
Chapter 1

Programming:  A General Overview



Introduction
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This class is an introduction to the design, implementation, 

and analysis of algorithms.

−examples:

‒sorting large amounts of data

‒organizing information for efficient search and retrieval

‒ finding the shortest path between nodes in a graph

‒ looking for matching substrings



Analysis of Algorithms
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− to be able to assess the efficiency of an algorithm, we need 

to be able to characterize (quantify) the amount of time it 

requires to execute

−standard approach: construct a mathematical model of the 

amount of work as a function of the size of the problem

−allows us to study how much work is required by an 

algorithm as the size of the problem grows

−gives us a basis for comparing different algorithms to 

solve the same problem



Run Time Example
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suppose

−our computer can perform 109 operations per second

−we have two algorithms that perform operation 𝑋 on a set 

of 𝑛 numbers

−Algorithm A requires 𝑛2 operations

−Algorithm B requires 𝑛 log2 𝑛 operations

−𝑛 = 106

−we need to compute 𝑋 in less than a second



Run Time Example
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Algorithm A requires 1012 operations and runs in 1012/109 = 

103 seconds

−we would need a computer that runs 1000 times faster!

− if processor speeds double roughly every 18 months, the 

hardware will catch up in 

 18 × log21000 ≈  179 months, or about 15 years



Run Time Example
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meanwhile, Algorithm B requires 106 log2106 ≈ 106 or

 (20 × 106) / 109 
=  20 × 10−3 seconds, or 20 ms

we can get by with a machine that runs at 1/50𝑡ℎ the speed!



Factors Affecting the Running Time of an Algorithm
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Hardware

−what is the clock speed of the chip? what is the memory 

hierarchy? how many processors?

Compiler

−what code does the compiler generate?

Program

−how efficient is the use of instructions and memory?

Data

−what is the size of the input? how will it affect execution 

time?

Environment

−what is the operating system? what is the system load? 

how do they interact with the code?



Example: dot product
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The dot product of two vectors (𝑥1, 𝑥2, … , 𝑥𝑛) and (𝑦1, 𝑦2, … , 𝑦𝑛) is

   𝑥1𝑦1 +  𝑥2𝑦2 +  … +  𝑥𝑛𝑦𝑛

C code: 

double dot (double *x, double *y, int n)

{

double sum = 0.0;

for (int i = 0; i < n; i++) {

sum += x[i] * y[i];

}

return sum;

}

Let 𝑇(𝑛) be the runtime of the dot product on vectors of length 𝑛.



Example: dot product
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We cannot give a good prediction of the total runtime of the 

algorithm by simply looking at the code.

Let’s remove the distractions of

−programming

−code generation

−computing environment

−etc.

We will focus instead on operation counts and generally 

ignore the speed/efficiency of memory access, though this 

has a major impact on performance.



Example: dot product
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We will frequently use pseudocode to express algorithms in a 

way that is independent of any specific programming 

language:

 human language + math + programming language constructs

dot product: 

sum = 0

for i = 1 to n

sum += x[i] * y[i];

end

double dot (double *x, double *y, int n)

{

double sum = 0.0;

for (int i = 0; i < n; i++) {

sum += x[i] * y[i];

}

return sum;

}



Pseudocode
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pseudocode allows us to ignore the peculiarities of any given 

programming language and concentrate on the essential 

operations

it should be complete enough that it could be given to any 

(competent) programmer for implementation in any 

reasonable programming language

−pseudocode should specify all initializations and the 

termination conditions



Example: dot product
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Inside the loop there is 1 multiplication and 1 addition; and 

these loop operations are executed 𝑛 times:

sum = 0

for i = 1 to n

sum += x[i] * y[i];

end

It is reasonable to predict that the running time is proportional 

to 𝑛:  𝑇(𝑛) ≈ 𝑐𝑛, where 𝑐 is an (unknown) constant, 

regardless of the actual instructions being executed!

This tells us how the execution time grows: if 𝑛 doubles, then 

𝑇(𝑛) should double.



Example: dot product observed execution times
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On an Intel E5-4627v2 CPU:

When 𝑛 increases by a factor of 10, 𝑇(𝑛) increases (roughly) 

by a factor of 10.



Selection Problem
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Selection problem: suppose you have 𝑁 numbers and would 

like to determine the 𝑘𝑡ℎ largest

−how would you try to solve this problem?



Selection Problem
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one straightforward solution:

− read the 𝑁 numbers into an array and sort them in 

decreasing order

− return the element in position 𝑘

better algorithm:

− read the first 𝑘 elements into an array and sort them in 

decreasing order

−as a new element is considered, ignore it if it is smaller 

than the 𝑘𝑡ℎ element in the array

−otherwise, place it in its correct spot, bumping one 

element out of the array

−when the algorithm ends, the element is in the 𝑘𝑡ℎ position



Selection Problem
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for 𝑁 = 30,000,000 and 𝑘 = 15,000,000:

−both algorithms would take several days to run

− later, we’ll discuss an algorithm that gives the solution in 

about a second!

Just because an algorithm works, therefore, does not 

necessarily make it a good algorithm.



Mathematics Review: Exponents

17

𝑋𝐴𝑋𝐵 = 𝑋𝐴+𝐵

𝑋𝐴

𝑋𝐵
= 𝑋𝐴−𝐵

(𝑋𝐴)𝐵  = 𝑋𝐴𝐵

𝑋𝑁 + 𝑋𝑁 = 2𝑋𝑁 ≠ 𝑋2𝑁

2𝑁 + 2𝑁 = 2𝑁+1



Mathematics Review: Logarithms
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All logarithms are base 2 unless specified otherwise.

 𝑋𝐴 = 𝐵 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 log𝑋 𝐵 =A

 log𝐴 𝐵 =
log𝐶 𝐵

log𝐶 𝐴
    𝐴, 𝐵, 𝐶 > 0, 𝐴 ≠ 1

 log 𝐴𝐵 = log 𝐴 + log 𝐵  𝐴, 𝐵 > 0

 log
𝐴

𝐵
= log 𝐴 − log 𝐵

 log 𝐴𝐵 = 𝐵 log 𝐴



Mathematics Review: Logarithms
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log 𝑋 < 𝑋 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋 > 0

     use lg to represent log2 

 lg 1 = 0

 lg 2 = 1

 lg 1024 = 10

 lg 1,048,576 = 20



Mathematics Review: Series
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෍

𝑖=0

𝑁

2𝑖 =  2𝑁+1 − 1

෍

𝑖=0

𝑁

𝐴𝑖 =
𝐴𝑁+1 − 1

𝐴 − 1

 

෍

𝑖=0

𝑁

𝐴𝑖 ≤
1

1 − 𝐴
 𝑖𝑓 0 < 𝐴 < 1

 

 



Mathematics Review: Series
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෍

𝑖=0

𝑁

𝑖 =
𝑁(𝑁 + 1)

2
 ≈

𝑁2

2

෍

𝑖=0

𝑁

𝑖2 =
𝑁(𝑁 + 1)(2𝑁 + 1)

6
 ≈

𝑁3

3



Mathematics Review: Modular Arithmetic
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𝐴 is congruent to 𝐵 modulo 𝑁

 𝐴 ≡ 𝐵 𝑚𝑜𝑑 𝑁  𝑖𝑓 𝑁 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝐴 − 𝐵

i.e., the remainder is the same when 𝐴 or 𝐵 is divided by 𝑁

 

 if 𝐴 ≡ 𝐵 𝑚𝑜𝑑 𝑁  𝑡ℎ𝑒𝑛 𝐴 + 𝐶 ≡ 𝐵 + 𝐶(𝑚𝑜𝑑 𝑁)

 if 𝐴 ≡ 𝐵 𝑚𝑜𝑑 𝑁  𝑡ℎ𝑒𝑛 𝐴𝐷 ≡ 𝐵𝐷(𝑚𝑜𝑑 𝑁)



Proofs
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most common proofs in algorithm analysis:

−proof by counterexample

−proof by contradiction

−proof by induction

Proof by Counterexample

 Prove or disprove: All prime numbers are odd.

 Proof: Since 2 is prime and is not odd, then the original

 premise is false.



Proofs
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Proof by Contradiction

 Prove or disprove: The sum of two odd numbers is odd.

 Proof: Let 𝑥 and 𝑦 both be odd numbers

 therefore, 𝑥 = 2𝑖 + 1 and 𝑦 = 2𝑗 + 1

 if 𝑧 = 𝑥 + 𝑦 then 

    𝑧 = 2𝑖 + 1 + 2𝑗 + 1 = 2𝑖 + 2𝑗 + 2 = 2(𝑖 + 𝑗 + 1), 

 which is even

 this contradicts the original statement, which is 

   therefore false



Proofs
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Proof by Mathematical Induction

−very useful in studying algorithms

−must include three parts:

−base case (almost always trivial)

−state the value of n

−compute lhs and rhs independently

− inductive hypothesis 

−state in terms of k

−assume true for some k

− inductive step (show true for k+1)

−must list explicitly what you’re trying to show!

−must use the inductive hypothesis



Proofs
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Inductive Proof exercises

෍

𝑖=0

𝑁

𝑖2 =
𝑁(𝑁 + 1)(2𝑁 + 1)

6
 𝑓𝑜𝑟 𝑁 ≥ 1

 



Proofs
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Inductive Proof exercises

 Fibonacci numbers:

  𝐹𝑖 = 𝐹𝑖−1 + 𝐹𝑖−2 where 𝐹1 = 1, 𝐹2 = 2

  Show: 𝐹𝑖 <
5

3

𝑖
  for  𝑖 ≥ 1 

෍

𝑖=0

𝑁

2𝑖 =  2𝑁+1 − 1



Recursion
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We will study both recursive functions and recurrence 

relations in this course.  We often use inductive proofs to 

show various properties about these recursive problems.

recursive function: 

int f(int x)

{

if (x == 0)

return 0;

else

return 2 * f(x–1) + x*x;

}



Recursion

29

int f(int x)

{

if (x == 0)

return 0;

else

return 2 * f(x–1) + x*x;

}

Note that the first part of the function establishes the base 

case, that is, the value for which the function is directly 

known without resorting to recursion.

This is not circular logic since we use terms that 

progressively get to the base case.



Recursion
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Four rules of recursion:

−Base cases – a base case must always exist, which can 

be solved without recursion

−Making progress – for cases solved recursively, the 

recursive call must always be to a case that makes 

progress toward the base case

−Design rule – assume that all recursive calls work

−Compound interest rule – never duplicate work by solving 

the same instance of a problem in separate recursive calls

example: looking up words in a dictionary



Recursion
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void printOut (int n)

{

if (n >= 10)

printOut (n / 10);

printDigit (n % 10);

}

Prove the above program works using induction for 𝑛 ≥ 0.
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