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Chapter Summary

• Mathematical Induction

• Strong Induction

• Well-Ordering

• Recursive Definitions

• Structural Induction

• Recursive Algorithms

• Program Correctness (not yet included in overheads)
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Mathematical Induction
• Section 5.1
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Section Summary 1

• Mathematical Induction

• Examples of Proof by Mathematical Induction

• Mistaken Proofs by Mathematical Induction

• Guidelines for Proofs by Mathematical Induction
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Climbing an Infinite Ladder

Suppose we have an infinite ladder:

1. We can reach the first rung of the ladder.

2. If we can reach a particular rung of the 
ladder, then we can reach the next rung.

From (1), we can reach the first rung. Then 
by applying (2), we can reach the second rung. 
Applying (2) again, the third rung. And so on.  
We can apply (2) any number of times to 
reach any particular rung, no matter how high 
up.

This example motivates proof by 
mathematical induction.

Jump to long description
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Principle of Mathematical 
Induction

• Principle of Mathematical Induction: To prove that P(n) is true for all 
positive integers n, we complete these steps:

• Basis Step: Show that P(1) is true.

• Inductive Hypothesis: Assume that P(k) is true.

• Inductive Step: Show that P(k + 1) is true for all positive integers k.

• To complete the inductive step, assuming the inductive hypothesis that 
P(k) holds for an arbitrary integer k, show that P(k + 1) be true.

• Climbing an Infinite Ladder Example:

• BASIS STEP: We can reach rung 1

• INDUCTIVE HYPOTHESIS: Assume that we can reach rung k

• INDUCTIVE STEP: If we can reach rung k, then we can reach rung k + 1.

Hence, we can reach every rung on the ladder.
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Important Points About Using 
Mathematical  Induction

Mathematical induction can be expressed  as the rule of 
inference

( ) ( ) ( )( )( ) ( )1 1  ,P k P k P k n P n → + →

where the domain is the set of positive integers.

In a proof by mathematical induction, we don’t assume 
that P(k) is true for all positive integers! We show that 
if we assume that P(k) is true for some k, then P(k + 1) 
must also be true. 

Proofs by mathematical induction do not always start at 
the integer 1. In such a case, the basis step begins at a 
starting point b where b is an integer. We will see 
examples of this soon.
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Validity of Mathematical 
Induction

• Mathematical induction is valid because of the well ordering property, 
which states that every nonempty subset of the set of positive integers 
has a least element (see Section 5.2 and Appendix 1). Here is the proof:

• Suppose that P(1) holds and P(k) → P(k + 1) is true for all positive 
integers k. 

• Assume there is at least one positive integer  n for which P(n) is false. 
Then the set S of positive integers for which P(n) is false is nonempty. 

• By the well-ordering property, S has a least element, say m.

• We know that m can not be 1 since  P(1) holds. 

• Since m is positive and greater than 1, m − 1 must be a positive integer. 
Since m − 1 < m, it is not in S, so P(m − 1) must be true. 

• But then, since the conditional P(k) → P(k + 1) for every positive integer 
k holds, P(m) must also be true. This contradicts P(m) being false. 

• Hence, P(n) must be true for every positive integer n.
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Remembering How Mathematical 
Induction Works

Consider  an infinite 
sequence  of 
dominoes, labeled 
1,2,3, …, where each 
domino is standing.

Let P(n) be the 
proposition that the 
nth domino is knocked 
over. 

We know that the first 
domino is knocked down, 
i.e., P(1) is true .

We also know that  if  
whenever the kth domino 
is knocked over, it knocks 
over the (k + 1)st domino, 
i.e, P(k) → P(k + 1) is true 
for all positive integers k.

Hence, all dominos are knocked over.

P(n) is true for all positive integers n.
Jump to long description
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Proving a Summation Formula by 
Mathematical Induction

Example: Show that:

Solution:

• BASIS: 𝑛 = 1

• INDUCTIVE HYPOTHESIS: Assume for some k

• INDUCTIVE STEP: Show:

Note: Once we have this 
conjecture, mathematical 
induction can be used to 
prove it correct.

෍

𝑖=1

𝑘+1

𝑖 =
(𝑘 + 1)(𝑘 + 2)

2

෍

𝑖=1

𝑛

𝑖 =
𝑛(𝑛 + 1)

2

෍

𝑖=1

𝑘

𝑖 =
𝑘(𝑘 + 1)

2

෍

𝑖=1

𝑘+1

𝑖 =෍

𝑖=1

𝑘

𝑖 + (𝑘 + 1)

=
𝑘(𝑘 + 1)

2
+ (𝑘 + 1)

=
𝑘 𝑘 + 1 + 2(𝑘 + 1)

2

=
𝑘 + 1 (𝑘 + 2)

2
by I.H.

෍

𝑖=1

1

𝑖 = 1
lhs: rhs: 1(1 + 1)

2
= 1 ✓
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Conjecturing and Proving Correct 
a Summation Formula

Example: Conjecture and prove correct a formula for the sum of the first n 
positive odd integers. Then prove your conjecture.

Solution:  We have:

   We can conjecture that the sum of the first n positive odd integers is n2, 

Inductive Proof:

   BASIS: 𝑛 = 1

   
   INDUCTIVE HYPOTHESIS: Assume 1 + 3 + 5 +⋯+ 2𝑘 − 1 = 𝑘2 for some 𝑘

   
   INDUCTIVE STEP: Show: 1 + 3 + 5 +⋯+ 2𝑘 − 1 + (2𝑘 + 1) = (𝑘 + 1)2

                1 + 3 + 5 +⋯+ 2𝑘 − 1 + 2𝑘 + 1 = 𝑘2 + 2𝑘 + 1

                                                                                        = (𝑘 + 1)2

   By induction, we have shown the original statement to be true.

by I.H.

lhs: 1 rhs: 12 = 1 ✓

1 1,  1 3 4,  1 3 5 9,  1 3 5 7 16,  1 3 5 7 9 25.= + = + + = + + + = + + + + =

( ) 21 3 5 2 1 .n n+ + + + − =



© 2019 McGraw-Hill Education

Classroom Exercise

Prove: 12 + 32 + 52 +··· +(2𝑛 + 1)2=
(𝑛+ 1)(2𝑛+ 1)(2𝑛+ 3)

3
whenever 𝑛

is a nonnegative integer.
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Proving Inequalities1

Example: Use mathematical induction to prove that n < 
2n for all positive integers n.

Solution: Let P(n) be the proposition that n < 2n. 

• BASIS: P(1) is true since lhs: 1, rhs: 21 = 2, and 1 < 2 
✓

• INDUCTIVE HYPOTHESIS: Assume k < 2k, for an 
arbitrary positive integer k

• INDUCTIVE STEP: Show: k + 1 < 2k+1

                       k + 1 < 2k + 1

                                 ≤ 2k + 2k

                                 = 2k+1

Therefore n < 2n holds for all positive integers n.

by I.H.  
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Proving Inequalities2

Example: Use induction to prove that 2n < n!, for n ≥ 4.

Solution: Let P(n) be the proposition that 2n < n!

• BASIS: n = 4 lhs: 24 = 16  and rhs: 4! = 24, and 16 < 24 ✓

• INDUCTIVE HYPOTHESIS: Assume 2k < k! for an arbitrary 
integer k ≥ 4

• INDUCTIVE STEP: Show (k + 1): 2k+1 < (k + 1)!

( )

( )

12 2 2

2 ! ( )

1 !

1 !

k k

k by the inductive hypothesis

k k

k

+ = 

 

 +

= +

Therefore, 2n < n!  holds, for every integer n ≥ 4.
Note that here the basis step is P(4), since P(0), P(1), P(2),  and P(3) 
are all false.  
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Classroom Exercise

Prove: 2𝑛 > 𝑛2 if 𝑛 is an integer greater than 4.
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Proving Divisibility Results

Example: Use mathematical induction to prove that n3 − n is divisible 
by 3, for every positive integer n.

Solution: Let P(n) be the proposition that n3 − n is divisible by 3. 

• BASIS: P(1) is true since 13 − 1 = 0, which is divisible by 3.

• INDUCTIVE HYPOTHESIS: Assume P(k): k3 − k is divisible by 3, 
for an arbitrary positive integer k. 

• INDUCTIVE STEP: Show: P(k + 1): (k + 1)3 − (k+ 1) is divisible by 3

( ) ( ) ( ) ( )

( ) ( )

3 3 2

3 2

1 1 3 3 1 1

3

k k k k k k

k k k k

+ − + = + + + − +

= − + +

By the inductive hypothesis, the first term (k3 − k) is divisible 
by 3 and the second term is divisible by 3 since it is an integer 
multiplied by 3. So by part (i) of Theorem 1 in Section 4.1 , 
(k + 1)3 − (k + 1) is divisible by 3. 

    Therefore, n3 − n is divisible by 3, for every integer positive 
integer n.
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Number of Subsets of a Finite Set

Example: Use mathematical induction to show that if S is a 
finite set with n elements, where n is a nonnegative integer, 
then S has 2n subsets.

(Chapter 6 uses combinatorial methods to prove this result.)

Solution: Let P(n) be the proposition that a set with n elements 
has 2n subsets.

• BASIS: P(0) is true, because the empty set has only itself 
as a subset and  20 = 1.

• INDUCTIVE HYPTHESIS: Assume P(k): every set with k 
elements has 2k subsets for an arbitrary nonnegative 
integer k.
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Number of Subsets of a Finite Set

INDUCTIVE STEP: Show that a set with k + 1 elements has 
2k+1 subsets.

Let T be a set with k + 1 elements. Then T = S ∪ {a}, where a 
∈ T and S = T − {a}.  Hence |S| = k.

For each subset X of S, there are exactly two subsets of T, 
i.e., X and X ∪ {a}. 

By the inductive hypothesis S has 2k subsets. Since there 
are two subsets of T  for each subset of S, the number of 
subsets of T  is  2 ∙2k = 2k+1 .

Jump to long description
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Tiling Checkerboards

Example: Show that every 2n × 2n checkerboard with one square 
removed can be tiled using right triominoes.

A right triomino is an L-shaped tile which 
covers three squares at a time.

Solution: Let P(n) be the proposition that every 2n × 2n 
checkerboard with one square removed can be tiled using right 
triominoes. Use mathematical induction to prove that P(n) is true 
for all positive integers n.

• BASIS :  P(1) is true, because each of the four 2 × 2 checkerboards 
with one square removed can be tiled using one right triomino.

• INDUCTIVE HYPOTHESIS:  Assume that  P(k) is true: every 2k × 2k 
checkerboard with one square removed can be tiled using right 
triominoes for some positive integer k.Jump to long description
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Tiling Checkerboards
INDUCTIVE STEP: Show: Consider a 2k+1 × 2k+1 checkerboard with one 
square missing can be tiled with right triominoes.

Consider a 2k+1 × 2k+1 checkerboard with one square removed. Split this 
checkerboard into four checkerboards of size 2k ×2k,by dividing it in half 
in both directions.

Remove a square from one of the four 2k × 2k checkerboards. By the 
inductive hypothesis, this board can be tiled.  Also by the inductive 
hypothesis, the other three boards can be tiled with the square from the 
corner of the center of the original board removed. We can then cover the 
three adjacent squares with a triomino. 

Hence, the entire 2k+1 × 2k+1 checkerboard with one square removed can be 
tiled using right triominoes. Jump to long description
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Guidelines:
Mathematical Induction Proofs
Template for Proofs by Mathematical Induction

1. Express the statement that is to be proved in the form “for all n ≥ b, P(n)” for a 
fixed integer b. 

2. Write out “BASIS STEP.” Then show that P(b) is true, taking care that the 
correct value of b is used, with the left- and right-hand sides computed 
independently.

3. Write out “INDUCTIVE HYPOTHESIS”.  State, and clearly identify, the 
inductive hypothesis, in the form “assume that P(k) is true for an arbitrary fixed 
integer k ≥ b.”

4. Write out “INDUCTIVE STEP.”  State what needs to be shown under the 
assumption that the inductive hypothesis is true, i.e., write out P(k + 1).

5. Prove the statement P(k + 1) making use of the assumption P(k). Be sure that 
your proof is valid for all integers k with k ≥ b, taking care that the proof works 
for small values of k, including k = b.

6. Clearly identify the conclusion of the inductive step where you reach the 
conclusion in the “Show” statement.

7. After completing the basis, inductive hypothesis, and inductive step, state the 
conclusion, namely, by mathematical induction, P(n) is true for all integers n with 
n ≥ b.
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Strong Induction and
Well-Ordering

• Section 5.2
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Section Summary 2

• Strong Induction

• Example Proofs using Strong Induction

• Well-Ordering Property
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Strong Induction

Strong Induction: To prove that P(n) is true for all 
positive integers n, where P(n) is a propositional 
function, complete three steps:

• Basis Step: Verify that the proposition P(1) is true.

• Inductive Hypothesis: Assume P(j) holds for all j ≤ k 

• Inductive Step: Show the conditional statement 
holds for all positive integers k.

( ) ( ) ( ) ( )1 2 1P P P k P k    → + 

Strong Induction is sometimes called 
the second principle of mathematical 
induction or complete induction.



© 2019 McGraw-Hill Education

Strong Induction and
the Infinite Ladder

Strong induction tells us that we can reach all rungs if:

1. We can reach the first rung of the ladder.

2. Assume we can reach the first k rungs.

3. For every integer k, if we can reach the first k rungs, 
then we can reach the (k + 1)st rung. 

To conclude that we can reach every rung by strong 
induction:

• BASIS STEP:  P(1) holds

• INDUCTIVE HYPOTHESIS:  Assume P(1) ∧ P(2) ∧∙∙∙ ∧ 
P(k) holds for an arbitrary integer k

• INDUCTIVE STEP:  Show that P(k + 1) must also 
hold.

We will have then shown by strong induction that for
every positive integer n, P(n) holds, i.e., we can
reach the nth rung of the ladder.
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Proof Using Strong Induction 

• Example: Suppose we can reach the first and second rungs 
of an infinite ladder, and we know that if we can reach a 
rung, then we can reach two rungs higher. Prove that we 
can reach every rung. (Try this with mathematical 
induction.)

• Solution: Prove the result using strong induction.

• BASIS STEP: We can reach the first step.

• INDUCTIVE HYPOTHESIS:  Assume that we can reach 
the first j rungs for any 2 ≤ j ≤ k. 

• INDUCTIVE STEP:  Show that we can reach the (k + 1)st 
rung.

• Hence, we can reach all rungs of the ladder.
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Which Form of Induction Should 
Be Used?

• We can always use strong induction instead of  
mathematical induction. But there is no reason to use 
it if it is simpler to use mathematical induction. 

• Regular induction is just a special case of strong 
induction.

• In fact, the principles of mathematical induction, 
strong induction, and the well-ordering property are 
all equivalent.

• Sometimes it is clear how to proceed using one of the 
three methods, but not the other two.
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Proof of the Fundamental 
Theorem of Arithmetic

• Example: Show that if n is an integer greater than 1, then n can be 
written as the product of primes.

• Solution: Let P(n) be the proposition that n can be written as a 
product of primes.

• BASIS STEP: P(2) is true since 2 itself is prime.

• INDUCTIVE HYPOTHESIS: Assume P(j) is true for 2 ≤ j ≤ k. 

• INDUCTIVE STEP: Show that P(k + 1) must be true under this 
assumption; two cases need to be considered:

• if k + 1  is prime, then P(k + 1) is true

• otherwise, k + 1 is composite and can be written as the product of 
two positive integers a and b with 2 ≤ a ≤ b < k + 1

• by the inductive hypothesis a and b can be written as the 
product of primes and therefore k + 1 can also be written as the 
product of those primes

• Hence, every integer > 1 can be written as the product of primes.
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Proof Using Strong Induction 

• Example: Prove that every amount of postage of 12 cents or more can be 
formed using just 4-cent and 5-cent stamps.

• Solution: Let P(n) be the proposition that postage of n cents can be 
formed using 4-cent and 5-cent stamps.

• BASIS STEP: P(12), P(13), P(14), and P(15) hold.

• P(12) uses three 4-cent stamps.

• P(13) uses two 4-cent stamps and one 5-cent stamp.

• P(14) uses one 4-cent stamp and two 5-cent stamps.

• P(15) uses three 5-cent stamps.

• INDUCTIVE HYPOTHESIS: Assume that P(j) holds for 12 ≤ j ≤ k, where 
k ≥ 15. 

• INDUCTIVE STEP: Show that P(k + 1) holds. 

• Using the inductive hypothesis, P(k − 3) holds since k − 3 ≥ 12.  To 
form postage of k + 1 cents, add a 4-cent stamp to the postage for 
k − 3 cents. Hence, P(n) holds for all n ≥ 12.
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Proof of Same Example using 
Mathematical Induction

• Example: Prove that every amount of postage of 12 cents or more can be formed 
using just 4-cent and 5-cent stamps.

• Solution: Let P(n) be the proposition that postage of n cents can be formed using 
4-cent and 5-cent stamps.

• BASIS STEP: Postage of 12 cents can be formed using three 4-cent stamps.

• INDUCTIVE HYPOTHESIS: Assume that postage of k cents can be formed 
using 4-cent and 5-cent stamps for some k

• INDUCTIVE STEP: Show: P(k + 1) where k ≥ 12

• We consider two cases:

• If at least one 4-cent stamp has been used, then a 4-cent stamp can be 
replaced with a 5-cent stamp to yield a total of k + 1 cents.

• Otherwise, no 4-cent stamp have been used and at least three 5-cent 
stamps were used. Three 5-cent stamps can be replaced by four 4-cent 
stamps to yield a total of k + 1 cents.

• Hence, P(n) holds for all n ≥ 12.
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Well-Ordering Property

• Well-ordering property: Every nonempty set of nonnegative 
integers has a least element.

• The well-ordering property is one of the axioms of the positive 
integers listed in Appendix 1.

• The well-ordering property can be used directly in proofs

• The well-ordering property can be generalized.

• Definition: A set is well ordered if every subset has a least 
element.

• N is well ordered under ≤.

• The set of finite strings over an alphabet using lexicographic 
ordering is well ordered.

• We will see a generalization of induction to sets other than the 
integers in the next section.
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Recursive Definitions 
and Structural 

Induction
• Section 5.3
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Section Summary 3

• Recursively Defined Functions

• Recursively Defined Sets and Structures

• Structural Induction

• Generalized Induction
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Recursively Defined Functions

• Definition:  A recursive or inductive definition  of a 
function consists of two steps.

• BASIS STEP: Specify the value of the function at 
zero.

• RECURSIVE STEP: Give a rule for finding its value at 
an integer from its values at smaller integers.

• A function f(n)  is the same as a sequence a0, a1, … , 
where ai, where f(i) = ai. This was done using 
recurrence relations in Section 2.4.
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Recursively Defined Functions

Example:  Suppose f is defined by:

( )

( ) ( )

0 3,

1 2 3

f

f n f n

=

+ = +

Find f(1), f(2), f(3), f(4)

Solution:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 2 0 3 2 3 3 9

2 2 1 3 2 9 3 21

3 2 2 3 2 21 3 45

4 2 3 3 2 45 3 93

f f

f f

f f

f f

= + =  + =

= + =  + =

= + =  + =

= + =  + =

Example: Give a recursive definition of the factorial function n!

Solution: ( )

( ) ( ) ( )

0 1

1 1

f

f n n f n

=

+ = + 
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Recursively Defined Functions

Example: Give a recursive definition of:

0

.
n

k

k

a
=



Solution: The first part of the definition is

0

0

0

.k

k

a a
=

=

The second part is 1

0 0

1.
n n

k k n

k k

a a a
+

= =

 
= + +  

  n +1
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Fibonacci Numbers 

Fibonacci 
(1170- 1250)

Example : The Fibonacci numbers are defined 
as follows:

0

1

1 2

0

1

n n n

f

f

f f f− −

=

=

= +

Find f2, f3 , f4 , f5 .

2 1 0

3 2 1

4 3 2

5 4 3

1 0 1

1 1 2

2 1 3

3 2 5

f f f

f f f

f f f

f f f

= + = + =

= + = + =

= + = + =

= + = + =

In Chapter 8, we will use the 
Fibonacci numbers to model 
population growth of rabbits. 
This was an application 
described by Fibonacci 
himself.

Next, we use strong induction 
to prove a result about the 
Fibonacci numbers.
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Recursively Defined Sets and 
Structures

• Recursive definitions of sets have two parts:

• The basis step specifies an initial collection of elements.

• The recursive step gives the rules for forming new elements in 
the set from those already known to be in the set.

• Sometimes the recursive definition has an exclusion rule, which 
specifies that the set contains nothing other than those 
elements specified in the basis step and generated by 
applications of the rules in the recursive step. 

• We will always assume that the exclusion rule holds, even if it is 
not explicitly mentioned. 

• We will later develop a form of induction, called structural 
induction, to prove results about recursively defined sets.
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Recursively Defined Sets and 
Structures

• Example: integers that are positive multiples of 3

BASIS STEP: 3 ∊ S.

RECURSIVE STEP: If x ∊ S, then x + 3 ∊ S

 Initially 3 is in S, then 3 + 3 = 6, then 3 + 6 = 9, etc.

• Example: the natural numbers N

BASIS STEP: 1 ∊ N.

RECURSIVE STEP: If n is in N, then n + 1 is in N.  

 Initially 1 is in S, then 1 + 1 = 2, then 1 + 2 = 3, etc.
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Strings

• Definition: The set  Σ* of strings over the alphabet Σ:

BASIS STEP: λ ∊ Σ* (λ is the empty string)

RECURSIVE STEP: If w is in Σ* and x is in Σ, then wx  Σ*.

• Example: If Σ = {0,1}, the strings in in Σ* are the set of all 
bit strings, λ, 0, 1, 00, 01, 10, 11, etc.

• Example:  If Σ = {a,b}, show that aab is in Σ*.

 since λ ∊ Σ* and a ∊ Σ, a ∊ Σ*

 since a ∊ Σ* and a ∊ Σ, aa ∊ Σ*

 since aa ∊ Σ* and b ∊ Σ, aab ∊ Σ*
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String Concatenation

• Definition: Two strings can be combined via the 
operation of concatenation. Let Σ be a set of symbols 
and Σ* be the set of strings formed from the symbols 
in Σ. We can define the concatenation of two strings, 
denoted by ∙, recursively as follows.

BASIS STEP: If w  Σ*, then w ∙ λ= w.

RECURSIVE STEP: If w1  Σ* and w2  Σ* and x  Σ, 
then w1 ∙ (w2 x)= (w1 ∙ w2)x.

 often w1 ∙ w2  is written as w1 w2

 if w1  = abra  and w2  = cadabra, the concatenation        
w1 w2 = abracadabra
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Length of a String

• Example: Give a recursive definition of 𝑙 𝑤 , the 
length of the string w.

• Solution: The length of a string can be recursively 
defined by:

( )

( ) ( )

0;

1 if  and .

l

l wx l w w x





=

= +  
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Balanced Parentheses

• Example: Give a recursive definition of the set  of 
balanced parentheses P.

• Solution:

 BASIS STEP:  () ∊ P

 RECURSIVE STEP: If w ∊ P, then () w ∊ P,  (w) ∊ P 
and w () ∊ P

• Show that (() ()) is in P.

• Why is ))(() not in P?
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Well-Formed Formulae in 
Propositional Logic

• Definition: The set of well-formed formulae in 
propositional logic involving T, F, propositional 
variables, and operators from the set {¬,∧,∨,→, }.

BASIS STEP:  T, F, and s, where s is a propositional 
variable, are well-formed formulae.

RECURSIVE STEP: If E and F are well formed formulae, 
then (¬ E),  (E ∧ F), (E ∨ F), (E → F), (E  F), are well-
formed formulae.

• Examples: ((p ∨q) → (q ∧ F)) is a well-formed formula.

• pq ∧  is not a  well formed formula
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Rooted Trees

• Definition: The set of rooted trees, where a rooted 
tree consists of a set of vertices containing a 
distinguished vertex called the root, and edges 
connecting these vertices, can be defined recursively 
by these steps:

BASIS STEP:  A single vertex r is a rooted tree.

RECURSIVE STEP: Suppose that T1, T2, …, Tn are 
disjoint rooted trees with roots r1, r2,…, rn, 
respectively. Then the graph formed by starting 
with a root r, which is not in any of the rooted 
trees T1, T2, …, Tn, and adding an edge from r to 
each of the vertices r1, r2,…, rn, is also a rooted 
tree.
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Building Up Rooted Trees

Trees are studied extensively in Chapter 11.

 Next we look at a special type of tree, the full binary tree.

Jump to long description
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Full Binary Trees

• Definition: The set of full binary trees can be 
defined recursively by these steps.

BASIS STEP: There is a full binary tree consisting of 
only a single vertex r.

RECURSIVE STEP: If T1 and T2 are disjoint full 
binary trees, there is a full binary tree, denoted by 
T1∙T2, consisting of a root r together with edges 
connecting the root to each of the roots of the 
left subtree T1 and the right subtree T2.
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Building Up Full Binary Trees

Jump to long description
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Structural Induction

• Definition: To prove a property of the elements of a 
recursively defined set, we use  structural induction. 

BASIS STEP: Show that the result holds for all 
elements specified in the basis step of the 
recursive definition.

RECURSIVE STEP: Show that if the statement is 
true for each of the elements used to construct 
new elements in the recursive step of the 
definition, the result holds for these new elements. 

• The validity of structural induction can be shown to 
follow from the principle of mathematical induction.
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Full Binary Trees

Definition: The height h(T) of a full binary tree T is 
defined recursively as follows:

• BASIS STEP: The height of a full binary tree T consisting of 
only a root r is h(T) = 0.

• RECURSIVE STEP: If T1 and T2 are full binary trees, then the 
full binary tree T = T1∙T2 has height

( ) ( ) ( )( )1 21 max , .h T h T h T= +

The number of vertices  n(T) of a full binary tree T 
satisfies the following recursive formula:

• BASIS STEP: The number of vertices of a full binary tree T 
consisting of only a root r is n(T) = 1.

• RECURSIVE STEP: If T1 and T2 are full binary trees, then the  
full binary tree T = T1∙T2 has the number of vertices

( ) ( ) ( )1 21 .n T n T n T= + +
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Structural Induction and Binary 
Trees

Theorem: If T is a full binary tree, then n(T) ≤ 2h(T)+1 – 1

Proof: Use structural induction.

BASIS  STEP: Consider a full binary tree consisting only of a root,
   where n(T) = 1 and h(T) = 0      lhs: 1 and rhs: 20+1 – 1    1 ≤ 1 ✓

INDUCTIVE HYPOTHESIS: Assume n(T) ≤ 2h+1 – 1 for any tree T of
   height h

INDUCTIVE STEP:  Show: n(T) ≤ 2h+2 – 1 for tree of height h+1
   we can create a new tree T’ of height h+1 by adding a new root
   with two children of height at most h:
       n(T’) ≤ 2h+1 – 1 + 2h+1 – 1 + 1     by I.H.
               = 2• 2h+1 – 1
               = 2h+2 – 1 ✓
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Recursive Algorithms 
• Section 5.4
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Section Summary 4

• Recursive Algorithms

• Proving Recursive Algorithms Correct

• Merge Sort
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Recursive Algorithms

• Definition: An algorithm is called recursive if it solves 
a problem by reducing it to an instance of the same 
problem with smaller input.

• For the algorithm to terminate, the instance of the 
problem must eventually be reduced to some initial 
case for which the solution is known.
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Recursive Factorial Algorithm

Example: Give a recursive algorithm for computing n!, 
where n is a nonnegative integer. 

Solution: Use the recursive definition of the factorial 
function.

procedure factorial (n: nonnegative integer)

   if n = 0 then return 1

   else return n∙factorial (n − 1)

    {output is n!}
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Recursive Exponentiation 
Algorithm

Example: Give a recursive algorithm for computing an, 
where a is a nonzero real number and  n is a nonnegative 
integer.

Solution: Use the recursive definition of an.

procedure power(a: nonzero real number, 
                         n: nonnegative integer)

   if n = 0 then return 1

   else return a∙ power (a, n − 1)

    {output is an}
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Recursive GCD Algorithm

Example: Give a recursive algorithm for computing the 
greatest common divisor of two nonnegative integers  a 
and b with a < b. 

Solution: Use the reduction

gcd(a,b) = gcd(b mod a, a) 

and the condition gcd(0,b) = b when b > 0.

procedure gcd(a,b: nonnegative integers with a < b)

   if a = 0 then return b

   else return gcd (b mod  a, a)

    {output is gcd(a, b)}
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Recursive Binary Search 
Algorithm

Example: Construct a recursive version of a binary 
search algorithm. 

Solution: Assume we have a1,a2,…, an, an increasing 
sequence of integers. Initially i is 1 and j is n. We are 
searching for x.

procedure binary search(i, j, x : integers,  1≤ i ≤ j ≤n)
   m := ⌊(i + j)/2⌋
  if x = am then 

return m
  else if  (x < am and   i < m) then 

return binary search(i,m−1,x)
  else if  (x > am and   j >m) then 

return binary search(m+1,j,x)
  else return 0
  {output is location of x in a1, a2,…,an  if it appears, otherwise 0}
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Merge Sort

• Merge Sort works by iteratively splitting a list (with 
an even number of elements) into two sublists of 
equal length until each sublist has one element.

• Each sublist is represented by a balanced binary tree.

• At each step a pair of sublists is successively merged 
into a list with the elements in increasing order. The 
process ends when all the sublists have been merged.

• The succession of merged lists is represented by a 
binary tree.
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Merge Sort

Example: Use merge sort to put the following list in 
increasing order: 8,2,4,6,9,7,10, 1, 5, 3

Solution:

Jump to long description
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Recursive Merge Sort

Example: Construct a recursive merge sort algorithm. 

Solution: Begin with the list of n elements L.

procedure mergesort(L = a1, a2,…,an )

if  n > 1 then 

m := ⌊n/2⌋

L1 := a1, a2,…,am 

L2 := am+1, am+2,…,an

L := merge(mergesort(L1), mergesort(L2 ))

{L is now sorted into elements in increasing order}
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Recursive Merge Sort

Subroutine merge, which merges two sorted lists.

procedure merge(L1, L2 :sorted lists)

L := empty list

while L1  and L2  are both nonempty

remove smaller of first elements of L1 and L2 from its list; 

put at the right end of L

if this removal makes one list empty 

then remove all elements from the other list and append them to L

return L {L is the merged list with the elements in increasing order}

Complexity of Merge: Two sorted lists with m elements 
and n elements can be merged into a sorted list using no 
more than m + n − 1 comparisons.
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Merging Two Lists

Example: Merge the two lists 2,3,5,6  and 1,4.

Solution:

TABLE 1  Merging the Two Sorted Lists 2, 3, 5, 6 and 1, 4.

First List Second List Merged List Comparison

2 3 5 6 1 4 1 < 2

2 3 5 6 4 1 2 < 4

3 5 6 4 1 2 3 < 4

5 6 4 1 2 3 4 < 5

5 6 1 2 3 4

1 2 3 4 5 6
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Appendix of Image 
Long Descriptions
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Climbing an Infinite Ladder- 
Appendix

• There is a man climbing an infinite ladder, the steps 
of which are numbered with natural numbers from 
the bottom. The man can reach step k plus one if he 
can reach step k.

Jump to the image



© 2019 McGraw-Hill Education

Remembering How Mathematical 
Induction Works- Appendix

• There are dominoes numbered with natural numbers. 
The domino with number one falls on the domino with 
number two, and the domino with number two falls on 
the domino with number three, etc.

Jump to the image
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Number of Subsets of a Finite 
Set2- Appendix

• There is field S with circle X inside. S has two 
arrows. The first one is from S to field T that has 
circle X and element A inside, the second arrow is 
from S to field T that has a circle named X union left 
brace A right brace inside, which has element A 
inside.

Jump to the image
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Tiling Checkerboards1- Appendix

• There are four checkerboards of the size 2 times 2 
with one square removed each. The first 
checkerboard does not have the left bottom square. 
The second checkerboard does not have the right 
bottom square. The third checkerboard does not have 
the left top square, and the fourth one does not have 
the right top square. In each case, the remaining 
squares form right triomino.

Jump to the image
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Tiling Checkerboards2- Appendix

• There are four squares forming together a large 
square. The right bottom square has a small shaded 
square inside.

• There are four squares forming together a large 
square, each one has small shaded square inside. In 
the left top square, the small square is in the bottom 
right corner. In the right top square, the small square 
is in the bottom left corner. In the left bottom 
square, the small square is in the top right corner. 
Thus, these three small squares form a right 
triomino.

Jump to the image
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Building Up Rooted Trees - 
Appendix

• There are 3 steps of building up rooted trees shown. 
Basic step contains one vertex which is a root. The 
first step contains several vertices that are added to 
the next level. All these vertices are connected to 
the root. At the second step, the vertices of the 
previous level are the roots for the added vertices of 
the next level.

Jump to the image
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Building Up Full Binary Trees - 
Appendix

• There are three steps of building up full binary trees 
shown. The basic step contains one vertex on the 
first level which is the root. Each next level is located 
below the previous one. At the first step, two 
vertices are added to the next level. They are 
connected to the root forming the right and left 
branches. At the second step, the vertices of the 
second level are the roots for the added vertices of 
the third level. The right and the left branches can 
be formed in several ways: only from the left vertex, 
only from the right, or from both vertices.

Jump to the image
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Merge Sort 2 - Appendix

• There is a binary balanced tree at the top. Its root consists of numbers 
8, 2, 4, 6, 9, 7, 10, 1, 5, and 3. At the first step, there are two 
branches, the left leads to the vertex containing elements 8, 2, 4, 6, 
and 9. The right one leads to the vertex containing elements 7, 10, 1, 5, 
and 3. Two branches lead from the vertex 8, 2, 4, 6, 9 . The left one 
leads to the vertex with the elements 8, 2, 4. The right one leads to 
the vertex with the elements 6 and 9. Two branches also lead from the 
vertex 7, 10, 1, 5, and 3. The left one leads to the vertex with the 
elements 7, 10, 1. The right one leads to the vertex with the elements 5 
and 3. Each of the four vertices of the previous level has two branches 
leading to the vertices of the next level: from 8, 2, 4 to 8, 2 and 4, 
from 6, 9 to 6 and 9, from 7, 10, 1 to 7, 10 and 1, from 5, 3 to 5 and 3. 
At the next level there are branches from 8, 2 to 8 and 2, and from 7, 
10 to 7 and 10. At the bottom of the picture there is a similar tree, but 
it is turned upside down. In such vertices where there is more than one 
element, elements are written in the increasing order from left to 
right.

Jump to the image
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