
Chapter 2

Algorithm Analysis

Introduction

2

−algorithm

−set of simple instructions to solve a problem

−analyzed in terms, such as time and memory, required

−too long (minutes, hours, years) – no good

−too much memory (terabytes) – no good

−we can estimate resource usage using a formal

mathematical framework to count basic operations

−big-O 𝑂(𝑓(𝑁))

−big-omega Ω (𝑓(𝑁))

−big-theta Θ (𝑓 𝑁)

Asymptotic Notation

3

− formal definitions

𝑓 𝑛 = 𝑂 𝑔 𝑛

𝑓 𝑛 = Ω 𝑔 𝑛

𝑓 𝑛 = Θ(𝑔 𝑛)

 𝑓 𝑛 and 𝑔(𝑛) are positive for 𝑛 > 1

when we say that 𝑋 is true when 𝑛 is sufficiently large, we

mean there exists 𝑁 such that 𝑋 is true for all 𝑛 > 𝑁

we are comparing relative rates of growth

Asymptotic Notation: Big-𝑂

4

𝑓 𝑛 = 𝑂(𝑔(𝑛)) if there exist constants 𝑐 and 𝑁 such that

𝑓 𝑛 ≤ 𝑐 · 𝑔(𝑛) for all 𝑛 > 𝑁

 loosely speaking, 𝑓 𝑛 = 𝑂 𝑔 𝑛 is an analog of 𝑓 ≤ 𝑔

example: if 𝑓 𝑛 = 54𝑛2 + 42𝑛 and

 𝑔 𝑛 = 𝑛2 then 𝑓 = 𝑂(𝑔) since

𝑓 𝑛 ≤ 55𝑔(𝑛)

for all 𝑛 > 42

Asymptotic Notation: Ω

5

𝑓 𝑛 = Ω(𝑔(𝑛)) if there exist constants 𝑐 and 𝑁 such that

𝑓 𝑛 ≥ 𝑐 · 𝑔(𝑛) for all 𝑛 > 𝑁

 loosely speaking, 𝑓 𝑛 = Ω 𝑔 𝑛 is an analog of 𝑓 ≥ 𝑔

Asymptotic Notation: Θ

6

𝑓 𝑛 = Θ(𝑔(𝑛)) if there exist constants 𝑐1, 𝑐2, and 𝑁 such

that

𝑐1 · 𝑔 𝑛 < 𝑓 𝑛 < 𝑐2 · 𝑔(𝑛) for all 𝑛 > 𝑁

 loosely speaking, 𝑓 𝑛 = Θ 𝑔 𝑛 is an analog of 𝑓 ≈ 𝑔

Relationship of 𝑂, Ω, and Θ

7

−note that

𝑓 𝑛 = 𝑂 𝑔 𝑛 ⇔ 𝑔 𝑛 = Ω(𝑓 𝑛)

 since

𝑓 𝑛 < 𝑐𝑔 𝑛 ⇔ 𝑔 𝑛 >
1

𝑐
𝑓 𝑛

−also

𝑓 𝑛 = Θ 𝑔 𝑛 ⇔ 𝑓 𝑛 = 𝑂 𝑔 𝑛 and 𝑓 𝑛 = Ω 𝑔 𝑛

since 𝑓 𝑛 = Θ(𝑔(𝑛)) means that there exist 𝑐1, 𝑐2, and 𝑁

such that

𝑐1 · 𝑔 𝑛 < 𝑓 𝑛 < 𝑐2 · 𝑔(𝑛) for all 𝑛 > 𝑁

Asymptotic Notation: First Observation

8

− for sufficiently large 𝑛,

 𝑓 𝑛 = 𝑂(𝑔(𝑛)) gives an upper bound on 𝑓 in terms of 𝑔

 𝑓 𝑛 = Ω (𝑔(𝑛)) gives a lower bound on 𝑓 in terms of 𝑔

 𝑓 𝑛 = Θ(𝑔 𝑛) gives both an upper and lower bound on 𝑓

 in terms of 𝑔

Asymptotic Notation: Second Observation

9

− it is the existence of constants that matters for the purposes
of asymptotic complexity analysis – not the exact values of
the constants

−example: all of the following imply 𝑛2 + 𝑛 = 𝑂(𝑛2):

𝑛2 + 𝑛 < 4𝑛2 for all 𝑛 > 1

𝑛2 + 𝑛 < 2𝑛2 for all 𝑛 > 1

𝑛2 + 𝑛 < 1.01𝑛2 for all 𝑛 > 100

𝑛2 + 𝑛 < 1.000001𝑛2 for all 𝑛 > 1000

Asymptotic Notation: Third Observation

10

−we typically ignore constant factors and lower-order terms,
since all we want to capture is growth trends

−example:

𝑓 𝑛 = 1,000𝑛2 + 10,000𝑛 + 42

⇒ 𝑓 𝑛 = 𝑂(𝑛2)

but the following are discouraged:

 𝑓 𝑛 = 𝑂(1,000𝑛2) true, but bad form

 𝑓 𝑛 = 𝑂(𝑛2 + 𝑛) true, but bad form

 𝑓 𝑛 < 𝑂(𝑛2) < built into 𝑂

Asymptotic Notation: Fourth Observation

11

𝑂(𝑔(𝑛)) assures that you can’t do any worse than 𝑔(𝑛), but

 it can be unduly pessimistic

Ω (𝑔(𝑛)) assures that you can’t do any better than 𝑔(𝑛), but

 it can be unduly optimistic

Θ(𝑔 𝑛) is the strongest statement: you can’t do any better

 than 𝑔(𝑛), but you can’t do any worse

A Shortcoming of 𝑂

12

an 𝑓 𝑛 = 𝑂(𝑔(𝑛)) bound can be misleading

example: 𝑛 = 𝑂(𝑛2), since 𝑛 < 𝑛2 for all 𝑛 > 1

however, for large 𝑛, 𝑛 ≪ 𝑛2 ‒ the functions 𝑓 𝑛 = 𝑛 and

𝑔 𝑛 = 𝑛2 are nothing alike for large 𝑛

we don’t write something like 𝑓 𝑛 = 𝑂(𝑛2) if we know, say,

that 𝑓 𝑛 = 𝑂(𝑛)

upper bounds should be as small as possible!

A Shortcoming of Ω

13

an 𝑓 𝑛 = Ω(𝑔(𝑛)) bound can be misleading

example: 𝑛2 = Ω(𝑛), since 𝑛2 > 𝑛 for all 𝑛 > 1

however, for large 𝑛, 𝑛2 ≫ 𝑛 ‒ the functions 𝑓 𝑛 = 𝑛 and

𝑔 𝑛 = 𝑛2 are nothing alike for large 𝑛

we don’t write something like 𝑓 𝑛 = Ω(𝑛) if we know, say,

that 𝑓 𝑛 = Ω(𝑛2)

lower bounds should be as large as possible!

Θ is the Most Informative

14

a 𝑓 𝑛 = Θ(𝑔(𝑛)) relationship is the most informative:

𝑐1 · 𝑔 𝑛 < 𝑓 𝑛 < 𝑐2 · 𝑔(𝑛) for all 𝑛 > 𝑁

 example: 2𝑛2 + 𝑛 = Θ(𝑛2)

2𝑛2 < 2𝑛2 + 𝑛 < 3𝑛2

 for all 𝑛 > 1

 for large values of 𝑛, the ratio (2𝑛2 + 𝑛)/𝑛2 tends to 2;

 in this sense,

2𝑛2 + 𝑛 ≈ 2𝑛2

Typical Growth Rates

15

https://expcode.wordpress.com/2015/07/19/big-o-big-omega-and-big-theta-notation/

Additional Rules

16

Rule 1

 if 𝑇1 𝑛 = 𝑂(𝑓(𝑛)) and 𝑇2 𝑛 = 𝑂(𝑔(𝑛)) then

 (a) 𝑇1 𝑛 + 𝑇2 𝑛 = 𝑂(𝑓 𝑛 + 𝑔(𝑛)) (or just

 𝑂(max(𝑓 𝑛 , 𝑔(𝑛)))

 (b) 𝑇1 𝑛 ∗ 𝑇2 𝑛 = 𝑂(𝑓 𝑛 ∗ 𝑔(𝑛))

Rule 2

 if 𝑇(𝑛) is a polynomial of degree 𝑘, then 𝑇 𝑛 = Θ(𝑛𝑘)

Rule 3

 logk𝑛 = 𝑂 𝑛 for any constant 𝑘 (logarithms grow very slowly)

Typical Growth Rates

17

Function Name

 𝑐 constant

 log 𝑛 logarithmic

 𝑛 linear

 𝑛 log 𝑛

 𝑛2 quadratic

 𝑛3 cubic

 2𝑛 exponential

Typical Growth Rates

18

http://www.cosc.canterbury.ac.nz/cs4hs/2015/files/complexity-tractability-julie-mcmahon.pdf

Complexity and Tractability

19

assume computer speed of 1 billion ops/sec

T(n)

n n n log n n
2

n
3

n
4

n
10

2
n

10 .01ms .03ms .1ms 1ms 10ms 10s 1ms

20 .02ms .09ms .4ms 8ms 160ms 2.84h 1ms

30 .03ms .15ms .9ms 27ms 810ms 6.83d 1s

40 .04ms .21ms 1.6ms 64ms 2.56ms 121d 18m

50 .05ms .28ms 2.5ms 125ms 6.25ms 3.1y 13d

100 .1ms .66ms 10ms 1ms 100ms 3171y 4´10
13

y

10
3

1ms 9.96ms 1ms 1s 16.67m 3.17´10
13

y 32´10
283

y

10
4

10ms 130ms 100ms 16.67m 115.7d 3.17´10
23

y

10
5

100ms 1.66ms 10s 11.57d 3171y 3.17´10
33

y

10
6

1ms 19.92ms 16.67m 31.71y 3.17´10
7
y 3.17´10

43
y

Order Comparison

20

the order of an algorithm is useful for comparison purposes

example

−an algorithm takes 10ms for input size 60

−how long will it take for input size 600 if the order of the

algorithm is linear?

−quadratic?

Order Comparison

21

example (cont.)

−an algorithm takes 10ms for input size 60

−how large a problem can be solved in 1s if the order of

the algorithm is linear?

−quadratic?

What to Analyze

22

in order to analyze algorithms, we need a model of

computation

−standard computer with sequential instructions

−each operation (+, -, *, /, =, etc.) takes one time unit, even

memory accesses

− infinite memory

−obviously unrealistic

Complex Arithmetic Operations

23

−examples: 𝑥𝑛 log2 𝑥 𝑥

−count the number of basic operations required to execute

the complex arithmetic operations

− for instance, we could compute 𝑥𝑛 as

𝑥𝑛 ← 𝑥 ∗ 𝑥 ∗ ⋯ ∗ 𝑥 ∗ 𝑥

there are 𝑛 − 1 multiplications, so there are 𝑛 − 1 basic

operations to compute 𝑥𝑛 plus one more basic operation

to assign or return the result

What to Analyze

24

different types of performance are analyzed

−best case

−may not represent typical behavior

−average case

−often reflects typical behavior

−difficult to determine what is average

−difficult to compute

−worst case

−guarantee on performance for any input

−typically considered most important

−should be implementation-independent

Maximum Subsequence Sum Problem

25

example: Maximum Subsequence Sum Problem

−given (possibly negative) integers, A1, A2, …, AN, find the

maximum value of

−e.g, for input -2, 11, -4, 13, -5, -2, the answer is 20 (A2

through A4)

=

j

ik

kA

Maximum Subsequence Sum Problem

26

many algorithms to solve this problem

−we will focus on four with run time in the table below

Maximum Subsequence Sum Problem

27

notes

−computer actually run on not important since we’re looking

to compare algorithms

− for small inputs, all algorithms perform well

− times do not include read time

−algorithm 4: time to read would surpass time to compute

−reading data is often the bottleneck

− for algorithm 4, the run time increases by a factor of 10 as

the problem size increases by a factor of 10 (linear)

−algorithm 2 is quadratic; therefore an increase of input by

a factor of 10 yields a run time factor of 100

−algorithm 1 (cubic): run time factor of 1000

Maximum Subsequence Sum Problem

28

Maximum Subsequence Sum Problem

29

Running Time Calculations

30

at least two ways to estimate the running time of a program

−empirically

−as in previous results

−realistic measurement

−analysis

−helps to eliminate bad algorithms early when several

algorithms are being considered

−analysis itself provides insight into designing efficient

algorithms

−pinpoints bottlenecks, which need special coding

A Simple Example

31

calculate σ𝑖=1
𝑁 𝑖3

A Simple Example

32

analysis

−declarations count for no time; ignore call costs

− lines 1 and 4 count for 1 time unit each

− line 3 counts for 4 time units

−2 multiplications

−1 addition

−1 assignment

− line 2 has hidden costs

− initializing i (1 time unit)

−testing i ≤ n (𝑁 + 1)

− incrementing i (𝑁)

− total: 6𝑁 + 4 or 𝑂(𝑁)

A Simple Example

33

analysis

− too much work to analyze all programs like this

−since we’re dealing with 𝑂, we can use shortcuts to help

− line 3 counts for 4 time units, but is 𝑂(1)

− line 1 is insignificant compared to the for loop

General Rules

34

concentrate on loops and recursive calls

−Rule 1 – FOR loops

−running time of the statements inside (including tests)

times the number of iterations

−Rule 2 – Nested loops

−analyze from the inside out

−running time of the statements times the product of the

sizes of all the loops

−watch out for loops that

−contribute only a constant amount of computation

−contain break statements

Single Loops

35

for (int i = 0; i < n; i++)

a[i]+= i;

for (int i = 5; i < n; i++)

a[i]+= i;

for (int i = 0; i < n; i++)

{

if (i >= 7) break;

a[i]+= i;

}

Nested Loops

36

for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j)

++k;

−constant amount of computation inside nested loop

−must multiply number of times both loops execute

−𝑂(𝑛2)

for (int i = 0; i < n; ++i)

for (int j = i; j < n; ++j)

++k;

−even though second loop is not executed as often, still

 𝑂(𝑛2)

Nested Loops

37

for (int i = 0; i < 7; ++i)

for (int j = 0; j < n; ++j)

++k;

−outer loop is executed a fixed number of times

−𝑂(𝑛)

General Rules (cont.)

38

concentrate on loops and recursive calls

−Rule 3 – Consecutive statements

−simply add the running times

for (i = 0; i < n; ++i)

a[i] = 0

for (i = 0; i < n; ++i)

for (j = 0; j < n; ++j)

a[i] += a[j] + i + j

−𝑂(𝑛) work followed by 𝑂(𝑛2) work, so 𝑂(𝑛2)

General Rules (cont.)

39

concentrate on loops and recursive calls

−Rule 4 – if/else

if (test)

S1

else

S2

−total running time includes the test plus the larger of the

running times of S1 and S2

−could be overestimate in some cases, but never an

underestimate

General Rules (cont.)

40

concentrate on loops and recursive calls

− function calls analyzed first

− recursion

− if really just a for loop, not difficult (the following is 𝑂(𝑛))

long factorial (int n)

{

if (n <= 1)

return 1;

else

return n * factorial (n – 1);

}

General Rules (cont.)

41

previous example not a good use of recursion

− if recursion used properly, difficult to convert to a simple

loop structure

what about this example?

long fib (int n)

{

if (n <= 1)

return 1;

else

return fib (n – 1) + fib (n – 2);

}

General Rules (cont.)

42

even worse!

−extremely inefficient, especially for values > 40

−analysis

−for 𝑁 = 0 or 𝑁 = 1, 𝑇(𝑁) is constant: 𝑇(0) = 𝑇(1) = 1

−since the line with recursive calls is not a simple

operation, it must be handled differently

𝑇 𝑁 = 𝑇 𝑁 − 1 + 𝑇 𝑁 − 2 + 2 for 𝑁 ≥ 2

−we have seen that this algorithm <
5

3

𝑁

−similarly, we could show it is >
3

2

𝑁

−exponential!

General Rules (cont.)

43

with current recursion

− lots of redundant work

−violating compound interest rule

− intermediate results thrown away

running time can be reduced substantially with simple for loop

Maximum Subsequence Sum Problem Revisited

44

example: Maximum Subsequence Sum Problem

−given (possibly negative) integers, A1, A2, …, AN, find the

maximum value of

−e.g, for input -2, 11, -4, 13, -5, -2, the answer is 20 (A2

through A4)

−previously, we reviewed running time results for four

algorithms

=

j

ik

kA

Maximum Subsequence Sum Problem Revisited

45

many algorithms to solve this problem

−we will focus on four with run time in the table below

Maximum Subsequence Sum Problem Revisited

46

Algorithm 1

47

Algorithm 1

48

exhaustively tries all possibilities

− first loop iterates 𝑁 times

−second loop iterates 𝑁 − 𝑖 times, which could be small,

but we must assume the worst

− third loop iterates 𝑗 − 𝑖 + 1 times, which we must also

assume to be size 𝑁

− total work on line 14 is 𝑂(1), but it’s inside these nested

loops

− total running time is therefore 𝑂 1 ∙ 𝑁 ∙ 𝑁 ∙ 𝑁 = 𝑂(𝑁3)

−what about lines 16-17?

Algorithm 1

49

more precise calculation

−use better bounds on loops to compute how many times

line 14 is calculated

−compute from the inside out

 in general, top limit – bottom limit + 1

− then

Algorithm 1

50

more precise calculation (cont.)

− to complete the calculation

add 1 to limits → replace i with i - 1 in function

Algorithm 1

51

another example

for (i = 1; i <= n; i++)

 for (j = 1; j <= n; j++)

 k = i * j;

use summations to find # of operations = 4n2 + 4n + 2

Algorithm 2

52

to speed up the algorithm, we can remove a for loop

−unnecessary calculation removed

−note that

−new algorithm is 𝑂(𝑛2)

Algorithm 2

53

Algorithm 3

54

recursive algorithm runs even faster

−divide and conquer strategy

−divide: split problem into two roughly equal subproblems

−conquer: merge solutions to subproblems

−maximum subsequence can be in one of three places

−entirely in left half of input

−entirely in right half of input

− in both halves, crossing the middle

− first two cases solved recursively

− last case solved by finding the largest sum in the first half
that includes the last element of the first half, plus the
largest sum in the second half that includes the first
element in the second half

Algorithm 3

55

consider the following example

−maximum subsequence for the first half: 6

−maximum subsequence for the second half: 8

−maximum subsequence that crosses the middle

−maximum subsequence in the first half that includes the

last element of the first half: 4

−maximum subsequence in the second half that includes

the first element in the second half: 7

−total: 11

Algorithm 3

56

Algorithm 3 (cont.)

57

Algorithm 3

58

notes

−driver function needed

−gets solution started by calling function with initial

parameters that delimit entire array

− if left == right

−base case

− recursive calls to divide the list

−working toward base case

− lines 18-24 and 26-32 calculate max sums that touch the

center

−max3 returns the largest of three values

Algorithm 3

59

analysis

− let 𝑇(𝑁) be the time it takes to solve a maximum

subsequence problem of size 𝑁

− if 𝑁 = 1, program takes some constant time to execute

lines 8-12; thus 𝑇 1 = 1

−otherwise, the program must perform two recursive calls

− the two for loops access each element in the subarray,

with constant work; thus 𝑂(𝑁)

−all other non-recursive work in the function is constant

and can be ignored

− recursive calls divide the list into two 𝑁/2 subproblems if

𝑁 is even (and more strongly, a power of 2)

−time: 2𝑇(𝑁/2)

Algorithm 3

60

total time for the algorithm is therefore

 𝑇 𝑁 = 2𝑇
𝑁

2
+ 𝑁 where 𝑇 1 = 1

−note that

 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑐 is 𝑇 𝑛 = 𝑐𝑛 or just 𝑂(𝑛)

 and

 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑐𝑛 is 𝑇 𝑛 = 𝑐𝑛(𝑛)

 or just 𝑂(𝑛2)

Algorithm 3

61

we can solve the recurrence relation directly (later)

 𝑇 𝑁 = 2𝑇
𝑁

2
+ 𝑁 where 𝑇 1 = 1

− for now, note that

 𝑇 1 = 1

 𝑇 2 = 4 = 2 ∗ 2

 𝑇 4 = 12 = 4 ∗ 3

 𝑇 8 = 32 = 8 ∗ 4

 𝑇 16 = 80 = 16 ∗ 5

 thus, if 𝑁 = 2𝑘,

 𝑇 𝑁 = 𝑁 ∗ 𝑘 + 1 = 𝑁 log 𝑁 + 𝑁 = 𝑂(𝑁 log 𝑁)

Algorithm 4

62

linear algorithm to solve the maximum subsequence sum

−observation: we never want a negative sum

−as before, remember the best sum we’ve encountered so

far, but add a running sum

− if the running sum becomes negative, reset the starting

point to the first positive element

Algorithm 4

63

Algorithm 4

64

notes

− if a[i] is negative, it cannot possibly be the first element of

a maximum sum, since any such subsequence would be

improved by beginning with a[i+1]

−similarly, any negative subsequence cannot possibly be a

prefix for an optimal subsequence

−this allows us to advance through the original sequence

rapidly

−correctness may be difficult to determine

−can be tested on small input by running against more

inefficient brute-force programs

−additional advantage: data need only be read once (online

algorithm) – extremely advantageous

Logarithms in the Running Time

65

logarithms will show up regularly in analyzing algorithms

−we have already seen them in divide and conquer

strategies

−general rule: an algorithm is 𝑂(𝑁 log 𝑁) if it takes constant

𝑂(1) time to cut the problem size by a fraction (typically
1

2
)

− if constant time is required to merely reduce the problem

by a constant amount (say, smaller by 1), then the

algorithm is 𝑂(𝑁)

−only certain problems fall into the 𝑂(log 𝑁) category

since it would take Ω(𝑁) just to read in the input

−for such problems, we assume the input is pre-read

Binary Search

66

binary search

−given an integer 𝑋 and integers 𝐴0, 𝐴1, … , 𝐴𝑁 − 1, which are

presorted and already in memory, find 𝐼 such that 𝐴𝑖 = 𝑋,

or return 𝑖 = −1 if 𝑋 is not in the input

−obvious solution: scan through the list from left to right to

find 𝑋

−runs in linear time

−does not take into account that elements are presorted

−better solution: check if 𝑋 is in the middle element

− if yes, done

− if smaller, apply same strategy to sorted left subarray

− if greater, use right subarray

Binary Search

67

Binary Search

68

analysis

−all the work done inside the loop takes 𝑂(1) time per

iteration

− first iteration of the loop is for 𝑁 − 1

−subsequent iterations of the loop halve this amount

−total running time is therefore 𝑂(log 𝑁)

−another example using sorted data for fast lookup

−periodic table of elements

−118 elements

−at most 8 accesses would be required

Euclid’s Algorithm

69

Euclid’s algorithm

−computes gcd (greatest common divisor) of two integers

− largest integer that divides both

Euclid’s Algorithm

70

Euclid’s Algorithm

71

notes

−algorithm computes gcd(𝑀, 𝑁) assuming 𝑀 ≥ 𝑁

− if 𝑁 > 𝑀, the values are swapped

−algorithm works by continually computing remainders until

0 is reached

− the last non-0 remainder is the answer

− for example, if 𝑀 = 1,989 and 𝑁 = 1,590, the sequence of

remainders is 399, 393, 6, 3, 0

−therefore gcd = 3

−good, fast algorithm

Euclid’s Algorithm

72

analysis

−need to determine how many remainders will be

computed

−log 𝑁 is a good guess, but as can be seen from the

example, the values do not decrease in a uniform way

−we can prove that the remainder is at most half of its

original value after two iterations

−this would show that the number of iterations is at most

2log 𝑁 = 𝑂(log 𝑁)

Euclid’s Algorithm

73

analysis (cont.)

−Show: if 𝑀 > 𝑁, then 𝑁 < 𝑀/2

−Proof: 2 cases

− if 𝑁 ≤ 𝑀/2, then since the remainder is smaller than 𝑁,

the theorem is true

− if 𝑁 > 𝑀/2, then 𝑁 goes into 𝑀 once with a remainder

of 𝑀 − 𝑁 < 𝑀/2, and the theorem is true

− in our example, 2log 𝑁 is about 20, but we needed only 7

operations

−the constant can be refined to 1.44log 𝑁

−the average case (complicated!) is

(12 ln 2 ln 𝑁)/𝜋2 + 1.47

Exponentiation

74

exponentiation

− raising an integer to an integer power

−results are often large, so machine must be able to

support such values

−number of multiplications is the measurement of work

−obvious algorithm: for 𝑋𝑁 uses 𝑁 − 1 multiplications

− recursive algorithm: better

−𝑁 ≤ 1 base case

−otherwise, if 𝑁 is even, 𝑋𝑁 = 𝑋𝑁/2 ∙ 𝑋𝑁/2

− if 𝑁 is odd, 𝑋𝑁 = 𝑋(𝑁−1)/2 ∙ 𝑋(𝑁−1)/2 ∙ 𝑋

−example: 𝑋62 = 𝑋31 2

𝑋31 = 𝑋15 2𝑋, 𝑋15 = 𝑋7 2𝑋, 𝑋7 = 𝑋3 2𝑋, 𝑋3 = 𝑋2 𝑋

Exponentiation

75

Exponentiation

76

analysis

−number of multiplications: 2log 𝑁

−at most, 2 multiplications are required to halve the

problem (if 𝑁 is odd)

−some additional modifications can be made, but care must

be taken to avoid errors and inefficiencies

Limitations of Worst-Case Analysis

77

analysis can be shown empirically to be an overestimate

−analysis can be tightened

−average running time may be significantly less than worst-

case running time

−often, the worst-case is achievable by very bad input,

but still a large overestimate in the average case

−unfortunately, average-case analysis is extremely

complex (and in many cases currently unsolved), so

worst-case is the best that we’ve got

	Slide 1: Chapter 2 Algorithm Analysis
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

