
Chapter 4

Trees

Introduction

2

− for large input, even linear access time may be prohibitive

−we need data structures that exhibit average running

times closer to 𝑂(log 𝑁)

−binary search tree

Terminology

3

− recursive definition of tree

−collection of nodes (may be empty)

−distinguished node, r, is the root

−zero or more nonempty subtrees T1, T2, …Tk, each of

whose roots are connected by a directed edge from r

− root of each subtree is a child of r

− r is the parent of each subtree

− tree of N nodes has N – 1 edges

Terminology

4

−example tree

−nodes with no children are called leaves (e.g., B, C, H, I, P,

Q, K, L, M, N)

−nodes with the same parent are siblings (e.g., K, L, M)

−parent, grandparent, grandchild, ancestor, descendant,

proper ancestor, proper descendant

Terminology

5

−example tree

−path from n1 to nk is a sequence of nodes n1, n2, …, nk

where n1 is the parent of ni+1 for 1 <= i < k

− length of path is number of edges on path (k – 1)

−path of length 0 from every node to itself

−exactly one path from the root to each node

Terminology

6

−example tree

−depth from ni is the length of the unique path from the root
to ni

− root is at depth 0

−height of ni is the length of the longest path from ni to a leaf

−all leaves at height 0

−height of the tree is equal to the height of the root

Terminology

7

−example tree

−E is at depth 1 and height 2

−F is at depth 1 and height 1

−depth of tree is 3

Implementation of Trees

8

−each node could have data and a link to each child

−number of children is unknown and may be large, which

could lead to wasted space

− instead, keep children in a linked list

−null links not shown

Tree Traversals with Application

9

−many applications for trees

−subdirectory structure in Unix

−pathname built into tree

Tree Traversals with Application

10

−goal: list all files in a directory

−depth denoted by tabs

−begins at root

Tree Traversals with Application

11

−code prints directories/files in preorder traversal

− runs in 𝑂(𝑁)

Tree Traversals with Application

12

− for postorder traversal, numbers in parentheses represent

the number of disk blocks for each file

Tree Traversals with Application

13

−size method to find number of blocks for each file

−directories use 1 block of space

Binary Trees

14

− in binary trees, nodes can have no more than two children

−binary tree below consists of a root and two subtrees, TL

and TR, both of which could possibly be empty

Binary Trees

15

−depth of a binary tree is considerably smaller than N

−average depth is 𝑂(𝑁)

−average depth for a binary search tree is 𝑂(log 𝑁)

−depth can be as large as N – 1

Binary Tree Implementation

16

−since a binary tree has two children at most, we can keep

direct links to each of them

−element plus two pointers, left and right

−drawn with circles and lines (graph)

−many applications, including compiler design

Tree Traversals

17

−easy to list all elements of a binary search tree in sorted

order

− inorder traversal

−postorder traversal

−preorder traversal

− implemented with recursive functions

−all 𝑂 𝑁

Tree Traversals

18

− inorder traversal

Tree Traversals

19

−preorder traversal

−visit node first, then left subtree, then right subtree

−postorder traversal

−visit left subtree, right subtree, then node

−graphic technique for traversals

− level-order traversal

−all nodes at depth d are processed before any node at

depth d + 1

−not implemented with recursion

−queue

Tree Traversals

20

−height method using postorder traversal

Binary Tree Example: Expression Trees

21

−expression tree

− leaves represent operands (constants or variable names)

− interior nodes represent operators

−binary tree since most operators are binary, but not

required

−some operations are unary

Binary Tree Example: Expression Trees

22

−evaluate expression tree, T, by applying operator at root to

values obtained by recursively evaluating left and right

subtrees

− left subtree: a + (b * c)

− right subtree: ((d * e) + f) * g

−complete tree: (a + (b * c)) + (((d * e) + f) * g)

Binary Tree Example: Expression Trees

23

− inorder traversal

− recursively produce left expression

−print operator at root

− recursively produce right expression

−postorder traversal

− result: a b c * + d e * f + g * +

−preorder traversal

− result: + + a * b c * + * d e f g

Binary Tree Example: Expression Trees

24

−goal: convert a postorder expression into an expression tree

− read expression one symbol at a time

− if operand, create node and push a pointer to it on the

stack

− if operator, pop pointers to two trees T1 and T2 from the

stack

−form new tree with operator as root

−pointer to this tree is then pushed on the stack

Binary Tree Example: Expression Trees

25

−example: a b + c d e + * *

− first two symbols are operands and are pushed on the stack

Binary Tree Example: Expression Trees

26

−example: a b + c d e + * *

−after + is read, two pointers are popped and new tree

formed with a pointer pushed on the stack

Binary Tree Example: Expression Trees

27

−example: a b + c d e + * *

−next, c, d, and e are read, with one-node tree created for

each and pushed on the stack

Binary Tree Example: Expression Trees

28

−example: a b + c d e + * *

−after + is read, two trees are merged

Binary Tree Example: Expression Trees

29

−example: a b + c d e + * *

−after * is read, two trees are popped to form a new tree with

a * as root

Binary Tree Example: Expression Trees

30

−example: a b + c d e + * *

− finally * is read, two trees are popped to form a final tree,

which is left on the stack

Binary Search Tree ADT

31

−binary trees often used for searching

−assume each node in the tree stores one element (integer)

−binary search tree

− for every node 𝑋 in the tree

−all items in left subtree are smaller than 𝑋

−all items in right subtree are greater than 𝑋

− items in tree must be order-able

Binary Search Tree ADT

32

−common operations on binary search trees

−often written recursively

−since average depth is 𝑂 log 𝑁 , no worry about stack

space

−binary search tree interface

−searching depends on < operator, which must be defined

for Comparable type

−only data member is root pointer

Binary Search Tree ADT

33

Binary Search Tree ADT

34

Binary Search Tree ADT

35

− test for item in subtree

Binary Search Tree ADT

36

−findMin and findMax

−private methods return pointer to smallest/largest

elements in the tree

− to find the minimum, start at the root and go left as long as

possible

−similar for finding the maximum

Binary Search Tree ADT

37

− recursive version of findMin

Binary Search Tree ADT

38

−nonrecursive version of findMax

Binary Search Tree ADT

39

− insertion for binary search trees

− to insert 𝑋 into tree T, proceed down the tree, as in the
contains function

− if 𝑋 is found, do nothing

−otherwise, insert 𝑋 at the last spot on the path traversed

−example: insert 5 into binary search tree

Binary Search Tree ADT

40

−duplicates can be handled by adding a count to the node

record

−better than inserting duplicates in tree

−may not work well if key is only small part of larger

structure

Binary Search Tree ADT

41

−deletion in binary search tree may be difficult

−multiple cases

− if node is leaf, it can be deleted immediately

− if node has only one child, node can be deleted after its

parent adjusts a link to bypass the node

Binary Search Tree ADT

42

−multiple cases (cont.)

−complicated case: node with two children

−replace data of this node with smallest data of right

subtree and recursively delete the node

−since smallest node in right subtree cannot have a left

child, the second remove is easy

Binary Search Tree ADT

43

− if number of deletions small, lazy deletion may be used

−node is marked deleted rather than actually being deleted

−especially popular if duplicates allowed

−count of duplicates can be decremented

− incurs only small penalty on tree since height not affected

greatly

− if deleted node reinstated, some benefits

Binary Search Tree Average-Case Analysis

44

−we expect most operations on binary search trees will have

𝑂 log 𝑁 time

−average depth over all nodes can be shown to be 𝑂 log 𝑁

−all insertions and deletions must be equally likely

−sum of the depths of all nodes in a tree is known as

internal path length

Binary Search Tree Average-Case Analysis

45

− the run time of binary search trees depends on the depth of

the tree, which in turn depends on the order that the keys are

inserted

− let 𝐷(𝑁) be the internal path length for a tree of N nodes

−we know that 𝐷(1) = 0
−a tree of an i-node left subtree and an (𝑁 – 𝑖 – 1)-node right

subtree, plus a root at depth zero for 0 ≤ 𝑖 ≤ 𝑁

− total number of nodes in tree = left subtree + right subtree + 1

−all nodes except the root are one level deeper,

𝐷 𝑁 = 𝐷 𝑖 + 𝐷 𝑁 − 𝑖 − 1 + 𝑁 − 1

Binary Search Tree Average-Case Analysis

46

− if all subtree sizes are equally likely, then the average for
each subtree is

1

𝑁

𝑗=1

𝑁−1

𝐷(𝑗)

 therefore, for the total number of nodes

𝐷 𝑁 =
2

𝑁

𝑗=1

𝑁−1

𝐷(𝑗) + 𝑁 − 1

−once this recurrence relation is evaluated, the result is

𝐷 𝑁 = 𝑂(𝑁 log 𝑁)

 and the average number of nodes is 𝑂 log 𝑁

Binary Search Tree Average-Case Analysis

47

−example: randomly generated 500-node tree has expected

depth of 9.98

Binary Search Tree Average-Case Analysis

48

−deletions, however, bias the left subtrees to be longer

because we always replace a deleted node with a node

from the right subtree

−exact effect of deletions still unknown

− if insertions and deletions are alternated ϴ 𝑁2 times, then

expected depth is ϴ 𝑁

Binary Search Tree Average-Case Analysis

49

−after 250,000 random insert/delete pairs, tree becomes

unbalanced, with depth = 12.51

Binary Search Tree Average-Case Analysis

50

−could randomly choose between smallest element in the

right subtree and largest element in the left subtree when

replacing deleted element

−should keep bias low, but not yet proven

−bias does not show up for small trees

− if 𝑜 𝑁2 insert/remove pairs used, tree actually gains

balance

−average case analysis extremely difficult

− two possible solutions

−balanced trees

−self-adjusting trees

AVL Trees

51

−Adelson-Velskii and Landis (AVL) tree is a binary search

tree with a balance condition

−balance condition in general

−must be easy to maintain

−ensures depth of tree is 𝑂 log 𝑁

−simplest idea: left and right subtrees have the same height

−does not always work

AVL Trees

52

−alternate balance condition: every node must have left and

right subtrees of the same height

−only perfectly balanced trees of 2𝑘 − 1 nodes would work

−condition too rigid

AVL Trees

53

−AVL tree

− for each node in the tree, height of left and right subtrees

differ by at most 1

−height balance = height of right subtree – height of left

−height of an empty tree: -1

−height information kept in the node structure

AVL Trees

54

−example AVL tree

− fewest nodes for a tree of height 9

− left subtree contains fewest nodes for height 7

− right subtree contains fewest nodes for height 8

AVL Trees

55

−minimum number of nodes, 𝑆(ℎ), in an AVL tree of height h

𝑆 ℎ = 𝑆 ℎ − 1 + 𝑆 ℎ − 2 + 1 𝑆 0 = 1, 𝑆 1 = 2

−closely related to Fibonacci numbers

−all operations can be performed in 𝑂 log 𝑁 time, except

insertion and deletion

AVL Trees

56

− insertion

−update all balance information in the nodes on the path

back to the root

−could violate the balance condition

− rotations used to restore the balance property

−deletion

−perform same promotion as in a binary search tree,

updating the balance information as necessary

−same balancing operations for insertion can then be

used

AVL Trees

57

− if 𝛼 is the node requiring rebalancing (the heights of its left

and right subtrees differ by 2), the violation occurred in one

of four cases

−an insertion into the left subtree of the left child of 𝛼

−an insertion into the right subtree of the left child of 𝛼

−an insertion into the left subtree of the right child of 𝛼

−an insertion into the right subtree of the right child of 𝛼

−cases 1 and 4 are mirror image symmetries with respect to

𝛼 and can be resolved with a single rotation

−cases 2 and 3 are mirror image symmetries with respect to

𝛼 and can be resolved with a double rotation

AVL Trees

58

−single rotation

−only possible case 1 scenario

− to balance, imagine “picking up” tree by 𝑘1

−new tree has same height as original tree

AVL Trees

59

−example tree

−when adding 6, node 8 becomes unbalanced

− to balance, perform single rotation between 7 and 8

AVL Trees

60

−example tree

−symmetric case for case 4

AVL Trees

61

−example

− insert 3, 2, and 1 into an empty tree

AVL Trees

62

−example

− insert 4 and 5

AVL Trees

63

−example

− insert 6

AVL Trees

64

−example

− insert 7

AVL Trees

65

−double rotation

− for cases 2 and 3, a single rotation will not work

− tree 𝑌 can be expanded to a node with two subtrees

AVL Trees

66

−double rotation

− left-right double rotation for case 2

− right-left double rotation for case 3

AVL Trees

67

−example

− insert 16 and 15

AVL Trees

68

−example

− insert 14

AVL Trees

69

−example

− insert 13

AVL Trees

70

−example

− insert 12

AVL Trees

71

−example

− insert 11, 10, and 8

AVL Trees

72

−example

− insert 9

AVL Trees

73

− implementation

−node definition

AVL Trees

74

− implementation

− function to compute height of AVL node

AVL Trees

75

− implementation

− insertion

AVL Trees

76

− implementation

AVL Trees

77

− implementation

−single rotation

AVL Trees

78

− implementation

−double rotation

AVL Trees

79

− implementation

−deletion

Splay Trees

80

−different approach to ensuring 𝑂 log 𝑁 behavior for tree

operations (searches, insertions, and deletions).

−worst case

−splay trees operations may take 𝑁 time

−however, splay trees make slow operations infrequently

−guarantee that 𝑀 consecutive operations (insertions or

deletions) requires at most 𝑂 𝑀 log 𝑁 , so, on average,

operations are 𝑂 log 𝑁

−𝑂 log 𝑁 is an amortized complexity

−derivation is complex

−common for binary search trees to have a sustained

sequence of bad accesses

Splay Trees

81

−basic idea: when a node is accessed, it is moved to the top

of the tree, with the thought that we might want to revisit

recently accessed nodes more frequently

−use double rotations similar to AVL to move nodes to top

of tree

−along the way, more branching is introduced in the tree,

which reduces the height of the tree and thus the cost of

tree operations

Splay Trees

82

−single rotations don’t work

−access k1

Splay Trees

83

Splay Trees

84

Splay Trees

85

−double rotations consider parent and grandparent of

accessed node

−zig: single branch (in one direction)

−zag: secondary branch (in opposite direction)

−when the parent node is the root, a single rotation for the

zig is sufficient

Splay Trees

86

−access X

−zig-zag

Splay Trees

87

−access X

−zig-zig

Splay Trees

88

−consider tree from previous example

−access k1

−zig-zag

Splay Trees

89

−consider tree from previous example

−access k1

−zig-zig

Splay Trees

90

−consider tree from previous example

−access k1

−k1 is now at the root

− final tree has halved the distance of most nodes on the

access path to the root

Splay Trees

91

−example 2

−access 1

− tree starts as worst case and results in much better

structure for performance

Splay Trees

92

−example 3: tree with only left children – access 1

Splay Trees

93

−example 3: tree with only left children – access 2

Splay Trees

94

−example 3: tree with only left children – access 3

Splay Trees

95

−example 3: tree with only left children – access 4

Splay Trees

96

−example 3: tree with only left children – access 5

Splay Trees

97

−example 3: tree with only left children – access 6

Splay Trees

98

−example 3: tree with only left children – access 7

Splay Trees

99

−example 3: tree with only left children – access 8

Splay Trees

100

−example 3: tree with only left children – access 9

Splay Trees

101

−deleting nodes

− first, access the node, which moves it to the root of the

tree

− let TL and TR be the left and right subtrees of the new

root

− find e, the largest element of TL

− rotate e to the root of TL

−since e is the largest element of TL, it will have no right

child, so we can attach TR there

−rather than the largest element of TL, we could use the

smallest element of TR and modify TR

Top-Down Splay Trees

102

−previous method requires traversal from root down to node,

then a bottom-up traversal to implement the splaying

−can be accomplished by maintaining parent links

−or by storing access path on the stack

−both methods require substantial overhead

−both must handle a variety of special cases

Top-Down Splay Trees

103

− instead, perform rotations on initial access path

− result is faster

−uses extra space 𝑂 1

− retains amortized time bound of 𝑂 log 𝑁

Top-Down Splay Trees

104

− suppose we wish to access key 𝑖

− during the access and concurrent splaying operation, the tree is

broken into three parts

− a left tree, which contains all the keys from the original tree

known at the time to be less than 𝑖

− a right tree, which contains all the keys from the original tree

known at the time to be greater than 𝑖

− a middle tree, which consists of the subtree of the original tree

rooted at the current node on the access path

− initially, the left and right trees are empty and the middle tree is

the entire tree

− at each step we tack bits of the middle tree onto the left and right

trees

Top-Down Splay Trees

105

− rotations for zig, zig-zig, and zig-zag cases

Top-Down Splay Trees

106

−zig-zag case can be simplified to just a zig since no

rotations are performed

− instead of making 𝑍 the root, we make 𝑌 the root

−simplifies coding, but only descends one level

− requires more iterations

Top-Down Splay Trees

107

−after final splaying

Top-Down Splay Trees

108

−example: access 19

Top-Down Splay Trees

109

−example: access 19

Top-Down Splay Trees

110

−example: access 19

Top-Down Splay Trees

111

−use a header to hold the roots of the left and right subtrees

− left pointer will contain root of right subtree

− right pointer will contain root of left subtree

−easy to reconstruct at end of splaying

Top-Down Splay Trees

112

−example 2: access 14

Top-Down Splay Trees

113

−example 2: access 14

−start at root and look down two nodes along path to 14

Top-Down Splay Trees

114

−example 2: access 14

Top-Down Splay Trees

115

−example 2: access 14

−continuing down the tree, this is a zig-zag condition

Top-Down Splay Trees

116

−example 2: access 14

− tree is reconfigured

Top-Down Splay Trees

117

−example 2: access 14

−simple zig

Top-Down Splay Trees

118

−example 2: access 14

−move accessed node to root and reassemble tree

B-Trees

119

−B-trees were developed in the late 1960s by Rudolf Bayer

and Edward McCreight:

R. Bayer and E. McCreight, Organization and maintenance of large

ordered indexes, Acta Informatica vol. 1, no. 3 (1972), pp. 173-189.

−originally motivated by applications in databases

−B-trees shown here really B+ tree

B-Trees

120

− thus far, we have frequently treated the key as if it were the
data being stored, but that is rarely the case

−example: student records in Banner

−most effective search key is W&M ID (e.g., 930…) since
it is unique

− the record (value) associated with each key contains
much more information

−Student Information

−Student Academic Transcript

−Student Active Registrations

−Student Schedule

−Student E-mail Address

−Student Address and Phones ...

B-Trees

121

−B-trees are particularly useful when we cannot fit all of our

data in memory, but have to perform reads and writes from

secondary storage (e.g., disk drives)

−disk accesses incredibly expensive, relatively speaking

−consider a disk drive that rotates at 7200 rpm

−the rotational speed plays a role in retrieval time; for a

7200 rpm disk, each revolution takes 60/7200 = 1/120 s,

or about 8.3 ms

−a typical seek time (the time for the disk head to move

to the location where data will be read or written) for

7200 rpm disks is around 9 ms

−this means we can perform 100-120 random disk

accesses per second

B-Trees

122

−meanwhile, our CPU can perform > 1,000,000,000

operations per second

−suppose we have a database with N = 10,000,000 entries

that we organize in a tree

− in an AVL tree, a worst-case search requires 1:44 lg N ≈

33 disk accesses

−at 9 ms per access, this requires about 300 ms, so on

average we can perform less than 4 searches per second

−we would expect 1000 worst-case searches to take

300,000 ms = 300 s, or about 5 minutes

− in this application, search trees with height lg 𝑁 are still too

high!

B-Trees

123

−height can be reduced if we allow more branching

−binary search trees only allow 2-way branching

−example: 5-ary 31-node tree with height 3

B-Trees

124

−B-tree of order 𝑀 is an 𝑀-ary tree with the following

properties

1. data items are stored at leaves

2. nonleaf nodes (internal nodes) store up to 𝑀 – 1 keys to

guide the searching: key 𝑖 represents the smallest key in

subtree 𝑖 + 1

3. root is either a leaf or has between two and 𝑀 children

4. all nonleaf nodes (except the root) have between
/𝑀ڿ 2ۀ and 𝑀 children

5. all leaves are at the same depth and have between
/𝐿ڿ 2ۀ and 𝐿 data items, for some 𝐿

B-Trees

125

−examples

− for 𝑀 = 2, there are between 2ڿ/ 2ۀ = 1 to 2 children

− for 𝑀 = 3, there are between 3ڿ/ 2ۀ = 2 to 3 children

− for 𝑀 = 4, there are between 4ڿ/ 2ۀ = 2 to 4 children

− for 𝑀 = 5, there are between 5ڿ/ 2ۀ = 3 to 5 children

− for 𝑀 = 42, there are between 42ڿ/ 2ۀ = 21 to 42 children

− requiring nodes to be half full guarantees that the tree will

not degenerate into a simple binary search tree

B-Trees

126

−examples: 𝑀 = 5

−all nonleaf nodes have between 3 and 5 children (and

thus between 2 and 4 keys)

− root could have just 2 children

−here 𝐿 is also 5: each leaf has between 3 and 5 data items

B-Trees

127

−choosing 𝑀 and 𝐿

−each node will occupy a disk block, say 8192 bytes, so we

choose 𝑀 and 𝐿 based on the size of the items being

stored

−suppose each key uses 32 bytes and a link to another

node uses 8 bytes

−a node in a B-tree of order 𝑀 has 𝑀– 1 keys and 𝑀 links,

so a node requires

32(𝑀 – 1) + 8𝑀 = 40𝑀– 32 bytes

−we choose the largest M that will allow a node to fit in a

block

𝑀 =
8192 + 32

40
= 205

B-Trees

128

−choosing 𝑀 and 𝐿 (cont.)

− if the values are each 256 bytes, then we can fit

𝐿 =
8192

256
= 32

 in a single block

−each leaf has between 16 and 32 values, and each internal

node branches in at least 103 ways

− if there are 1,000,000,000 values to store, there are at most

62,500,000 leaves

− the leaves would be, in the worst case, on level

1 + log103 62,500,000 = 5

 so we can find data in at most 5 disk access

−a BST would have at least 1 + log2 62,500,000 = 27 levels!

B-Trees

129

− insertion: easy case – insert 57

− first, follow the search tree to the correct leaf (external

node)

− if there are fewer than 𝐿 items in the leaf, insert in the

correct location

−cost: 1 disk access

− insert 55?

B-Trees

130

− insertion: splitting a leaf – insert 55

− if there are already 𝐿 items in the leaf

−add the new item, split the node in two, and update the

links in the parent node

−cost: 3 disk accesses (one for each new node and one

for the update of the parent node)

B-Trees

131

− insertion: splitting a leaf – insert 55 (cont.)

− the splitting rule ensures we still have a B-tree: each new

node has at least ڿ𝐿/ 2ۀ values (e.g., if 𝐿 = 3, there are 2

values in one node and 1 in the other, and if L = 4, each

new node has 2 keys)

B-Trees

132

− insertion: splitting a parent – insert 40

−what if the parent node already has all the child nodes it

can possibly have?

−split the parent node, and update its parent

−repeat until we arrive at the root

− if necessary, split the root into two nodes and create a

new root with the two nodes as children

−this is why the root is allowed as few as 2 children

−thus, a B-tree grows at the root

B-Trees

133

− insertion: splitting a parent – insert 40 (cont.)

B-Trees

134

− insertion: other techniques – insert 29

−put a child up for adoption if a neighbor has room

−here, move 32 to the next leaf

−modifies parent, but keeps nodes fuller and saves space

in the long run

B-Trees

135

−deletion: delete 99

−could bring leaf below minimum number of data items

−adopt neighboring item if neighbor not at minimum

−otherwise, combine with neighbor to form a full leaf

−process could make its way up to the root

−if root left with 1 child, remove root and make its child

the new root of the tree

B-Trees

136

−deletion: delete 99 (cont.)

	Slide 1: Chapter 4 Trees
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136

