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Probability of an Event
Pierre-Simon Laplace 

(1749-1827)Pierre-Simon Laplace’s classical theory of probability, 
introduced in the 18th century when he analyzed games of chance.

Key terms

• experiment: a procedure that yields one of a set of possible 
outcomes

• sample space: set of possible outcomes

• event: a subset of the sample space

Definition: If S is a finite sample space of equally likely outcomes, 
and E is an event (i.e., a subset of S) then the probability of E is

p(E) = |E|/|S|

For every event E, we have 0 ≤ p(E)  ≤ 1 since 0 ≤ p(E) = |E|/|S| ≤ 
|S|/|S| ≤ 1 and 0 ≤ |E| ≤ |S|
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Applying Laplace’s Definition

Example: An urn contains four blue and five red balls.
What is the probability that a ball chosen from the urn is 
blue?

Solution: The probability that the ball is chosen is 4/9 
since there are nine possible outcomes, and four of these 
produce a blue ball.

Example: What is the probability that when two dice are 
rolled, the sum of the numbers on the two dice is 7?

Solution: By the product rule there are 62 = 36 possible 
outcomes. Six of these sum to 7. Hence, the probability 
of obtaining a 7 is 6/36 = 1/6. 
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Applying Laplace’s Definition

Example: In a lottery, a player wins a large prize when they pick four 
digits that match, in correct order, four digits selected by a random 
process. What is the probability that a player wins the prize? 

Solution: By the product rule there are 104 = 10,000 ways to pick 
four digits. Since there is only 1 way to pick the correct digits, the 
probability of winning the large prize is 1/10,000 = 0.0001.

A smaller prize is won if only three digits are matched. What is the 
probability that a player wins the small prize?

Solution: If exactly three digits are matched, one of the four digits 
must be incorrect and the other three digits must be correct. For 
the digit that is incorrect, there are 9 possible choices. Hence, by 
the sum rule, there a total of 36 possible ways to choose four digits 
that match exactly three of the winning four digits. The probability 
of winning the small prize is 36/10,000 = 9/2500 = 0.0036.
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Applying Laplace’s Definition

Example: There are many lotteries that award prizes to people who 
correctly choose a set of six numbers out of the first n positive 
integers, where n is usually between 30 and 60. What is the 
probability that a person picks the correct six numbers out of 40?

Solution: The number of ways to choose six numbers out of 40 is 

C(40,6) = 40!/(34!6!) = 3,838,380

Hence, the probability of picking a winning combination is 

1/3,838,380 ≈ 0.00000026



© 2019 McGraw-Hill Education

Applying Laplace’s Definition

Example: What is the probability that the numbers 11, 4, 17, 39,
and 23 are drawn in that order from a bin with 50 balls labeled 
with the numbers 1,2, …, 50 if 

a) The ball selected is not returned to the bin.

b) The ball selected is returned to the bin before the next 
ball is selected.

Solution: Use the product rule in each case.

a) Sampling without replacement: The probability is 
1/254,251,200 since there are 50 ∙ 49 ∙ 48 ∙ 47 ∙ 46 = 
254,251,200 ways to choose the five balls.

b) Sampling with replacement: The probability is 1/505 = 
1/312,500,000 since 505 = 312,500,000.
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The Probability of Complements 
and Unions of Events

Theorem 1: Let E be an event in sample space S. The probability 

of the event E = S − E, the complementary event of E, is given by

Proof: Using the fact that |E| = |S| - |E|,

( ) ( )1 .p E p E= −

( ) ( )
| | | | | |

1 1 .
| | | |

S E E
p E p E

S S

−
= = − = −
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The Probability of Complements 
and Unions of Events

Example: A sequence of 10 bits is chosen randomly. What is the 
probability that at least one of these bits is 0?

Solution: Let E be the event that at least one of the 10 bits is 0. 

Then E is the event that all of the bits are 1s. The size of the 
sample space S is 210. Hence,

( ) ( ) 10

| | 1 1 1023
1 1 1 1 .

| | 2 1024 1024

E
p E p E

S
= − = − = − = − =
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The Probability of Complements 
and Unions of Events

Theorem 2: Let E1 and E2 be events in the  sample 
space S. Then

Proof: Given the inclusion-exclusion formula from 
Section 2.2, it follows that

( ) ( ) ( ) ( )1 2 1 2 1 2p E E p E p E p E E = + − 

| | | | | | | |,A B A B A B = + − 

( )

( ) ( ) ( )

1 2 1 2 1 2
1 2

1 2 1 2

1 2 1 2

| | | | | | | |

| | | |

| | | | | |

| | | | | |

.

E E E E E E
p E E

S S

E E E E

S S S

p E p E p E E

 + − 
 = =


= + −

= + − 
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The Probability of Complements 
and Unions of Events

Example: What is the probability that a positive integer 
selected at random from the set of positive integers 
not exceeding 100 is divisible by either 2 or 5?

Solution: Let E1 be the event that  the integer is 
divisible by 2 and E2 be the event that it is divisible 5? 
Then the event that the integer is divisible by 2 or 5 is 
E1 ∪ E2 and E1 ∩ E2 is the  event that it is divisible by 2 
and 5.

It follows that: 

( ) ( ) ( ) ( )1 2 1 2 1 2

50 /100 20 /100 10 /100 3 / 5.

p E E p E P E p E E = + − 

= + − =
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Monty Hall Puzzle

Example: You are asked to select one of the three doors to open. 
There is a large prize behind one of the doors and if you select 
that door, you win the prize. After you select a door, the game 
show host opens one of the other doors (which he knows is not the 
winning door). The prize is not behind the door and he gives you the 
opportunity to switch your selection. Should you switch? 

(This is a notoriously confusing problem that has been the subject 
of much discussion. Do a web search to see why!)

Solution: You should switch. The probability that your initial 
pick is correct is 1/3. This is the same whether or not you 
switch doors. But since the game show host always opens a 
door that does not have the prize, if you switch the 
probability of winning will be 2/3, because you win if your 
initial pick was not the correct door and the probability your 
initial pick was wrong is 2/3.
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Probability Theory
Section 7.2
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Assigning Probabilities

Laplace’s definition from the previous section, assumes that 
all outcomes are equally likely. Now we introduce a more 
general definition of probabilities that avoids this 
restriction.

Let S be a sample space of an experiment with a finite 
number of outcomes. We assign a probability p(s) to each 
outcome s, so that:

The function p from the set of all outcomes of the sample 
space S is called a probability distribution.

( )

( )

       0 1 

.

for eac  . h

      1
s S

i

sii

p s s S

p


  

=
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Assigning Probabilities

Example: What probabilities should we assign to the 
outcomes H (heads) and T (tails) when a fair coin is flipped? 
What probabilities should be assigned to these outcomes 
when the coin is biased so that heads comes up twice as 
often as tails?

Solution: For a fair coin, we have p(H) = p(T) = ½.

For a biased coin, we have p(H) = 2p(T).

Because p(H) + p(T) = 1, it follows that

2p(T) + p(T) = 3p(T) = 1.

Hence, p(T) = 1/3 and p(H) = 2/3.
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Uniform Distribution

Definition: Suppose that S is a set with n elements. The 
uniform distribution assigns the probability 1/n to each 
element of S. (Note that we could have used Laplace’s 
definition here.)

Example: Consider again the coin flipping example, but with a 
fair coin. Now p(H) = p(T) = 1/2.



© 2019 McGraw-Hill Education

Probability of an Event

Definition: The probability of the event E is the sum of the 
probabilities of the outcomes in E.

Note that now no assumption is being made about the 
distribution.

( ) ( )
s S

p E p s


=
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Example

Example: Suppose that a die is biased so that 3 appears 
twice as often as each other number, but that the other five 
outcomes are equally likely. What is the probability that an 
odd number appears when we roll this die?

Solution: We want the probability of the event E = {1,3,5}. 
We have p(3) = 2/7 and

p(1) = p(2) = p(4) = p(5) = p(6) = 1/7.

Hence, p(E) = p(1) + p(3) + p(5) =

1/7 + 2/7 + 1/7 = 4/7.
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Probabilities of Complements and 
Unions  of Events

Complements:

still holds. Since each outcome is in either E or E, but not 
both.

Unions:

also still holds under the new definition.

( ) ( )1p E p E= −

( ) ( ) ( )1 .
s S

p s p E p E


= = +

( ) ( ) ( ) ( )1 2 1 2 1 2p E E p E p E p E E = + − 
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Combinations of Events

Theorem: If E1, E2, … is a sequence of pairwise disjoint 
events in a sample space S, then

( )i i

i i

p E p E
 

=  
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Conditional Probability

Definition: Let E and F be events with p(F) > 0. The conditional 
probability of E given F, denoted by P(E|F), is defined as:

Example: A bit string of length four is generated at random so that 
each of the 16 bit strings of length 4 is equally likely. What is the 
probability that it contains at least two consecutive 0s, given that 
its first bit is a 0?

Solution: Let E be the event that the bit string contains at least 
two consecutive 0s, and F be the event that the first bit is a 0. 

• Since E ⋂ F = {0000, 0001, 0010, 0011, 0100}, p(E⋂F)=5/16.

• Because 8 bit strings of length 4 start with a 0, p(F) = 8/16= ½.

Hence,

( )
( )
( )

|
p E F

p E F
p F


=

( )
( )
( )

5 /16 5
| .

1/ 2 8

p E F
p E F

p F


= = =
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Conditional Probability

Example: What is the conditional probability that a family 
with two children has two boys, given that they have at least 
one boy. Assume that each of the possibilities BB, BG, GB, and 
GG is equally likely where B represents a boy and G represents 
a girl.

Solution: Let E be the event that the family has two boys and 
let  F be the event that the family has at least one boy. Then 
E = {BB}, F = {BB, BG, GB}, and E ⋂ F = {BB}.

• It follows that p(F) = 3/4 and  p(E⋂F)=1/4.

Hence, 

( )
( )
( )

1/ 4 1
| .

3 / 4 3

p E F
p E F

p F


= = =
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Independence

Definition: The events E and F are independent if and only if

Example: Suppose E is the event that a randomly generated bit 
string of length four begins with a 1 and F is the event that this bit 
string contains an even number of 1s. Are E and F independent if 
the 16 bit strings of length four are equally likely? 

Solution: There are eight-bit strings of length four that begin with 
a 1, and eight-bit strings of length four that contain an even 
number of 1s.

• Since the number of bit strings of length 4 is 16,

• Since E ⋂ F = {1111, 1100, 1010, 1001}, p(E⋂F) = 4/16=1/4.
We conclude that E and F are independent, because 

( ) ( ) ( ) .p E F p E p F =

( ) ( ) 8 /16 1/ 2.p E p F= = =

( ) ( ) ( ) ( ) ( )1/ 4 1/ 2 1/ 2p E F p E p F = = =
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Independence

Example: Assume (as in the previous example) that each of 
the four ways a family can have two children (BB, GG, BG,GB) 
is equally likely. Are the events E, that a family with two 
children has two boys, and F, that a family with two children 
has at least one boy, independent?

Solution: Because E = {BB}, p(E) = 1/4. We saw previously that 
that p(F) = 3/4 and p(E ⋂ F) = 1/4. The events E and F are 
not independent since

( ) ( ) ( )3 /16 1/ 4 .p E p F p E F=  = 
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Pairwise and Mutual Independence

Definition: The events E1, E2, …, En are pairwise independent 
if and only if p(Ei⋂Ej) = p(Ei) p(Ej) for all pairs i and j with 
i ≤ j ≤ n.

The events are mutually independent if

whenever ij, j = 1,2,…., m, are integers with 

1 ≤ i1 < i2 <∙∙∙ < im ≤ n and m ≥ 2.

( ) ( ) ( ) ( )1 2 1 2i i im i i imp E E E p E p E p E   =
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Bernoulli Trials James Bernoulli

(1854 – 1705)

Definition: Suppose an experiment can have only two possible 
outcomes, e.g., the flipping of a coin or the random 
generation of a bit. 

• Each performance of the experiment is called a Bernoulli 
trial. 

• One outcome is called a success and the other a failure. 

• If p is the probability of success and q the probability of 
failure, then p + q = 1. 

Many problems involve determining the probability of k 
successes when an experiment consists of n mutually 
independent Bernoulli trials.
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Bernoulli Trials 

Example: A coin is biased so that the probability of heads is 
2/3. What is the probability that exactly four heads occur 
when the coin is flipped seven times?

Solution: There are 27 = 128 possible outcomes. The number 
of ways four of the seven flips can be heads is C(7,4). The 
probability of each of the outcomes is (2/3)4(1/3)3 since the 
seven flips are independent. Hence, the probability that 
exactly four heads occur is   

C(7,4) (2/3)4(1/3)3 = (35∙ 16)/ 27 = 560/ 2187.
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Probability of k Successes in n 
Independent Bernoulli Trials

Theorem 2: The probability of exactly k successes in n 
independent Bernoulli trials, with probability of success p and 
probability of failure q = 1 − p, is

C(n,k)pkqn−k.

Proof: The outcome of n Bernoulli trials is an n-tuple 
(t1,t2,…,tn), where each is ti either S (success) or F (failure). 
The probability of each outcome of n trials consisting of k 
successes and k − 1 failures (in any order) is pkqn−k. Because 
there are C(n,k) n-tuples of Ss and Fs that contain exactly k 
Ss, the probability of k successes is C(n,k)pkqn−k.

We denote by b(k:n,p) the probability of k successes in n 
independent Bernoulli trials with p the probability of success. 
Viewed as a function of k, b(k:n,p) is the binomial distribution. 
By Theorem 2,          b(k:n,p) = C(n,k)pkqn−k.
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Random Variables

Definition: A random variable is a function from the sample 
space of an experiment to the set of real numbers. That is, a 
random variable assigns a real number to each possible 
outcome.

A random variable is a function. It is not a variable, and it is 
not random!

In the late 1940s W. Feller and J.L. Doob flipped a coin to see 
whether both would use “random variable” or the more fitting 
“chance variable.” Unfortunately, Feller won and the term 
“random variable” has been used ever since.
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Random Variables

Definition: The distribution of a random variable X on a 
sample space S is the set of pairs (r, p(X = r)) for all r ∊ X(S), 
where p(X = r) is the probability that X takes the value r. 

Example: Suppose that a coin is flipped three times. Let X(t) 
be the random variable that equals the number of heads that 
appear when t is the outcome. Then X(t) takes on the 
following values:

Each of the eight possible outcomes has probability 1/8. So, 
the distribution of X(t) is p(X = 3) = 1/8, p(X = 2) = 3/8, 
p(X = 1) = 3/8, and p(X = 0) = 1/8.

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3, 0

2,

1.

X HHH X TTT

X HHT X HTH X THH

X TTH X THT X HTT

= =

= = =

= = =
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The Famous Birthday Problem
The puzzle of finding the number of people needed in a room to ensure that the probability of at 
least two of them having the same birthday is more than ½ has a surprising answer, which we now 
find.

Solution: We assume that all birthdays are equally likely and that there are 366 days in the year. 
First, we find the probability pn that at least two of n people have different birthdays.  

Now, imagine the people entering the room one by one. The probability that at least two have the 
same birthday  is 1− pn .

• The probability that the birthday of the second person is different from that of the first 
is 365/366.

• The probability that the birthday of the third person is different from the other two, when 
these have two different birthdays, is 364/366.

• In general, the probability that the jth person has a birthday different from the birthdays 
of those already in the room, assuming that these people all have different birthdays,
is (366 − (j − 1))/366 = (367 − j)/366.

• Hence, pn = (365/366)(364/366)∙∙∙ (367 − n)/366.

• Therefore , 1− pn = 1−(365/366)(364/366)∙∙∙ (367 − n)/366.

Checking various values for n with computation help tells us that for n = 22, 1− pn ≈ 0.457, and for 
n = 23, 1− pn ≈ 0.506. Consequently, a minimum number of 23 people are needed so that that the 
probability that at least two of them have the same birthday is greater than 1/2.
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Monte Carlo Algorithms

Algorithms that make random choices at one or more steps 
are called probabilistic algorithms.

Monte Carlo algorithms are probabilistic algorithms used to 
answer decision problems, which are problems that either 
have "true" or "false" as their answer.

• A Monte Carlo algorithm consists of a sequence of tests. 
For each test the algorithm responds "true" or "unknown."

• If the response is "true," the algorithm terminates with 
the answer is "true."

• After running a specified sequence of tests where every 
step yields "unknown," the algorithm outputs "false."

• The idea is that the probability of the algorithm 
incorrectly outputting “false” should be very small as long 
as a sufficient number of tests are performed.
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Probabilistic Primality Testing

Probabilistic primality testing (see Example 16 in text) is an example of a 
Monte Carlo algorithm, which is used to  find large primes to generate the 
encryption keys for RSA cryptography (as discussed in Chapter 4).

• An integer n greater than 1 can be shown to be composite (i.e., not 
prime) if it fails  a particular test  (Miller’s test), using a random 
integer b with 1 < b < n as the base. But if n passes Miller’s test for a 
particular base b, it may either be prime or composite. The probability 
that a composite integer passes n Miller’s test is for a random b, is less 
that ¼.

• So failing the test, is the “true” response in a Monte Carlo algorithm, 
and passing the test is “unknown.”

• If the test is performed k times (choosing a random integer b each 
time) and the  number n passes Miller’s test at every iteration, then the 
probability that it is composite is less than (1/4)k. So for a sufficiently, 
large k, the probability that n is composite even though it has passed all 
k iterations of Miller’s test is small. For example, with 10 iterations, 
the probability that n is composite is less than 1 in 1,000,000.
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