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Trees 1 

Definition: A tree is a connected 
undirected graph with no simple 
circuits. 

Example: Which of these graphs are trees? 
Solution: G1 and G2 are trees - both are connected and have 
no simple circuits. Because e, b, a, d, e is a simple circuit, G3 is 
not a tree. G4 is not a tree because it is not connected. 

Definition: A forest is a graph 
that has no simple circuit, but 
is not connected. Each of the 
connected components in a 
forest is a tree. 

Jump to long description 
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Trees 2 

Theorem: An undirected graph is a tree if and only if there is a unique 
simple path between any two of its vertices.  

Proof: Assume that T is a tree. Then T is connected with no simple 
circuits. Hence, if  x and y are distinct vertices of T, there is a simple 
path between them (by Theorem 1 of Section 10.4). This path must be 
unique - for if there were a second path, there would be a simple 
circuit in T (by Exercise 59 of Section 10.4). Hence, there is a unique 
simple path between any two vertices of a tree. 

Now assume that there is a unique simple path between any two 
vertices of a graph T. Then T is connected because there is a path 
between any two of its vertices.  Furthermore, T can have no simple 
circuits since if there were a simple circuit, there would be two paths 
between some two vertices. 

Hence, a graph with a unique simple path between any two vertices is 
a tree. 
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Trees as Models 
Arthur Cayley 
(1821-1895) 

Trees are used as models in computer science, 
chemistry, geology, botany,  psychology, and 
many other areas. 

Trees were introduced by the mathematician  
Cayley in 1857 in his work counting the number 
of isomers of saturated hydrocarbons. The two 
isomers of butane are shown at the right.  

The organization of a  computer file system into 
directories, subdirectories, and files is naturally 
represented as a tree.  

Trees are used 
to represent the 
structure of 
organizations. 

Jump to long description 
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Rooted Trees 

Definition: A rooted tree is a tree in which one 
vertex has been designated as the root and every 
edge is directed away from the root. 

An unrooted tree is converted into different 
rooted trees when different vertices are chosen 
as the root. 

Jump to long description 
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Rooted Tree Terminology 

Terminology for rooted trees is a mix from botany and genealogy (such as this 
family tree of the Bernoulli family of mathematicians). 

If v is a vertex of a rooted tree other than the root, the parent of v is the unique 
vertex u such that there is a directed edge from u to v. When u is a parent of v, v 
is called a child of u. Vertices with the same parent are called siblings. 

The ancestors of a vertex are the vertices in the path from the root to this vertex, 
including the vertex itself and including the root. The descendants of a vertex v 
are those vertices that have v as an ancestor.  (NB: proper ancestor/descendant) 

A vertex of a rooted tree with no children is called a leaf. Vertices that have 
children are called internal vertices. 

If a is a vertex in a tree, the subtree 
with a as its root is the subgraph of 
the tree consisting of a and its 
descendants and all edges incident 
to these descendants. 

Jump to long description 
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Terminology for Rooted Trees 

Example: In the rooted tree T (with root a):  

(i) Find the parent of c, the children of g, the siblings   
of h, the ancestors of e,  and the descendants of b.  

(ii) Find all internal vertices  and all leaves. 

(iii) What is the subtree rooted at g? 

Solution:  

(i) The parent of c is b. The children of g are h, i, and j. 
The siblings of h are i and j. The ancestors of e are e, 
c, b, and a. The descendants of b are b, c, d, and e.  

(ii) The internal vertices are a, b, c, g, h, and j. The 
leaves are d, e, f, i, k, l, and m.   

(iii) We display the subtree rooted at g. 

Jump to long description 



© 2019 McGraw-Hill Education 

m-ary Rooted Trees 

Definition: A rooted tree is called an m-ary tree if every internal vertex 
has no more than m children. The tree is called a full m-ary tree if 
every internal vertex has exactly m children. An m-ary tree with m = 2 
is called a binary tree. 

Example: Are the following rooted trees full m-ary trees for some 
positive integer m? 

Solution: T1 is a full binary tree because each of its internal vertices has 
two children. T2 is a full 3-ary tree because each of its internal vertices 
has three children. In T3 each internal vertex has five children, so T3 is a 
full 5-ary tree. T4 is not a full m-ary tree for any m because some of its 
internal vertices have two children and others have three children. 

Jump to long description 
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Ordered Rooted Trees 

Definition: An ordered rooted tree is a rooted tree where the children of each 
internal vertex are ordered. 

• We draw ordered rooted trees so that the children of each internal vertex are 
shown in order from left to right. 

Definition: A binary tree is an ordered rooted where each internal vertex has at 
most two children.   If an internal vertex of a binary tree has two children, the 
first is called the left child and the second the right child. The tree rooted at the 
left child of a vertex is called the left subtree of this vertex, and the tree rooted 
at the right child of a vertex is called the right subtree of this vertex. 

Example:  Consider the binary tree T.  

I. What are the left and right children of d?  

II. What are the left and right subtrees of c? 
Solution:  

I. The left child of d is f and the right child is g.  
II. The left and right subtrees of c are displayed in (b) and (c). 

Jump to long description 
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Properties of Trees 

Theorem 2: A tree with n vertices has n − 1 edges. 

Proof (by mathematical induction): 

BASIS STEP: LHS: When n = 1, a tree with one vertex has 0 
edges. RHS: n − 1 = 1 − 1 = 0  

INDUCTIVE HYPOTHESIS: Assume that every tree with k 
vertices has  k − 1 edges for some k.  

INDUCTIVE STEP: Show: a tree with k + 1 vertices has k edges  
Suppose a tree T has k + 1 vertices and that v is a leaf of T. Let 
w be the parent of v. Removing the vertex v and the edge 
connecting w to v produces a tree T′ with k vertices. By the 
inductive hypothesis, T′ has k − 1 edges. Because T has one 
more edge  than T′, we see that T has k edges. 
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Counting Vertices in Full m-Ary Trees 1 

Theorem 3: A full m-ary tree with i internal 
vertices has  n = mi  + 1 vertices. 

Proof : Every vertex, except the root, is the child 
of an internal vertex. Because each of the i 
internal vertices has m children, there are mi 
vertices in the tree other than the root. Hence, 
the tree contains n = mi + 1 vertices. 
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Counting Vertices in Full m-Ary Trees 2 

Theorem 4: A full m-ary tree with 

I. n vertices has i = (n − 1)/m internal vertices  
and l = [(m  − 1)n + 1]/m leaves, 

II. i  internal vertices has  n = mi + 1 vertices 
and l = (m  − 1)i + 1 leaves, 

III. l leaves has  n = (ml  − 1)/(m − 1) vertices 

and i = (l  − 1)/ (m  − 1)   internal vertices. 

Proof (of part i): Solving for i in n = mi + 1 (from 
Theorem 3) gives i = (n  − 1)/m.  Since each vertex is 
either a leaf or an internal vertex,  n = l + i. By solving 
for l and using the formula for i, we see that 

proofs of parts 
(ii) and (iii) are 
left as exercises 

     1 /   1 1 / .l n i n n m m n m        
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Level of vertices and height of trees 

When working with trees, we often want to have rooted trees where the 
subtrees at each vertex contain paths of approximately the same length. 

To make this idea precise we need some definitions: 

• The level of a vertex v in a rooted tree is the length of the unique path from 
the root to this vertex.   

• The height of a rooted tree is the maximum of the levels of the vertices.  

Example:  

I. Find the level of each vertex in the tree to the right. 

II. What is the height of the tree? 

Solution:  

I. The root a is at level 0.  Vertices b, j, and 
k are at level 1. Vertices c, e, f, and l are at 
level 2. Vertices d, g, i, m, and n are at level 3. Vertex h is at level 4.  

II. The height is 4, since 4 is the largest level of any vertex. 
Jump to long description 
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Balanced m-Ary Trees 

Definition: A rooted m-ary tree of height h is 
balanced if all leaves are at levels h or h − 1. 

Example: Which of the rooted trees shown 
below is balanced? 

Solution: T1 and T3 are balanced, but T2 is not 
because it has leaves at levels 2, 3, and 4.  

Jump to long description 
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The Bound for the Number of Leaves in 
an m-Ary Tree 

Theorem 5: There are at most mh leaves in an m-ary tree of height h. 

Proof  (by mathematical induction on height):  

BASIS STEP: Consider an m-ary trees of height 1.  The tree consists of a root and no 
more than m children, all leaves. Hence, there are no more than m1 = m leaves in an 
m-ary tree of height 1. 

INDUCTIVE STEP: Assume the result is true for all m-ary trees of height < h. Let T be 
an m-ary tree of height h. The leaves of T are the leaves of the subtrees of T we get 
when we delete the edges from the root to each of the vertices of level 1. 

Each of these subtrees has height ≤ h− 1. By the inductive hypothesis, each of these 
subtrees has at most mh− 1 leaves. Since there are at most m such subtrees, there are 
at most m mh− 1 = mh leaves in the tree. 

Corollary 1:  If an m-ary tree of height h has l leaves, then  h ≥ ⌈logm l⌉. If the m-ary 
tree is full and balanced, then h = ⌈logm l⌉. (see text for the proof) 
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Tree Traversal  

Section 11.3 
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Tree Traversal 

Procedures for systematically visiting every 
vertex of an ordered tree are called traversals.  

The three most commonly used traversals are 
preorder traversal, inorder traversal, and 
postorder traversal. 
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Preorder Traversal 1 

Definition: Let T be an ordered rooted tree with 
root r. If T consists only of r, then r is the preorder 
traversal of T. Otherwise, suppose that T1, T2, …, 
Tn are the subtrees of r from left to right in T. The 
preorder traversal  begins by visiting r, and 
continues by traversing T1 in preorder, then T2  in 
preorder, and so on, until Tn 
is traversed in preorder.  

Jump to long description 
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Preorder Traversal 2 

procedure  preorder (T: ordered rooted tree) 

    r := root of T 

    list r 

    for each child c of r from left to right 

        T(c) := subtree with c as root 

        preorder(T(c)) 

Jump to long description 
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Inorder Traversal 1 

Definition: Let T be an ordered rooted tree with root 
r. If T consists only of r, then r is the inorder traversal 
of T. Otherwise, suppose that T1, T2, …, Tn are the 
subtrees of r from left to right in T. The inorder 
traversal begins by traversing T1 in inorder, then 
visiting r, and continues by traversing T2 in inorder, 
and so on, until Tn  is traversed in inorder.  

Jump to long description 
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Inorder Traversal 2 

procedure  inorder (T: ordered rooted tree) 

    r := root of T 

    if r is a leaf then  

        list r 

    else 

        l := first child of r from left to right 

        T(l) := subtree with l as its root 

        inorder(T(l)) 

        list(r) 

        for each child c of r from left to right 

            T(c) := subtree with c as root 

            inorder(T(c)) 

Jump to long description 
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Postorder Traversal 1 

Definition: Let T be an ordered rooted tree with root 
r. If T consists only of r, then r is the postorder 
traversal of T. Otherwise, suppose that T1, T2, …, Tn 
are the subtrees of r from left to right in T. The 
postorder traversal  begins by traversing T1 in 
postorder, then T2  in postorder, and so on, after Tn  is 
traversed in postorder, r is 
visited.  

Jump to long description 



© 2019 McGraw-Hill Education 

Postorder Traversal 2 

procedure postorder (T: ordered rooted tree) 

    r := root of T 

    for each child c of r from left to right 

        T(c) := subtree with c as root 

        postorder(T(c)) 

    list r 

Jump to long description 
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Expression Trees 

Complex expressions can be represented using 
ordered rooted trees. 

Consider the expression      2 4 / 3 .x y x   

A binary tree for the expression can be built from 
the bottom up, as is illustrated here. 

Jump to long description 
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Infix Notation 

An inorder traversal of the tree representing an 
expression produces the original expression when 
parentheses are included except for unary 
operations, which now immediately follow their 
operands.  

We illustrate why parentheses are needed with an 
example that displays three trees all yield the same 
infix representation. 

Jump to long description 
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Prefix Notation 

Jan Łukasiewicz 
(1878-1956) 

When we traverse the rooted tree representation 
of an expression in preorder, we obtain the prefix 
form of the expression. Expressions in prefix form 
are said to be in Polish notation, named after the 
Polish logician Jan Łukasiewicz. 

Operators precede their operands in the prefix 
form of an expression. Parentheses are not needed 
as the representation is unambiguous. 

The prefix form of ((x + y) ↑ 2 ) + ((x − 4)/3) is + ↑ 
+ x y 2 / − x 4 3. 

Prefix expressions are evaluated by working from 
right to left. When we encounter an operator, we 
perform the corresponding operation with the two 
operations to the right. 

Example: We show 
the steps used to 
evaluate a particular 
prefix expression: 

Jump to long description 
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Postfix Notation 

We obtain the postfix form of an expression 
by traversing its binary trees in postorder. 
Expressions written in postfix form are said 
to be in reverse Polish notation.  

Parentheses are not needed as the postfix 
form is unambiguous.  

x y + 2 ↑ x 4 − 3 / + is the  postfix                              
form of ((x + y) ↑ 2 ) + ((x − 4)/3). 

A binary operator follows its two operands. 
So, to evaluate an expression one works from 
left to right, carrying out an operation 
represented by an operator on its preceding 
operands. 

Example: We 
show the steps 
used to evaluate a 
particular postfix 
expression. 

Jump to long description 
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Spanning Trees 

Section 11.4 
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Section Summary 3 

Spanning Trees 
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Breadth-First Search 
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 Depth-First Search in Directed Graphs 
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Spanning Trees 1 

Definition: Let G be a simple graph. A 
spanning tree of G is a subgraph of G that is 
a tree containing every vertex of G.  

Example: Find the spanning tree of this simple graph: 

Solution: The graph is connected, but is not a tree because it 
contains simple circuits. Remove the edge {a, e}. Now one 
simple circuit is gone, but the remaining subgraph still has a 
simple circuit. Remove the edge {e, f} and then the edge {c, g} 
to produce a simple graph with no simple circuits. It is a 
spanning tree, because it 
contains every vertex of 
the original graph. 
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Spanning Trees 2 

Theorem: A simple graph is connected if and only if it has a spanning 
tree. 

Proof: Suppose that a simple graph G has a spanning tree T. T 
contains every vertex of G and there is a path in T between any two 
of its vertices. Because T is a subgraph of G, there is a path in G 
between any two of its vertices. Hence, G is connected.  

Now suppose that G is connected. If G is not a tree, it contains a 
simple circuit. Remove an edge from one of the simple circuits. The 
resulting subgraph is still connected because any vertices connected 
via a path containing the removed edge are still connected via a path 
with the remaining part of the simple circuit. Continue in this fashion 
until there are no more simple circuits. A tree is produced because 
the graph remains connected as edges are removed. The resulting 
tree is a spanning tree because it contains every vertex of G. 
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Depth-First Search 1 

To use depth-first search to build a spanning tree for a connected 
simple graph first arbitrarily choose a vertex of the graph as the 
root.  

• Form a path starting at this vertex by successively adding vertices and 
edges, where each new edge is incident with the last vertex in the path 
and a vertex not already in the path. Continue adding vertices and edges 
to this path as long as possible. 

• If the path goes through all vertices of the graph, the tree consisting of 
this path is a spanning tree. 

• Otherwise, move back to the next to the last vertex in the path, and if 
possible, form a new path starting at this vertex and passing through 
vertices not already visited. If this cannot be done, move back another 
vertex in the path. 

• Repeat this procedure until all vertices are included in the spanning tree. 
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Depth-First Search 2 

Example: Use depth-first search to 
find a spanning tree of this graph. 

Solution: We start arbitrarily with vertex f. We build a path by 
successively adding an edge that connects the last vertex added 
to the path and a vertex not already in the path, as long as this is 
possible. The result is a path that connects  f, g, h, k, and j. Next, 
we return to k, but find no new vertices to add. So, we return to 
h and add the path with one edge that connects h and i. We next 
return to f, and add the path connecting f, d, e, c, and a. Finally, 
we return to c and add the path 
connecting c and b. We now stop 
because all vertices have been added. 

Jump to long description 
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Depth-First Search 3 

The edges selected by depth-first search of a graph are 
called tree edges. All other edges of the graph must 
connect a vertex to an ancestor or descendant of the 
vertex in the graph. These are called back edges.  

In this figure, the tree edges are shown with heavy blue 
lines. The two thin black edges are back edges. 
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Depth-First Search Algorithm 

We now use pseudocode to specify depth-first search. In this 
recursive algorithm, after adding an edge connecting  a 
vertex v to the vertex w, we finish exploring w before we 
return to v to continue exploring from v. 

procedure DFS(G: connected graph with vertices v1, v2, …, vn) 

    T := tree consisting only of the vertex v1    

    visit(v1) 

procedure visit(v: vertex of G) 

    for each vertex w adjacent to v  and not yet in T 

        add vertex w and edge {v,w} to T 

    visit(w) 
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Breadth-First Search 1 

We can construct a spanning tree using breadth-first 
search. We first arbitrarily choose a root from the 
vertices of the graph. 

• Then we add all of the edges incident to this vertex and 
the other endpoint of each of these edges. We say that 
these are the vertices at level 1. 

• For each vertex added at the previous level, we add each 
edge incident to this vertex, as long as it does not produce 
a simple circuit. The new vertices we find are the vertices 
at the next level. 

• We continue in this manner until all the vertices have 
been added and we have a spanning tree. 
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Breadth-First Search 2 

Example: Use breadth-first search to find a 
spanning tree for this graph. 

Solution: We arbitrarily choose vertex e as the root. 
We then add the edges from e to  b, d, f, and i. These 
four vertices make up  level 1 in the tree. Next, we 
add the edges from b to a and c, the edges from d to h, the edges 
from f to j and g, and the edge from i to k. The endpoints of these 
edges not at level 1 are at level 2. Next, add edges from these 
vertices to adjacent vertices not already in the graph. So, we  add 
edges from g to l and from k to m. We see that level 3 is made up 
of the vertices l and m. This is 
the last level because there are 
no new vertices to find. 

Jump to long description 
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Breadth-First Search Algorithm 

We now use pseudocode to describe breadth-first search. 

procedure BFS(G: connected graph with vertices v1, v2, …, vn) 

    T := tree consisting only of the vertex v1    

    L := empty list visit(v1) 

    put v1 in the list L of unprocessed vertices 

    while L is not empty 

        remove the first vertex, v, from L 

        for each neighbor w of v  

            if w is not in L and not in T then 

                add  w to the end of the list L 

                add  w and edge {v,w} to T 
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Depth-First Search in Directed Graphs 

Both depth-first search and breadth-first search can be easily modified to run 
on a directed graph. But the result is not necessarily a spanning tree, but rather 
a spanning forest 

Example: For the graph in (a), if we 
begin at  vertex a, depth-first search 
adds the path connecting a, b, c, and 
g. At g, we are blocked, so we return 
to c. Next,  we add the path 
connecting f to e. Next, we return to a 
and find that we cannot add a new path. So, we begin another tree with d as its 
root. We find that this new  tree consists of the path connecting the vertices d, 
h, l, k, and j.  Finally, we add a new tree, which only contains i, its root. 

To index websites, search engines such as Google systematically explore the 
web starting at known sites. The programs that do this exploration are known 
as Web spiders. They may use both breadth-first search or depth-first search to 
explore the Web graph. 

Jump to long description 
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Appendix of Image Long 
Descriptions 



© 2019 McGraw-Hill Education 

Trees 1 – Appendix 

All graphs have 6 vertices. A, B, C. D, E, and F. 
Graph G1 has 5 edges. A C, B C, D C. C F, and E F. 
Graph G2 has 5 edges. A C, B E, A F, D F, and E F. 
Graph G3 has 6 edges. A B, A C, A D. B E, D E, 
and C F. Graph G4 has 4 edges. A F, B D, B E, and 
C E. 

Jump to the image 
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Trees as Models – Appendix 

Middle image: The root is the root directory /. Internal vertices are directories. 
Leaves are files. The root has 3 edges that lead to USR, BIN, and TMP. Node USR 
has 3 edges that lead to BIN, RJE, and SPOOL. Node BIN has 3 edges that lead to 
ED, NROFF, and VI. Node RJE has 1 edge that leads to KHR. Node SPOOL has 2 
edges that leads to OPR and UUCP. Node OPR has 1 edge that leads to Printer. 
Node UUCP has 1 edge that leads to File. Node BIN has 3 edges that lead to ls, 
Mail, and Who. Node TMP has 1 edge that leads to Junk.  

Bottom image: The root is President and it has 4 edges that lead to VP R&D, VP 
Marketing, VP Services, and VP Finance. Node VP R&D has 3 edges that lead to 
Director Research, Director Software Development, and Director Hardware 
Development. Node VP Marketing has 2 edges that lead to AVP Sales and AVP 
Marketing. Node VP Services has 2 edges that lead to Chief Field Operations and 
Director Material Management. Node VP Finance has 2 edges that lead to 
Director Accounting and Director MIS.  

Jump to the image 
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Rooted Trees – Appendix 

All graphs have 7 vertices. A, B, C. D, E, F, and G. The first graph, 
labeled T, has 6 edges. C E, C A, A D. A B, B F, and B G. Root C is at 
the bottom. The second graph has 6 edges. A B, B F, B G. A C, C E, 
and A D. Root A is at the top. The edges are directed from the top 
to the bottom. The third graph has 6 edges. C E, C A, A D. A B, B G, 
and B F. Root C is at the top. The edges are directed from the top to 
the bottom. 

Jump to the image 
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Rooted Tree Terminology – Appendix 

The tree has 10 vertices and its depth is 3. The root node is 
Nikolaus 1623-1708. It has 3 edges that lead to Jacob I 1654-1705, 
Nikolaus 1662-1716, and Johann I 1667-1748.  Nikolaus has 1 edge 
that leads to Nikolaus I 1687-1759. Johann I has 3 edges that lead 
to Nikolaus II 1695-1726, Daniel 1700-1782, and Johann II 1710-
1790. Johann II has 2 edges that lead to Johann III 1746-1807 and 
Jacob II 1759-1789. 

Jump to the image 



© 2019 McGraw-Hill Education 

Terminology for Rooted Trees – Appendix 

The graph has 13 vertices. A, B, C. D, E, F. G, H, I. J, K, L, and M. The 
graph has 12 edges. A B, A F, A G. B C, C D, C E. G H, G I, G J. H K, J L, 
and J M. 

Jump to the image 
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m-ary Rooted Trees – Appendix 

The first graph has 7 vertices and 6 edges. Each internal node has 2 
children. The second graph has 13 vertices and 12 edges. Each 
internal node has 3 children. The third graph has 16 vertices and 15 
edges. Each internal node has 5 children. The fourth graph has 11 
vertices and 10 edges. Internal nodes have 2-3 children. 

Jump to the image 
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Ordered Rooted Trees – Appendix 

Tree T has 13 vertices. A, B, C. D, E, F. G, H, I. J, K, L, and M. The 
graph has 12 edges. A B, B D, B E. D F, D G, C H, H J. C I, I K. I L, and L 
M. Graph B has 2 vertices, H and J, connected by an edge. Graph C 
has 4 vertices. I, K, L, and M. The graph has 3 edges. I K, I L, and L 
M. 

Jump to the image 
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Level of vertices and height of trees – Appendix 

The graph has 13 edges. A B, A J, A K. B C, B E, B F. C D, F G, F I. G H, 
K L, L M, and L N. 

Jump to the image 
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Balanced m-Ary Trees – Appendix 

T1 has 20 vertices and 19 edges. Its height is 4, and its leaves are at 
levels 3 and 4. T2 has 13 vertices and 12 edges. Its height is 4, and 
its leaves are at levels 2, 3, and 4. The third tree has 20 vertices and 
19 edges. Its height is 3, and its leaves are at level 3. 

Jump to the image 
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Preorder Traversal 1 – Appendix 

The root of the tree is labeled R. It has N children labeled T1 to T N. 
The preorder traversal begins by visiting R. It continues by 
traversing T1 in preorder, then T2 in preorder, and so on, until T N 
is traversed in preorder. 

Jump to the image 
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Preorder Traversal 2 – Appendix 

By the preorder traversal algorithm, first visit the root and then 
visit the subtrees from left to right. The first step shows node A, 
subtree B, node C, and subtree D. The second step shows nodes A 
and B, subtree E, nodes F, C, and D. Subtree G, and nodes H and I. 
The third step shows nodes A, B, E, J, subtree K, and nodes from F 
to I. The fourth step is the preorder traversal of T. It shows nodes 
from A to I from left to right. 

Jump to the image 
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Inorder Traversal 1 – Appendix 

The root of the tree is labeled R. It has N children labeled T1 to T N. 
The preorder traversal begins by traversing T1 in inorder, then 
visiting R. It continues by traversing T2 in inorder, and so on, until T 
N is traversed in inorder. 

Jump to the image 
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Inorder Traversal 2 – Appendix 

The tree has 16 vertices labeled from A to P. A is the root. The tree 
has 15 edges. A B, A C, A D. B E, B F, E J, E K. K N, K O, K P. D G, D H, 
D I. G L, and G M. By the inorder traversal algorithm, first visit 
leftmost subtree, then visit root, and then visit other subtrees left 
to right. The first step shows subtree B, nodes A and C, and subtree 
D. The second step shows subtree E, nodes B, F, A, C. Subtree G, 
nodes G, H, and I. The third step shows nodes J and E, subtree K. 
Nodes B, F, A, C, L. G, M, D, H, and I. The fourth step is the inorder 
traversal of T. It shows vertices J, E, N. K, O, P. B, F, A. C, L, G. M, D, 
H, and I. 

Jump to the image 
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Postorder Traversal 1 – Appendix 

The root of the tree is labeled R. It has N children labeled T1 to T N. 
The postorder traversal begins by traversing from T1 in postorder 
to T N in postorder, and ends by visiting R. 

Jump to the image 
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Postorder Traversal 2 – Appendix 

The tree has 16 vertices labeled from A to P. A is the root. The tree 
has 15 edges. A B, A C, A D. B E, B F, E J, E K. K N, K O, K P. D G, D H, 
D I. G L, and G M. By the postorder traversal algorithm, first visit 
subtrees left to right and then visit root. The first step shows 
subtree B, node C, subtree D, and node A. The second step shows 
subtree E, nodes F, B, C. Subtree G, nodes H, I, D, and A. The third 
step shows node J, subtree K, nodes E, F, B. C, L, M, G. H, I, D, and 
A. The fourth step is the postorder traversal of T. It shows nodes J, 
N, O. P, K, E. F, B, C. L, M, G. H, I, D, and A. 

Jump to the image 
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Expression Trees – Appendix 

The first subtree represents the summation of X and Y. There is root 
+ with two children, X and Y. The second subtree represents the 
subtraction of X and 4. There is root - with two children, X and 4. 
The third subtree represents the exponentiation of X + Y to 2. 
There is root an upward arrow with two children, + and 2. Node + 
has two children, X and Y. The fourth subtree represents the 
division of X - 4 by 3. There is root / with two children, -, and 3. 
Node - has two children, X and 4. The binary tree represents the 
whole expression:  X + Y, squared plus, X - 4, divided by 3. 

Jump to the image 
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Infix Notation – Appendix 

The root of the first tree is / and it has 2 children, + and +. The first 
+ has 2 children, X and Y. The second + has 2 children, X and 3. The 
root of the second tree is + and it has 2 children, + and 3. Node + 
has 2 children, X and /. Node / has 2 children, Y and X. The root of 
the third tree is + and it has 2 children. X and /. Node / has 2 
children, Y and +. Node + has 2 children, X and 3. 

Jump to the image 
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Prefix Notation – Appendix 

The first step is evaluating exponentiation 2 3. The value is 8. The 
second step is evaluating divide 8 4. The value is 2. The third step is 
evaluating multiply 2 3. The value is 6. The fourth step is evaluating 
minus 6 5. The value is 1. The fifth step is evaluating plus 1 2. The 
value is 3. The value of prefix expression is 3. 

Jump to the image 
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Postfix Notation – Appendix 

The first step is evaluating 2 3 multiply. The value is 6. The second 
step is evaluating 1 6 minus. The value is 1. The third step is 
evaluating 1 4 exponentiation. The value is 1. The fourth step is 
evaluating 9 3 divide. The value is 3. The fifth step is evaluating 1 3 
plus. The value is 4. The value of postfix expression is 4. 

Jump to the image 
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Depth-First Search 2 – Appendix 

Step 1 shows vertex F. Step 2 shows a graph with vertices F, G, H. K, 
and J. And 4 edges. F G, G H, H K, and K J. Step 3 shows the same 
graph as in step 2 with an additional vertex I and edge H I. Step 4 
shows the same graph as in step 3 with an additional vertices D, E, 
C, and A. And 4 edges. F D, D E, E C, and C A. Step 5 shows the same 
graph as in step 4 with an additional vertex B and edge C B. 

Jump to the image 
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Breadth-First Search 2 – Appendix 

Top image: The graph has 18 edges. A B, B C, A D. B E, C F, L G. D E, 
E F, F G. D H, E I, F J. G J, H I, I J. H K, I K, and K M. 

Bottom image: The first step is vertex E. The second step is adding 
vertices B, D, F, I. And 4 edges. E B, E D, E F, and E I. The third step is 
adding vertices A, C, H. G, J, and K. And 6 edges B A, B C, D H, F G, F 
J, and I K. The fourth step is adding vertices L and M. And 2 edges, 
G L and K M.  

Jump to the image 
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Depth-First Search in Directed Graphs – Appendix 

The graphs have 12 vertices labeled from A to L. The arrows of 
graph A point from A to B, from B to C, from D to C. From A to E, 
from B to F, from C to G. From D to H, from H to G, from F to G. 
From F to E, from I to E, from J to F. From K to G, from H to L, from L 
to K. From K to J, and from I to J. Graph B is disconnected and its 
arrows point from A to B, from B to C, from C to G. From B to F, 
from F to E. From D to H, from H to L, from L to K, and from K to J. 

Jump to the image 


