 7, 10, 1, 5,
and 3. Two branches lead from the vertex 8, 2, 4, 6, 9 . The left one
leads to the vertex with the elements 8, 2, 4. The right one leads to
the vertex with the elements 6 and 9. Two branches also lead from the
vertex 7, 10, 1, 5, and 3. The left one leads to the vertex with the
elements 7, 10, 1. The right one leads to the vertex with the elements 5
and 3. Each of the four vertices of the previous level has two branches
leading to the vertices of the next level: from 8, 2, 4 to 8, 2 and 4,
from 6, 9 to 6 and 9, from 7, 10, 1 to 7, 10 and 1, from 5, 3 to 5 and 3.
At the next level there are branches from 8, 2 to 8 and 2, and from 7,
10 to 7 and 10. At the bottom of the picture there is a similar tree, but
it is turned upside down. In such vertices where there is more than one
element, elements are written in the increasing order from left to
right.

Jump to the image

	Slide 1: Induction and Recursion
	Slide 2: Chapter Summary
	Slide 3: Mathematical Induction
	Slide 4: Section Summary 1
	Slide 5: Climbing an Infinite Ladder
	Slide 6: Principle of Mathematical Induction
	Slide 7: Important Points About Using Mathematical Induction
	Slide 8: Validity of Mathematical Induction
	Slide 9: Remembering How Mathematical Induction Works
	Slide 10: Proving a Summation Formula by Mathematical Induction
	Slide 11: Conjecturing and Proving Correct a Summation Formula
	Slide 12: Classroom Exercise
	Slide 13: Proving Inequalities1
	Slide 14: Proving Inequalities2
	Slide 15: Classroom Exercise
	Slide 16: Proving Divisibility Results
	Slide 17: Number of Subsets of a Finite Set
	Slide 18: Number of Subsets of a Finite Set
	Slide 19: Tiling Checkerboards
	Slide 20: Tiling Checkerboards
	Slide 21: Guidelines: Mathematical Induction Proofs
	Slide 22: Strong Induction and Well-Ordering
	Slide 23: Section Summary 2
	Slide 24: Strong Induction
	Slide 25: Strong Induction and the Infinite Ladder
	Slide 26: Proof Using Strong Induction
	Slide 27: Which Form of Induction Should Be Used?
	Slide 28: Proof of the Fundamental Theorem of Arithmetic
	Slide 29: Proof Using Strong Induction
	Slide 30: Proof of Same Example using Mathematical Induction
	Slide 31: Well-Ordering Property
	Slide 32: Recursive Definitions and Structural Induction
	Slide 33: Section Summary 3
	Slide 34: Recursively Defined Functions
	Slide 35: Recursively Defined Functions
	Slide 36: Recursively Defined Functions
	Slide 37: Fibonacci Numbers
	Slide 38: Recursively Defined Sets and Structures
	Slide 39: Recursively Defined Sets and Structures
	Slide 40: Strings
	Slide 41: String Concatenation
	Slide 42: Length of a String
	Slide 43: Balanced Parentheses
	Slide 44: Well-Formed Formulae in Propositional Logic
	Slide 45: Rooted Trees
	Slide 46: Building Up Rooted Trees
	Slide 47: Full Binary Trees
	Slide 48: Building Up Full Binary Trees
	Slide 49: Structural Induction
	Slide 50: Full Binary Trees
	Slide 51: Structural Induction and Binary Trees
	Slide 52: Recursive Algorithms
	Slide 53: Section Summary 4
	Slide 54: Recursive Algorithms
	Slide 55: Recursive Factorial Algorithm
	Slide 56: Recursive Exponentiation Algorithm
	Slide 57: Recursive GCD Algorithm
	Slide 58: Recursive Binary Search Algorithm
	Slide 59: Merge Sort
	Slide 60: Merge Sort
	Slide 61: Recursive Merge Sort
	Slide 62: Recursive Merge Sort
	Slide 63: Merging Two Lists
	Slide 64: Appendix of Image Long Descriptions
	Slide 65: Climbing an Infinite Ladder- Appendix
	Slide 66: Remembering How Mathematical Induction Works- Appendix
	Slide 67: Number of Subsets of a Finite Set2- Appendix
	Slide 68: Tiling Checkerboards1- Appendix
	Slide 69: Tiling Checkerboards2- Appendix
	Slide 70: Building Up Rooted Trees - Appendix
	Slide 71: Building Up Full Binary Trees - Appendix
	Slide 72: Merge Sort 2 - Appendix

