
Chapter 4

Trees



Introduction
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− for large input, even linear access time may be prohibitive

−we need data structures that exhibit average running 

times closer to 𝑂(log 𝑁)

−binary search tree



Terminology
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− recursive definition of tree

−collection of nodes (may be empty)

−distinguished node, r, is the root

−zero or more nonempty subtrees T1, T2, …Tk, each of 

whose roots are connected by a directed edge from r

− root of each subtree is a child of r

− r is the parent of each subtree

− tree of N nodes has N – 1  edges



Terminology
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−example tree

−nodes with no children are called leaves (e.g., B, C, H, I, P, 

Q, K, L, M, N)

−nodes with the same parent are siblings (e.g., K, L, M)

−parent, grandparent, grandchild, ancestor, descendant, 

proper ancestor, proper descendant



Terminology
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−example tree

−path from n1 to nk is a sequence of nodes n1, n2, …, nk 

where n1 is the parent of ni+1 for 1 <= i < k

− length of path is number of edges on path (k – 1)

−path of length 0 from every node to itself

−exactly one path from the root to each node



Terminology
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−example tree

−depth from ni is the length of the unique path from the root 
to ni 

− root is at depth 0

−height of ni is the length of the longest path from ni to a leaf

−all leaves at height 0

−height of the tree is equal to the height of the root



Terminology
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−example tree

−E is at depth 1 and height 2

−F is at depth 1 and height 1

−depth of tree is 3



Implementation of Trees
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−each node could have data and a link to each child

−number of children is unknown and may be large, which 

could lead to wasted space

− instead, keep children in a linked list

−null links not shown



Tree Traversals with Application
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−many applications for trees

−subdirectory structure in Unix

−pathname built into tree



Tree Traversals with Application
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−goal: list all files in a directory

−depth denoted by tabs

−begins at root



Tree Traversals with Application
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−code prints directories/files in preorder traversal

− runs in 𝑂(𝑁)



Tree Traversals with Application
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− for postorder traversal, numbers in parentheses represent 

the number of disk blocks for each file



Tree Traversals with Application
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−size method to find number of blocks for each file

−directories use 1 block of space



Binary Trees
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− in binary trees, nodes can have no more than two children

−binary tree below consists of a root and two subtrees, TL 

and TR, both of which could possibly be empty



Binary Trees
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−depth of a binary tree is considerably smaller than N

−average depth is 𝑂( 𝑁)

−average depth for a binary search tree is 𝑂(log 𝑁)

−depth can be as large as N – 1 



Binary Tree Implementation
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−since a binary tree has two children at most, we can keep 

direct links to each of them

−element plus two pointers, left and right

−drawn with circles and lines (graph)

−many applications, including compiler design



Tree Traversals
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−easy to list all elements of a binary search tree in sorted 

order

− inorder traversal

−postorder traversal

−preorder traversal

− implemented with recursive functions

−all 𝑂 𝑁



Tree Traversals
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− inorder traversal



Tree Traversals
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−preorder traversal

−visit node first, then left subtree, then right subtree

−postorder traversal

−visit left subtree, right subtree, then node

−graphic technique for traversals

− level-order traversal

−all nodes at depth d are processed before any node at 

depth d + 1

−not implemented with recursion

−queue



Tree Traversals
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−height method using postorder traversal



Binary Tree Example: Expression Trees

21

−expression tree

− leaves represent operands (constants or variable names)

− interior nodes represent operators

−binary tree since most operators are binary, but not 

required

−some operations are unary



Binary Tree Example: Expression Trees
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−evaluate expression tree, T, by applying operator at root to 

values obtained by recursively evaluating left and right 

subtrees

− left subtree: a + (b * c)

− right subtree: ((d * e) + f) * g

−complete tree: (a + (b * c)) + (((d * e) + f) * g)



Binary Tree Example: Expression Trees
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− inorder traversal

− recursively produce left expression

−print operator at root

− recursively produce right expression

−postorder traversal

− result: a b c * + d e * f + g * +

−preorder traversal

− result: + + a * b c * + * d e f g



Binary Tree Example: Expression Trees
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−goal: convert a postorder expression into an expression tree

− read expression one symbol at a time

− if operand, create node and push a pointer to it on the 

stack

− if operator, pop pointers to two trees T1 and T2 from the 

stack 

−form new tree with operator as root

−pointer to this tree is then pushed on the stack



Binary Tree Example: Expression Trees
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−example: a b + c d e + * *

− first two symbols are operands and are pushed on the stack



Binary Tree Example: Expression Trees
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−example: a b + c d e + * *

−after + is read, two pointers are popped and new tree 

formed with a pointer pushed on the stack



Binary Tree Example: Expression Trees
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−example: a b + c d e + * *

−next, c, d, and e are read, with one-node tree created for 

each and pushed on the stack



Binary Tree Example: Expression Trees
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−example: a b + c d e + * *

−after + is read, two trees are merged



Binary Tree Example: Expression Trees

29

−example: a b + c d e + * *

−after * is read, two trees are popped to form a new tree with 

a * as root



Binary Tree Example: Expression Trees
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−example: a b + c d e + * *

− finally * is read, two trees are popped to form a final tree, 

which is left on the stack



Binary Search Tree ADT
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−binary trees often used for searching

−assume each node in the tree stores one element (integer)

−binary search tree

− for every node 𝑋 in the tree

−all items in left subtree are smaller than 𝑋

−all items in right subtree are greater than 𝑋

− items in tree must be order-able



Binary Search Tree ADT
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−common operations on binary search trees

−often written recursively

−since average depth is 𝑂 log 𝑁 , no worry about stack 

space

−binary search tree interface

−searching depends on < operator, which must be defined 

for Comparable type

−only data member is root pointer



Binary Search Tree ADT
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Binary Search Tree ADT
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Binary Search Tree ADT
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− test for item in subtree



Binary Search Tree ADT
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−findMin and findMax

−private methods return pointer to smallest/largest 

elements in the tree

− to find the minimum, start at the root and go left as long as 

possible

−similar for finding the maximum



Binary Search Tree ADT
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− recursive version of findMin



Binary Search Tree ADT
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−nonrecursive version of findMax



Binary Search Tree ADT
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− insertion for binary search trees

− to insert 𝑋 into tree T, proceed down the tree, as in the 
contains function

− if 𝑋 is found, do nothing

−otherwise, insert 𝑋 at the last spot on the path traversed

−example: insert 5 into binary search tree



Binary Search Tree ADT
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−duplicates can be handled by adding a count to the node 

record

−better than inserting duplicates in tree

−may not work well if key is only small part of larger 

structure



Binary Search Tree ADT
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−deletion in binary search tree may be difficult

−multiple cases

− if node is leaf, it can be deleted immediately

− if node has only one child, node can be deleted after its 

parent adjusts a link to bypass the node



Binary Search Tree ADT
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−multiple cases (cont.)

−complicated case: node with two children

−replace data of this node with smallest data of right 

subtree and recursively delete the node

−since smallest node in right subtree cannot have a left 

child, the second remove is easy



Binary Search Tree ADT
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− if number of deletions small, lazy deletion may be used

−node is marked deleted rather than actually being deleted

−especially popular if duplicates allowed

−count of duplicates can be decremented

− incurs only small penalty on tree since height not affected 

greatly

− if deleted node reinstated, some benefits



Binary Search Tree Average-Case Analysis
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−we expect most operations on binary search trees will have 

𝑂 log 𝑁  time

−average depth over all nodes can be shown to be 𝑂 log 𝑁

−all insertions and deletions must be equally likely

−sum of the depths of all nodes in a tree is known as 

internal path length



Binary Search Tree Average-Case Analysis
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− the run time of binary search trees depends on the depth of 

the tree, which in turn depends on the order that the keys are 

inserted

− let 𝐷(𝑁) be the internal path length for a tree of N nodes

−we know that 𝐷(1) = 0
−a tree of an i-node left subtree and an (𝑁 –  𝑖 –  1)-node right 

subtree, plus a root at depth zero for 0 ≤ 𝑖 ≤ 𝑁

− total number of nodes in tree = left subtree + right subtree + 1

−all nodes except the root are one level deeper,

𝐷 𝑁 = 𝐷 𝑖 + 𝐷 𝑁 − 𝑖 − 1 + 𝑁 − 1



Binary Search Tree Average-Case Analysis
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− if all subtree sizes are equally likely, then the average for 
each subtree is 

1

𝑁


𝑗=1

𝑁−1

𝐷(𝑗) 

  

   therefore, for the total number of nodes

𝐷 𝑁 =
2

𝑁


𝑗=1

𝑁−1

𝐷(𝑗) + 𝑁 − 1

−once this recurrence relation is evaluated, the result is

𝐷 𝑁 = 𝑂(𝑁 log 𝑁)

  and the average number of nodes is 𝑂 log 𝑁  



Binary Search Tree Average-Case Analysis
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−example: randomly generated 500-node tree has expected 

depth of 9.98



Binary Search Tree Average-Case Analysis
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−deletions, however, bias the left subtrees to be longer 

because we always replace a deleted node with a node 

from the right subtree

−exact effect of deletions still unknown

− if insertions and deletions are alternated ϴ 𝑁2  times, then 

expected depth is ϴ 𝑁



Binary Search Tree Average-Case Analysis
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−after 250,000 random insert/delete pairs, tree becomes 

unbalanced, with depth = 12.51



Binary Search Tree Average-Case Analysis
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−could randomly choose between smallest element in the 

right subtree and largest element in the left subtree when 

replacing deleted element

−should keep bias low, but not yet proven

−bias does not show up for small trees

− if 𝑜 𝑁2  insert/remove pairs used, tree actually gains 

balance

−average case analysis extremely difficult

− two possible solutions

−balanced trees

−self-adjusting trees



AVL Trees
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−Adelson-Velskii and Landis (AVL) tree is a binary search 

tree with a balance condition

−balance condition in general

−must be easy to maintain

−ensures depth of tree is 𝑂 log 𝑁

−simplest idea: left and right subtrees have the same height

−does not always work



AVL Trees
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−alternate balance condition: every node must have left and 

right subtrees of the same height

−only perfectly balanced trees of 2𝑘 − 1 nodes would work

−condition too rigid



AVL Trees
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−AVL tree

− for each node in the tree, height of left and right subtrees 

differ by at most 1

−height balance = height of right subtree – height of left

−height of an empty tree: -1

−height information kept in the node structure



AVL Trees
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−example AVL tree

− fewest nodes for a tree of height 9

− left subtree contains fewest nodes for height 7

− right subtree contains fewest nodes for height 8



AVL Trees
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−minimum number of nodes, 𝑆(ℎ), in an AVL tree of height h

𝑆 ℎ = 𝑆 ℎ − 1 + 𝑆 ℎ − 2 + 1 𝑆 0 = 1, 𝑆 1 = 2

−closely related to Fibonacci numbers

−all operations can be performed in 𝑂 log 𝑁  time, except 

insertion and deletion



AVL Trees
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− insertion

−update all balance information in the nodes on the path 

back to the root

−could violate the balance condition

− rotations used to restore the balance property

−deletion

−perform same promotion as in a binary search tree, 

updating the balance information as necessary

−same balancing operations for insertion can then be 

used



AVL Trees
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− if 𝛼 is the node requiring rebalancing (the heights of its left 

and right subtrees differ by 2), the violation occurred in one 

of four cases

−an insertion into the left subtree of the left child of 𝛼

−an insertion into the right subtree of the left child of 𝛼

−an insertion into the left subtree of the right child of 𝛼

−an insertion into the right subtree of the right child of 𝛼

−cases 1 and 4 are mirror image symmetries with respect to 

𝛼 and can be resolved with a single rotation

−cases 2 and 3 are mirror image symmetries with respect to 

𝛼 and can be resolved with a double rotation



AVL Trees
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−single rotation

−only possible case 1 scenario

− to balance, imagine “picking up” tree by 𝑘1

−new tree has same height as original tree



AVL Trees
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−example tree

−when adding 6, node 8 becomes unbalanced

− to balance, perform single rotation between 7 and 8



AVL Trees
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−example tree

−symmetric case for case 4



AVL Trees
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−example

− insert 3, 2, and 1 into an empty tree



AVL Trees
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−example

− insert 4 and 5



AVL Trees
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−example

− insert 6



AVL Trees
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−example

− insert 7



AVL Trees
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−double rotation

− for cases 2 and 3, a single rotation will not work

− tree 𝑌 can be expanded to a node with two subtrees



AVL Trees
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−double rotation

− left-right double rotation for case 2

− right-left double rotation for case 3



AVL Trees
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−example

− insert 16 and 15



AVL Trees
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−example

− insert 14



AVL Trees
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−example

− insert 13



AVL Trees
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−example

− insert 12



AVL Trees
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−example

− insert 11, 10, and 8



AVL Trees

72

−example

− insert 9



AVL Trees
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− implementation

−node definition



AVL Trees
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− implementation

− function to compute height of AVL node



AVL Trees
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− implementation

− insertion



AVL Trees
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− implementation



AVL Trees

77

− implementation

−single rotation



AVL Trees
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− implementation

−double rotation



AVL Trees
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− implementation

−deletion



Splay Trees
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−different approach to ensuring 𝑂 log 𝑁  behavior for tree 

operations (searches, insertions, and deletions).

−worst case

−splay trees operations may take 𝑁 time

−however, splay trees make slow operations infrequently

−guarantee that 𝑀 consecutive operations (insertions or 

deletions) requires at most 𝑂 𝑀 log 𝑁 , so, on average, 

operations are 𝑂 log 𝑁  

−𝑂 log 𝑁  is an amortized complexity

−derivation is complex

−common for binary search trees to have a sustained 

sequence of bad accesses



Splay Trees
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−basic idea: when a node is accessed, it is moved to the top 

of the tree, with the thought that we might want to revisit 

recently accessed nodes more frequently

−use double rotations similar to AVL to move nodes to top 

of tree

−along the way, more branching is introduced in the tree, 

which reduces the height of the tree and thus the cost of 

tree operations



Splay Trees

82

−single rotations don’t work

−access k1



Splay Trees

83



Splay Trees
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Splay Trees
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−double rotations consider parent and grandparent of 

accessed node

−zig: single branch (in one direction)

−zag: secondary branch (in opposite direction)

−when the parent node is the root, a single rotation for the 

zig is sufficient



Splay Trees
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−access X

−zig-zag



Splay Trees
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−access X

−zig-zig



Splay Trees
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−consider tree from previous example

−access k1

−zig-zag



Splay Trees
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−consider tree from previous example

−access k1

−zig-zig



Splay Trees
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−consider tree from previous example

−access k1

−k1 is now at the root

− final tree has halved the distance of most nodes on the 

access path to the root



Splay Trees

91

−example 2

−access 1

− tree starts as worst case and results in much better 

structure for performance



Splay Trees
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−example 3: tree with only left children – access 1



Splay Trees
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−example 3: tree with only left children – access 2



Splay Trees
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−example 3: tree with only left children – access 3



Splay Trees
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−example 3: tree with only left children – access 4



Splay Trees
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−example 3: tree with only left children – access 5



Splay Trees
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−example 3: tree with only left children – access 6



Splay Trees
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−example 3: tree with only left children – access 7



Splay Trees
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−example 3: tree with only left children – access 8



Splay Trees
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−example 3: tree with only left children – access 9



Splay Trees
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−deleting nodes

− first, access the node, which moves it to the root of the 

tree

− let TL and TR be the left and right subtrees of the new 

root

− find e, the largest element of TL 

− rotate e to the root of TL 

−since e is the largest element of TL, it will have no right 

child, so we can attach TR there

−rather than the largest element of TL, we could use the 

smallest element of TR and modify TR



Top-Down Splay Trees
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−previous method requires traversal from root down to node, 

then a bottom-up traversal to implement the splaying

−can be accomplished by maintaining parent links

−or by storing access path on the stack

−both methods require substantial overhead

−both must handle a variety of special cases



Top-Down Splay Trees
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− instead, perform rotations on initial access path

− result is faster

−uses extra space 𝑂 1

− retains amortized time bound of 𝑂 log 𝑁
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− suppose we wish to access key 𝑖

− during the access and concurrent splaying operation, the tree is 

broken into three parts

− a left tree, which contains all the keys from the original tree 

known at the time to be less than 𝑖

− a right tree, which contains all the keys from the original tree 

known at the time to be greater than 𝑖

− a middle tree, which consists of the subtree of the original tree 

rooted at the current node on the access path

− initially, the left and right trees are empty and the middle tree is 

the entire tree

− at each step we tack bits of the middle tree onto the left and right 

trees



Top-Down Splay Trees
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− rotations for zig, zig-zig, and zig-zag cases



Top-Down Splay Trees

106

−zig-zag case can be simplified to just a zig since no 

rotations are performed

− instead of making 𝑍 the root, we make 𝑌 the root

−simplifies coding, but only descends one level

− requires more iterations



Top-Down Splay Trees
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−after final splaying



Top-Down Splay Trees
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−example: access 19



Top-Down Splay Trees
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−example: access 19



Top-Down Splay Trees
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−example: access 19



Top-Down Splay Trees
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−use a header to hold the roots of the left and right subtrees

− left pointer will contain root of right subtree

− right pointer will contain root of left subtree

−easy to reconstruct at end of splaying



Top-Down Splay Trees
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−example 2: access 14
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−example 2: access 14

−start at root and look down two nodes along path to 14
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−example 2: access 14
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−example 2: access 14

−continuing down the tree, this is a zig-zag condition



Top-Down Splay Trees
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−example 2: access 14

− tree is reconfigured



Top-Down Splay Trees
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−example 2: access 14

−simple zig



Top-Down Splay Trees
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−example 2: access 14

−move accessed node to root and reassemble tree
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−B-trees were developed in the late 1960s by Rudolf Bayer 

and Edward McCreight:

R. Bayer and E. McCreight, Organization and maintenance of large 

ordered indexes, Acta Informatica vol. 1, no. 3 (1972), pp. 173-189.

−originally motivated by applications in databases

−B-trees shown here really B+ tree



B-Trees
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− thus far, we have frequently treated the key as if it were the 
data being stored, but that is rarely the case

−example: student records in Banner

−most effective search key is W&M ID (e.g., 930…) since 
it is unique

− the record (value) associated with each key contains 
much more information

−Student Information

−Student Academic Transcript

−Student Active Registrations

−Student Schedule

−Student E-mail Address

−Student Address and Phones ...



B-Trees

121

−B-trees are particularly useful when we cannot fit all of our 

data in memory, but have to perform reads and writes from 

secondary storage (e.g., disk drives)

−disk accesses incredibly expensive, relatively speaking

−consider a disk drive that rotates at 7200 rpm

−the rotational speed plays a role in retrieval time; for a 

7200 rpm disk, each revolution takes 60/7200 = 1/120 s, 

or about 8.3 ms

−a typical seek time (the time for the disk head to move 

to the location where data will be read or written) for 

7200 rpm disks is around 9 ms

−this means we can perform 100-120 random disk 

accesses per second
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−meanwhile, our CPU can perform > 1,000,000,000 

operations per second

−suppose we have a database with N = 10,000,000 entries 

that we organize in a tree

− in an AVL tree, a worst-case search requires 1:44 lg N ≈ 

33 disk accesses

−at 9 ms per access, this requires about 300 ms, so on 

average we can perform less than 4 searches per second

−we would expect 1000 worst-case searches to take 

300,000 ms = 300 s, or about 5 minutes

− in this application, search trees with height lg 𝑁 are still too 

high!
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−height can be reduced if we allow more branching

−binary search trees only allow 2-way branching

−example: 5-ary 31-node tree with height 3
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−B-tree of order 𝑀 is an 𝑀-ary tree with the following 

properties

1. data items are stored at leaves 

2. nonleaf nodes (internal nodes) store up to 𝑀 – 1 keys to 

guide the searching: key 𝑖 represents the smallest key in 

subtree 𝑖 + 1

3. root is either a leaf or has between two and 𝑀 children

4. all nonleaf nodes (except the root) have between 
/𝑀ڿ 2ۀ  and 𝑀 children

5. all leaves are at the same depth and have between 
/𝐿ڿ 2ۀ  and 𝐿 data items, for some 𝐿
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−examples

− for 𝑀 = 2, there are between 2ڿ/ 2ۀ  = 1 to 2 children

− for 𝑀 = 3, there are between 3ڿ/ 2ۀ  = 2 to 3 children

− for 𝑀 = 4, there are between 4ڿ/ 2ۀ  = 2 to 4 children

− for 𝑀 = 5, there are between 5ڿ/ 2ۀ  = 3 to 5 children

− for 𝑀 = 42, there are between 42ڿ/ 2ۀ  = 21 to 42 children

− requiring nodes to be half full guarantees that the tree will 

not degenerate into a simple binary search tree
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−examples: 𝑀 = 5

−all nonleaf nodes have between 3 and 5 children (and 

thus between 2 and 4 keys)

− root could have just 2 children

−here 𝐿 is also 5: each leaf has between 3 and 5 data items
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−choosing 𝑀 and 𝐿

−each node will occupy a disk block, say 8192 bytes, so we 

choose 𝑀 and 𝐿 based on the size of the items being 

stored

−suppose each key uses 32 bytes and a link to another 

node uses 8 bytes

−a node in a B-tree of order 𝑀 has 𝑀– 1 keys and 𝑀 links, 

so a node requires

32(𝑀 – 1) + 8𝑀 = 40𝑀– 32 bytes

−we choose the largest M that will allow a node to fit in a 

block

𝑀 =
8192 + 32

40
= 205



B-Trees

128

−choosing 𝑀 and 𝐿 (cont.)

− if the values are each 256 bytes, then we can fit

𝐿 =
8192

256
= 32

  in a single block

−each leaf has between 16 and 32 values, and each internal 

node branches in at least 103 ways

− if there are 1,000,000,000 values to store, there are at most 

62,500,000 leaves

− the leaves would be, in the worst case, on level

1 + log103 62,500,000 = 5

  so we can find data in at most 5 disk access

−a BST would have at least 1 + log2 62,500,000 = 27 levels!
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− insertion: easy case – insert 57

− first, follow the search tree to the correct leaf (external 

node)

− if there are fewer than 𝐿 items in the leaf, insert in the 

correct location

−cost: 1 disk access

− insert 55?
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− insertion: splitting a leaf – insert 55

− if there are already 𝐿 items in the leaf

−add the new item, split the node in two, and update the 

links in the parent node

−cost: 3 disk accesses (one for each new node and one 

for the update of the parent node)
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− insertion: splitting a leaf – insert 55 (cont.)

− the splitting rule ensures we still have a B-tree: each new 

node has at least ڿ𝐿/ 2ۀ  values (e.g., if 𝐿 = 3, there are 2 

values in one node and 1 in the other, and if L = 4, each 

new node has 2 keys)
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− insertion: splitting a parent – insert 40

−what if the parent node already has all the child nodes it 

can possibly have?

−split the parent node, and update its parent

−repeat until we arrive at the root

− if necessary, split the root into two nodes and create a 

new root with the two nodes as children

−this is why the root is allowed as few as 2 children

−thus, a B-tree grows at the root
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− insertion: splitting a parent – insert 40 (cont.)
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− insertion: other techniques – insert 29

−put a child up for adoption if a neighbor has room

−here, move 32 to the next leaf

−modifies parent, but keeps nodes fuller and saves space 

in the long run
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−deletion: delete 99

−could bring leaf below minimum number of data items

−adopt neighboring item if neighbor not at minimum

−otherwise, combine with neighbor to form a full leaf

−process could make its way up to the root

−if root left with 1 child, remove root and make its child 

the new root of the tree
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−deletion: delete 99 (cont.)
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