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Applications of 
Recurrence Relations

Section 8.1
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Section Summary

Applications of Recurrence Relations

• Fibonacci Numbers

• The Tower of Hanoi 

• Counting Problems
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Recurrence Relations 
(recalling definitions from Chapter 2)

Definition: A recurrence relation for the sequence {an} 
is an equation that expresses an in terms of one or more 
of the previous terms of the sequence, namely, 

a0, a1, …, an-1

for all integers n with n ≥ n0, where n0 is a nonnegative 
integer. 

• A sequence is called a solution of a recurrence relation 
if its terms satisfy the recurrence relation.

• The initial conditions for a sequence specify the terms 
that precede the first term where the recurrence 
relation takes effect.
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Rabbits and the Fibonacci 
Numbers

Example: A young pair of rabbits (one of each gender) is 
placed on an island. A pair of rabbits does not breed 
until they are 2 months old. After they are 2 months old, 
each pair of rabbits produces another pair each month. 
Find a recurrence relation for the number of pairs of 
rabbits on the island after n months, assuming that
rabbits never die.

This is the original problem considered by Leonardo 
Pisano (Fibonacci) in the thirteenth century.
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Rabbits and the Fibonacci 
Numbers

Modeling the Population Growth of Rabbits on an Island

Jump to long description
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Rabbits and the Fibonacci 
Numbers

Solution: Let fn be the number of pairs of rabbits after n 
months.

• There is f1 = 1 pair of rabbits on the island at the end of the 
first month. 

• Also f2 = 1 since the pair does not breed during the first month.

• To find the number of pairs on the island after n months, add 
the number on the island after the previous month, fn-1, and 
the  number of newborn pairs, which equals fn-2, because each 
newborn pair comes from a pair at least two months old.

Hence, the sequence {fn } satisfies the recurrence relation
fn = fn-1 + fn-2 for  n ≥ 3

with the initial conditions f1 = 1 and  f2 = 1. 

The number of pairs of rabbits on the island after n months is 
given by the nth Fibonacci number.
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The Tower of Hanoi

In the late nineteenth century, the French mathematician 
Édouard Lucas invented a puzzle consisting of three pegs 
on a board with disks of different sizes. Initially all of the 
disks are on the first peg in order of size, with the 
largest on the bottom.

Rules: You are allowed to move the disks one at a time 
from one peg to another as long as a larger disk is never 
placed on a smaller.

Goal: Using allowable moves, end up with all the disks on 
the second peg in order of size with largest on the 
bottom.
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The Tower of Hanoi

The Initial Position in the Tower of Hanoi Puzzle
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The Tower of Hanoi

Solution: Let {Hn} denote the number of moves needed to solve the 
Tower of Hanoi Puzzle with n disks. Set up a recurrence relation for 
the sequence {Hn}. Begin with n disks on peg 1. We can transfer the 
top n −1 disks, following the rules of the puzzle, to peg 3 using Hn−1

moves. 

Next, we use 1 move to transfer the largest disk to the second peg. 
Then we transfer the n −1 disks from peg 3 to peg 2 using Hn−1

additional moves. This cannot be done in fewer steps. Hence,

1H 2H 1.n n−= +

The initial condition is H1 = 1 since a single disk can be transferred 
from peg 1 to peg 2 in one move.
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The Tower of Hanoi

We can use an iterative approach to solve this recurrence relation 
by repeatedly expressing Hn in terms of the previous terms of the 
sequence.
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• There was a myth created with the puzzle. Monks in a tower in Hanoi are 
transferring 64 gold disks from one peg to another following the rules of 
the puzzle.  They move one disk each day. When the puzzle is finished, the 
world will end. 

• Using this formula for the 64 gold disks of the myth, 
264 −1 = 18,446,744,073,709,551,615

days are needed to solve the puzzle, which is more than 500 billion years.
• Reve’s puzzle (proposed in 1907 by Henry Dudeney) is similar but has 4 

pegs. There is a well-known unsettled conjecture for the minimum number 
of moves needed to solve this puzzle.  (see Exercises 38-45)
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Counting Bit Strings

Example 3: Find a recurrence relation and give initial conditions for the 
number of bit strings of length n without two consecutive 0s. How many such 
bit strings are there of length five?

Solution: Let an denote the number of bit strings of length n without two 
consecutive 0s.  To obtain a recurrence relation for {an } note that the 
number of bit strings of length n that do not have two consecutive 0s is the 
number of bit strings ending with a 0 plus the number of such bit strings 
ending with a 1. 

Now assume that n ≥ 3. 

• The bit strings of length n ending with 1 without two consecutive 0s are 
the bit strings of length n −1 with no two consecutive 0s with a 1  at the 
end. Hence, there are an−1 such bit strings.

• The bit strings of length n ending with 
0 without two consecutive 0s are the 
bit strings of length n − 2 with no two
consecutive 0s with 10 at the end. 
Hence, there are an−2 such bit strings.

We conclude that an = an−1 + an−2 for n ≥ 3.
Jump to long description
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Bit Strings

The initial conditions are

• a1 = 2, since both the bit strings 0 and 1 do not have 
consecutive 0s

• a2 = 3, since the bit strings 01, 10, and 11 do not have 
consecutive 0s, while 00 does

To obtain a5, we use the recurrence relation three times 
to find that

• a3 = a2 + a1 = 3 + 2 = 5

• a4 = a3 + a2 = 5+ 3 = 8

• a5 = a4 + a3 = 8+ 5 = 13

Note that {an } satisfies the same recurrence relation as 
the Fibonacci sequence. Since a1 = f3 and  a2 = f4 , we 
conclude that an = fn+2 
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Counting the Ways to 
Parenthesize a Product

Example: Find a recurrence relation for Cn, the number of ways to 
parenthesize the product of n + 1 numbers, x0 ∙ x1 ∙ x2 ∙ ⋯ ∙ xn, to specify the 
order of multiplication. For example, C3 = 5, since all the possible ways to 
parenthesize 4 numbers are

( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3,    ,    ,  ,x x x x x x x x x x x x x x x x x x x x              

Solution:  Note that however parentheses are inserted in x0 ∙ x1 ∙ x2 ∙ ⋯ ∙ xn, 
one "∙" operator remains outside all parentheses. This final operator appears 
between two of the n + 1 numbers, say xk and xk+1. Since there are Ck ways to 
insert parentheses in the product x0 ∙ x1 ∙ x2 ∙ ⋯ ∙ xk and  Cn−k−1 ways to insert 
parentheses in the product xk+1 ∙ xk+2 ∙ ⋯ ∙ xn, we have

0 1 1 2 2 1 1 0

1
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n n n n n
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k n k
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C C

− − − −

−

− −

=
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The initial conditions are C0 = 1 and C1 = 1.

The sequence {Cn } is the sequence of Catalan Numbers. This recurrence  
relation can be solved using the method of generating functions.
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Solving Linear 
Recurrence Relations

Section 8.2
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Section Summary

Linear Homogeneous Recurrence Relations

Solving Linear Homogeneous Recurrence Relations with 
Constant Coefficients. 

Solving Linear Nonhomogeneous Recurrence Relations 
with Constant Coefficients.
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Linear Homogeneous Recurrence 
Relations

Definition: A linear homogeneous recurrence relation of 
degree k with constant coefficients is a recurrence relation 
of the form an = c1an−1 + c2an−2 + ….. + ck an−k, where c1, c2, …., ck

are real numbers, and ck ≠ 0 

• it is linear because the right-hand side is a sum of the previous 
terms of the sequence each multiplied by a function of n

• it is homogeneous because no terms occur that are not 
multiples of the aj’s. Each coefficient is a constant

• the degree is k because an is expressed in terms of the 
previous k terms of the sequence

By strong induction, a sequence satisfying such a recurrence 
relation is uniquely determined by the recurrence relation and the 
k initial conditions a0 = C1, a0 = C1 ,… , ak−1 = Ck−1.
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Examples of Linear Homogeneous 
Recurrence Relations 

( ) 11.11n nP P −= linear homogeneous recurrence relation 
of degree one

1 2    n n nf f f− −= + linear homogeneous recurrence 
relation of degree two

2

1 2n n na a a− −= + not linear

12 1n nH H −= + not homogeneous

1 n nB nB −= coefficients are not constants
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Solving Linear Homogeneous 
Recurrence Relations

The basic approach is to look for solutions of the form 
an = rn, where r is a constant.

Note that an = rn is a solution to the recurrence relation

1 1 2 2  n n n k n ka c a c a c a− − −= + + + if and only if
1 2

1 2 .n n n

k n kr c r c r c r− −

−= + + +

Algebraic manipulation yields the characteristic equation:
1 2

1 2 1   0k k k

k kr c r c r c r c− −

−− − − − − =

The sequence {an} with an = rn is a solution if and only if r 
is a solution to the characteristic equation. 

The solutions to the characteristic equation are called the 
characteristic roots of the recurrence relation. The roots 
are used to give an explicit formula for all the solutions of 
the recurrence relation.
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Solving Linear Homogeneous 
Recurrence Relations of Degree Two

Theorem 1: Let c1 and c2 be real numbers. Suppose that 
r2 – c1r – c2 = 0 has two distinct roots: r1 and r2. Then the 
sequence {an} is a solution to the recurrence relation

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2

if and only if

𝑎𝑛 = 𝛼1𝑟1
𝑛 + 𝛼2𝑟2

𝑛

for n = 0,1,2,…, where 𝛼1 and 𝛼2 are constants.
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Using Theorem 1
Example: What is the solution to the recurrence relation  

an = an−1 + 2an−2 with a0 = 2 and a1 = 7? 

Solution: The characteristic equation is  r2 − r − 2 = 0. 

Its roots are r = 2 and r = −1 . Therefore, {an} is a solution 
to the recurrence relation if and only if  

𝑎𝑛 = 𝛼12
𝑛 + 𝛼2 −1

𝑛

for some constants 𝛼1 and 𝛼2

To find the constants 𝛼1 and 𝛼2, note that 

a0 = 2 = 𝛼1 + 𝛼2 and  a1 = 7 = 𝛼12 + 𝛼2(−1)

Solving these equations, we find that 𝛼1 = 3 and 𝛼2 = −1

Hence, the solution is the sequence {an} with   
an = 3∙2n − (−1)n
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An Explicit Formula for the 
Fibonacci Numbers

We can use Theorem 1 to find an explicit formula for 
the Fibonacci numbers. The sequence of Fibonacci 
numbers satisfies the recurrence relation fn = fn−1 + fn−2

with the initial conditions: f0 = 0  and f1 = 1.

Solution: The roots of the characteristic equation
r2 – r – 1 = 0 are

1

1 5

2
r

+
=

2

1 5

2
r

−
=
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Fibonacci Numbers

Therefore, by Theorem 1

1 2

1 5 1 5

2 2

n n

nf  
   + −

= +      
   

for some constants α1 and α2.

Using the initial conditions f0 = 0 and  f1 = 1 , we have

0 1 2

1 1 2

0

1 5 1 5
1.

2 2

f

f

 

 

= + =

   + −
= + =      

   

Solving, we obtain
1 2

1 1
, .

5 5
 = −

Hence, 1 1 5 1 1 5
.

2 25 5

n n

nf
   + +

= −      
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The Solution when there is a 
Repeated Root

Theorem 2:  Let c1 and c2 be real numbers with c2 ≠ 0. 
Suppose that r2 – c1r – c2 = 0 has one repeated root r0. 
Then the sequence {an} is a solution to the recurrence 
relation an = c1an−1 + c2an−2 if and only if

0 2 0

n n

na r nr = +

for n = 0,1,2,… , where α1 and α2 are constants.



© 2019 McGraw-Hill Education

Using Theorem 2

Example:  What is the solution to the recurrence relation
        an = 6an−1 − 9an−2 with a0 = 1 and a1 = 6? 

Solution: The characteristic equation is  r2 − 6r + 9 = 0. 

The only root is r = 3. Therefore, {an} is a solution to the 
recurrence relation if and only if

𝑎𝑛 = 𝛼13
𝑛 + 𝛼2𝑛 3 𝑛

where α1 and α2 are constants.

To find the constants α1 and α2, note that 

a0 = 1 = 𝛼1    and       a1 = 6 = 𝛼1 ∙ 3 + 𝛼2 ∙3

Solving, we find that 𝛼1 = 1 and 𝛼2 = 1  

Hence, an = 3n + n3n 
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Divide-and-Conquer 
Algorithms and Recurrence 

Relations
Section 8.3
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Section Summary

Divide-and-Conquer Algorithms and Recurrence Relations

Examples

• Binary Search

• Merge Sort

• Fast Multiplication of Integers

Master Theorem

Closest Pair of Points (not covered yet in these slides)
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Divide-and-Conquer Algorithmic 
Paradigm

Definition: A divide-and-conquer algorithm  works by first  
dividing a problem into one or more instances of the same 
problem of smaller size and then conquering the problem using 
the solutions of the smaller problems to find a solution of the 
original problem.

Examples:

• Binary search, covered in Chapters 3 and 5: It works by 
comparing the element to be located to the middle element. 
The original list is then split into two lists and the search 
continues recursively in the appropriate sublist.

• Merge sort, covered in Chapter 5: A list is split into two 
approximately equal sized sublists, each recursively sorted 
by merge sort.  Sorting is done by successively merging 
pairs of lists. 
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Divide-and-Conquer Recurrence 
Relations

Suppose that a recursive algorithm divides a problem of 
size n into a subproblems.

Assume each subproblem is of size n/b.

Suppose g(n) extra operations are needed in the conquer 
step.

Then f(n) represents the number of operations to solve a 
problem of size n satisfies the following recurrence 
relation:

( ) ( ) ( )/f n af n b g n= +

This is called a divide-and-conquer recurrence relation.



© 2019 McGraw-Hill Education

Example: Binary Search

Binary search reduces the search for an element in a 
sequence of size n to the search in a sequence of size 
n/2. Two comparisons are needed to implement this 
reduction:

• one to decide whether to search the upper or lower 
half of the sequence and 

• the other to determine if the sequence has elements

Hence, if f(n) is the number of comparisons required to 
search for an element in a sequence of size n, then

( ) ( ) 2/ 2f n f n= +

when n is even.



© 2019 McGraw-Hill Education

Example: Merge Sort

The merge sort algorithm splits a list of n (assuming n is 
even) items to be sorted into two lists with n/2 items. It 
uses fewer than n comparisons to merge the two sorted 
lists.

Hence, the number of comparisons required to sort a 
sequence of size n, is no more than M(n) where

( ) ( )2 / 2 .M n M n n= +
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Example: Fast Multiplication of 
Integers

An algorithm  for the fast multiplication of two 2n-bit integers (assuming n is 
even) first splits each of the 2n-bit integers into two blocks, each of n bits.

Suppose that a and b are integers with binary expansions of length 2n. Let

       a = (a2n−1a2n−2 … a1a0)2   and b = (b2n−1b2n−2 … b1b0)2 

Let a = 2nA1 + A0,  b = 2nB1 + B0 , where

       A1 = (a2n−1 … an+1an)2 , A0 = (an−1 … a1a0)2 ,

       B1 = (b2n−1 … bn+1bn)2 , B0 = (bn−1 … b1b0)2.

The algorithm is based on the fact that ab can be rewritten as:

        ab = (22n + 2n)A1B1 +2n (A1−A0)(B0 − B1) +(2n + 1)A0B0.

This identity shows that the multiplication of two 2n-bit integers can be 
carried out using three multiplications of n-bit integers, together with 
additions, subtractions, and shifts. 

Hence, if f(n) is the total number of operations needed to multiply two n-bit 
integers, then ( ) ( )2 3f n f n Cn= +
where Cn  represents the total number of bit operations; the additions, 
subtractions and shifts that are a constant multiple of n-bit operations.
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Estimating the Size of 
Divide-and-conquer Functions

Theorem 2. Master Theorem: Let f be an increasing 
function that satisfies the recurrence relation

( ) ( )/ df n af n b cn= +

whenever n = bk, where k is a positive integer greater 
than 1, and c and d are real numbers with c positive and 
d nonnegative. Then

( )

( )

( )

( )log

if ,

is log if ,

if .b

d
d

d d

d
a

f

O n a b

O n n a b

a b
O n

n





=



<

>
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Complexity of Binary Search

Binary Search Example: Give a big-O estimate for the 
number of comparisons used by a binary search.

Solution:  Since the number of comparisons used by 
binary search is f(n) = f(n/2) + 2 where n is even, by the 
Master Theorem, it follows that f(n) is O(log n) since

       a = 1, b = 2, and d = 0 and a = bd (1 = 20)
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Complexity of Merge Sort

Merge Sort Example: Give a big-O estimate for the 
number of comparisons used by merge sort.

Solution:  Since the number of comparisons used by 
merge sort to sort a list of n elements is less than M(n) 
where M(n) = 2M(n/2) + n, by the Master theorem M(n) 
is O(n log n) since

        a = 2, b = 2, and d = 1 and a = bd (2 = 21)
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Complexity of Fast Integer 
Multiplication Algorithm

Integer Multiplication Example: Give a big-O estimate for 
the number of bit operations used needed to multiply two 
n-bit integers using the fast multiplication algorithm. 

Solution: We have shown that f(n) = 3f(n/2) + Cn, when n is 
even, where f(n) is the number of bit operations needed to 
multiply two n-bit integers. Hence by the master theorem  
with a = 3, b = 2, c = C, and d = 1 (so that we have the case 
where a > bd), it follows that f(n) is O(nlog 3).

Note that log 3 ≈ 1.6. Therefore, the fast multiplication 
algorithm is a substantial improvement over the 
conventional algorithm that uses O(n2) bit operations.
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Inclusion-Exclusion

Section 8.5
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Section Summary

The Principle of Inclusion-Exclusion

Examples
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Principle of Inclusion-Exclusion

In Section 2.2, we developed the following formula for 
the number of elements in the union of two finite sets:

A B A B A B = + − 

We will generalize this formula to finite sets of any 
size.
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Two Finite Sets

Example: In a discrete mathematics class every student 
is a major in computer science or mathematics or both. 
The number of students having computer science as a  
major (possibly along with mathematics) is 25; the 
number of students having mathematics as a major 
(possibly along with computer science) is 13; and the 
number of students majoring in both computer science 
and mathematics is 8. How many students are in the 
class?

Solution:

25 13 8 30

A B A B A B = + − 

= + − =

Jump to long description



© 2019 McGraw-Hill Education

Three Finite Sets

A B C

A B C A B A C B C A B C

  =

+ + −  −  −  +  

Jump to long description
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Three Finite Sets

Example: A total of 1232 students have taken a course in Spanish, 879 
have taken a course in French, and 114 have taken a course in Russian. 
Further, 103 have taken courses in both Spanish and French, 23 have 
taken courses in both Spanish and Russian, and 14 have taken courses 
in both French and Russian. If 2092 students have taken a course in 
at least one of Spanish French and Russian, how many students have 
taken a course in all 3 languages. 

Solution: Let S be the set of students who have taken a course in 
Spanish, F the set of students who have taken a course in French, and 
R the set of students who have taken a course in Russian. Then, 

|S| = 1232, |F| = 879, |R| = 114, |S∩F| = 103, |S∩R| = 23, |F∩R| = 14, 
and |S∪F∪R| = 2092.

Using the equation 

     |S∪F∪R| = |S|+ |F|+ |R| − |S∩F| − |S∩R| − |F∩R| + |S∩F∩R|,

we obtain 2092 = 1232 + 879 + 114 −103 −23 −14 + |S∩F∩R|.

Solving for |S∩F∩R| yields 7.
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Illustration of 
Three Finite Set Example
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The Principle of 
Inclusion-Exclusion

Theorem 1. The Principle of Inclusion-Exclusion: Let 
A1, A2, …, An be finite sets. Then:

( )

1 2

1 1

1

1 2

1

1

n i i j

i j k n i j n

n

i j k n

i j k n

A A A A A A

A A A A A A

      

+

   

   = −  +

  − + −   
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The Principle of 
Inclusion-Exclusion

Proof: An element in the union is counted exactly once in 
the right-hand side of the equation. Consider an element a 
that is a member of r of the sets A1,…., An where 1 ≤ r ≤  n.

• It is counted C(r,1) times by iA

• It is counted C(r,2) times by
i jA A

• In general, it is counted C(r,m) times by the summation 
of m of the sets Ai.



© 2019 McGraw-Hill Education

The Principle of 
Inclusion-Exclusion

Thus the element is counted exactly

( ) ( ) ( ) ( ) ( )
1

, 0.,1 , 2 3 1 ,
r

C r C r C r C r r
+

− + + − =−

times by the right-hand side of the equation.

By Corollary 2 of Section 6.4, we have

( ) ( ) ( ) ( ) ( ) .,0 ,1 ,2 1 , 0
r

C r C r C r C r r− + − + − =

Hence,

( ) ( ) ( ) ( ) ( )
1

.1 ,0 ,1 ,2 1 ,
r

C r C r C r C r r
+

= = − + + −
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Appendix of Image 
Long Descriptions
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Rabbits and the Fiobonacci Numbers – 
Appendix

There is 0 reproducing pair and 1 young pair in the first 
month, the number of total pairs is 1. There is 0 
reproducing pair and 1 young pair in the second month, 
the number of total pairs is 1. There is 1 reproducing 
pair and 1 young pair in the third month, the number of 
total pairs is 2. There is 1 reproducing pair and 2 young 
pairs in the fourth month, the number of total pairs is 
3.  There are 2 reproducing pairs and 3 young pairs in 
the fifth month, the number of total pairs is 5. There 
are 3 reproducing pairs and 5 young pairs in the sixth 
month, the number of total pairs is 8.

Jump to the image



© 2019 McGraw-Hill Education

Counting Bit Strings – Appendix

The first bit string starts with any bit string of length 
N minus 1 with no two consecutive zeros and ends with a 
1. The number of strings of this type is A sub, N minus 
1. The second bit strings starts with any bit string of 
length N minus 2 with no two consecutive zeros and ends 
with 1 0. The number of strings of this type is A sub, N 
minus 2. The total number of bit strings of length N 
with no two consecutive zeros is  A sub, N minus 1, plus 
A sub, N minus 2.

Jump to the image



© 2019 McGraw-Hill Education

Two Finite Sets – Appendix

The number of elements in A is 25, the number of 
elements in B is 13. The number of elements in the 
intersection of A and B is 8.

Jump to the image
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Three Finite Sets – Appendix

The first diagram shows count of elements by the formula number of 
elements in A plus the number of elements in B plus the number of elements 
in C. There is number 1 in exactly one of the three sets, number 2 in the 
intersection of any two of the sets, and number 3 in the intersection of all 
three sets. The second diagram shows count of elements by the formula 
number of elements in A plus the number of elements in B plus the number of 
elements in C minus the number of elements in intersection of A and B minus 
the number of elements in intersection of A and C minus the number of 
elements in intersection of B and C. There is number 1 in exactly one of the 
three sets and in the intersection of any two of the sets, and number 0 in 
the intersection of all three sets. The third diagram shows count of elements 
by the formula number of elements in A plus the number of elements in B 
plus the number of elements in C minus the number of elements in 
intersection of A and B minus the number of elements in intersection of A 
and C minus the number of elements in intersection of B and C plus the 
number of elements in intersection of A, B, and C. There is number 1 in 
exactly one of the three sets and in all intersections.
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