
Chapter 1

Programming: A General Overview

Introduction

2

This class is an introduction to the design, implementation,

and analysis of algorithms.

−examples:

‒sorting large amounts of data

‒organizing information for efficient search and retrieval

‒ finding the shortest path between nodes in a graph

‒ looking for matching substrings

Analysis of Algorithms

3

− to be able to assess the efficiency of an algorithm, we need

to be able to characterize (quantify) the amount of time it

requires to execute

−standard approach: construct a mathematical model of the

amount of work as a function of the size of the problem

−allows us to study how much work is required by an

algorithm as the size of the problem grows

−gives us a basis for comparing different algorithms to

solve the same problem

Run Time Example

4

suppose

−our computer can perform 109 operations per second

−we have two algorithms that perform operation 𝑋 on a set

of 𝑛 numbers

−Algorithm A requires 𝑛2 operations

−Algorithm B requires 𝑛 log2 𝑛 operations

−𝑛 = 106

−we need to compute 𝑋 in less than a second

Run Time Example

5

Algorithm A requires 1012 operations and runs in 1012/109 =

103 seconds

−we would need a computer that runs 1000 times faster!

− if processor speeds double roughly every 18 months, the

hardware will catch up in

 18 × log21000 ≈ 179 months, or about 15 years

Run Time Example

6

meanwhile, Algorithm B requires 106 log2106 ≈ 106 or

 (20 × 106) / 109
= 20 × 10−3 seconds, or 20 ms

we can get by with a machine that runs at 1/50𝑡ℎ the speed!

Factors Affecting the Running Time of an Algorithm

7

Hardware

−what is the clock speed of the chip? what is the memory

hierarchy? how many processors?

Compiler

−what code does the compiler generate?

Program

−how efficient is the use of instructions and memory?

Data

−what is the size of the input? how will it affect execution

time?

Environment

−what is the operating system? what is the system load?

how do they interact with the code?

Example: dot product

8

The dot product of two vectors (𝑥1, 𝑥2, … , 𝑥𝑛) and (𝑦1, 𝑦2, … , 𝑦𝑛) is

 𝑥1𝑦1 + 𝑥2𝑦2 + … + 𝑥𝑛𝑦𝑛

C code:

double dot (double *x, double *y, int n)

{

double sum = 0.0;

for (int i = 0; i < n; i++) {

sum += x[i] * y[i];

}

return sum;

}

Let 𝑇(𝑛) be the runtime of the dot product on vectors of length 𝑛.

Example: dot product

9

We cannot give a good prediction of the total runtime of the

algorithm by simply looking at the code.

Let’s remove the distractions of

−programming

−code generation

−computing environment

−etc.

We will focus instead on operation counts and generally

ignore the speed/efficiency of memory access, though this

has a major impact on performance.

Example: dot product

10

We will frequently use pseudocode to express algorithms in a

way that is independent of any specific programming

language:

 human language + math + programming language constructs

dot product:

sum = 0

for i = 1 to n

sum += x[i] * y[i];

end

double dot (double *x, double *y, int n)

{

double sum = 0.0;

for (int i = 0; i < n; i++) {

sum += x[i] * y[i];

}

return sum;

}

Pseudocode

11

pseudocode allows us to ignore the peculiarities of any given

programming language and concentrate on the essential

operations

it should be complete enough that it could be given to any

(competent) programmer for implementation in any

reasonable programming language

−pseudocode should specify all initializations and the

termination conditions

Example: dot product

12

Inside the loop there is 1 multiplication and 1 addition; and

these loop operations are executed 𝑛 times:

sum = 0

for i = 1 to n

sum += x[i] * y[i];

end

It is reasonable to predict that the running time is proportional

to 𝑛: 𝑇(𝑛) ≈ 𝑐𝑛, where 𝑐 is an (unknown) constant,

regardless of the actual instructions being executed!

This tells us how the execution time grows: if 𝑛 doubles, then

𝑇(𝑛) should double.

Example: dot product observed execution times

13

On an Intel E5-4627v2 CPU:

When 𝑛 increases by a factor of 10, 𝑇(𝑛) increases (roughly)

by a factor of 10.

Selection Problem

14

Selection problem: suppose you have 𝑁 numbers and would

like to determine the 𝑘𝑡ℎ largest

−how would you try to solve this problem?

Selection Problem

15

one straightforward solution:

− read the 𝑁 numbers into an array and sort them in

decreasing order

− return the element in position 𝑘

better algorithm:

− read the first 𝑘 elements into an array and sort them in

decreasing order

−as a new element is considered, ignore it if it is smaller

than the 𝑘𝑡ℎ element in the array

−otherwise, place it in its correct spot, bumping one

element out of the array

−when the algorithm ends, the element is in the 𝑘𝑡ℎ position

Selection Problem

16

for 𝑁 = 30,000,000 and 𝑘 = 15,000,000:

−both algorithms would take several days to run

− later, we’ll discuss an algorithm that gives the solution in

about a second!

Just because an algorithm works, therefore, does not

necessarily make it a good algorithm.

Mathematics Review: Exponents

17

𝑋𝐴𝑋𝐵 = 𝑋𝐴+𝐵

𝑋𝐴

𝑋𝐵
= 𝑋𝐴−𝐵

(𝑋𝐴)𝐵 = 𝑋𝐴𝐵

𝑋𝑁 + 𝑋𝑁 = 2𝑋𝑁 ≠ 𝑋2𝑁

2𝑁 + 2𝑁 = 2𝑁+1

Mathematics Review: Logarithms

18

All logarithms are base 2 unless specified otherwise.

 𝑋𝐴 = 𝐵 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 log𝑋 𝐵 =A

 log𝐴 𝐵 =
log𝐶 𝐵

log𝐶 𝐴
 𝐴, 𝐵, 𝐶 > 0, 𝐴 ≠ 1

 log 𝐴𝐵 = log 𝐴 + log 𝐵 𝐴, 𝐵 > 0

 log
𝐴

𝐵
= log 𝐴 − log 𝐵

 log 𝐴𝐵 = 𝐵 log 𝐴

Mathematics Review: Logarithms

19

log 𝑋 < 𝑋 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋 > 0

 use lg to represent log2

 lg 1 = 0

 lg 2 = 1

 lg 1024 = 10

 lg 1,048,576 = 20

Mathematics Review: Series

20

෍

𝑖=0

𝑁

2𝑖 = 2𝑁+1 − 1

෍

𝑖=0

𝑁

𝐴𝑖 =
𝐴𝑁+1 − 1

𝐴 − 1

෍

𝑖=0

𝑁

𝐴𝑖 ≤
1

1 − 𝐴
 𝑖𝑓 0 < 𝐴 < 1

Mathematics Review: Series

21

෍

𝑖=0

𝑁

𝑖 =
𝑁(𝑁 + 1)

2
 ≈

𝑁2

2

෍

𝑖=0

𝑁

𝑖2 =
𝑁(𝑁 + 1)(2𝑁 + 1)

6
 ≈

𝑁3

3

Mathematics Review: Modular Arithmetic

22

𝐴 is congruent to 𝐵 modulo 𝑁

 𝐴 ≡ 𝐵 𝑚𝑜𝑑 𝑁 𝑖𝑓 𝑁 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝐴 − 𝐵

i.e., the remainder is the same when 𝐴 or 𝐵 is divided by 𝑁

 if 𝐴 ≡ 𝐵 𝑚𝑜𝑑 𝑁 𝑡ℎ𝑒𝑛 𝐴 + 𝐶 ≡ 𝐵 + 𝐶(𝑚𝑜𝑑 𝑁)

 if 𝐴 ≡ 𝐵 𝑚𝑜𝑑 𝑁 𝑡ℎ𝑒𝑛 𝐴𝐷 ≡ 𝐵𝐷(𝑚𝑜𝑑 𝑁)

Proofs

23

most common proofs in algorithm analysis:

−proof by counterexample

−proof by contradiction

−proof by induction

Proof by Counterexample

 Prove or disprove: All prime numbers are odd.

 Proof: Since 2 is prime and is not odd, then the original

 premise is false.

Proofs

24

Proof by Contradiction

 Prove or disprove: The sum of two odd numbers is odd.

 Proof: Let 𝑥 and 𝑦 both be odd numbers

 therefore, 𝑥 = 2𝑖 + 1 and 𝑦 = 2𝑗 + 1

 if 𝑧 = 𝑥 + 𝑦 then

 𝑧 = 2𝑖 + 1 + 2𝑗 + 1 = 2𝑖 + 2𝑗 + 2 = 2(𝑖 + 𝑗 + 1),

 which is even

 this contradicts the original statement, which is

 therefore false

Proofs

25

Proof by Mathematical Induction

−very useful in studying algorithms

−must include three parts:

−base case (almost always trivial)

−state the value of n

−compute lhs and rhs independently

− inductive hypothesis

−state in terms of k

−assume true for some k

− inductive step (show true for k+1)

−must list explicitly what you’re trying to show!

−must use the inductive hypothesis

Proofs

26

Inductive Proof exercises

෍

𝑖=0

𝑁

𝑖2 =
𝑁(𝑁 + 1)(2𝑁 + 1)

6
 𝑓𝑜𝑟 𝑁 ≥ 1

Proofs

27

Inductive Proof exercises

 Fibonacci numbers:

 𝐹𝑖 = 𝐹𝑖−1 + 𝐹𝑖−2 where 𝐹1 = 1, 𝐹2 = 2

 Show: 𝐹𝑖 <
5

3

𝑖
 for 𝑖 ≥ 1

෍

𝑖=0

𝑁

2𝑖 = 2𝑁+1 − 1

Recursion

28

We will study both recursive functions and recurrence

relations in this course. We often use inductive proofs to

show various properties about these recursive problems.

recursive function:

int f(int x)

{

if (x == 0)

return 0;

else

return 2 * f(x–1) + x*x;

}

Recursion

29

int f(int x)

{

if (x == 0)

return 0;

else

return 2 * f(x–1) + x*x;

}

Note that the first part of the function establishes the base

case, that is, the value for which the function is directly

known without resorting to recursion.

This is not circular logic since we use terms that

progressively get to the base case.

Recursion

30

Four rules of recursion:

−Base cases – a base case must always exist, which can

be solved without recursion

−Making progress – for cases solved recursively, the

recursive call must always be to a case that makes

progress toward the base case

−Design rule – assume that all recursive calls work

−Compound interest rule – never duplicate work by solving

the same instance of a problem in separate recursive calls

example: looking up words in a dictionary

Recursion

31

void printOut (int n)

{

if (n >= 10)

printOut (n / 10);

printDigit (n % 10);

}

Prove the above program works using induction for 𝑛 ≥ 0.

	Slide 1: Chapter 1 Programming: A General Overview
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

