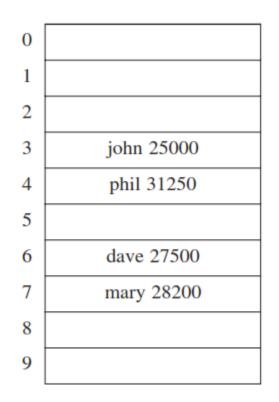
Chapter 5 Hashing

- -hashing performs basic operations, such as insertion, deletion, and finds in <u>constant</u> average time
 - -better than other ADTs we've seen so far



- -a hash table is merely an <u>array</u> of some fixed size
- -hashing converts search keys into locations in a hash table
 - -searching on the key becomes something like array lookup
- hashing is typically a many-to-one map: multiple keys are mapped to the same array index
 - -mapping multiple keys to the same position results in a <u>collision</u> that must be resolved
- -two parts to hashing:
 - -a hash function, which transforms keys into array indices
 - -a collision resolution procedure

- -let K be the set of search keys
- -hash functions map *K* into the set of *M* <u>slots</u> in the hash table

$$h: K \to \{0, 1, \dots, M - 1\}$$

- -ideally, *h* distributes *K* <u>uniformly</u> over the slots of the hash table, to minimize collisions
- -if we are hashing N items, we want the number of items hashed to each location to be close to N/M
- -example: Library of Congress Classification System
 - -hash function if we look at the first part of the call numbers (e.g., E470, PN1995)
 - collision resolution involves going to the stacks and looking through the books
 - -almost all of CS is hashed to QA75 and QA76 (BAD)

- -suppose we are storing a set of nonnegative integers
- -given M, we can obtain hash values between 0 and M 1 with the hash function

$$h(k) = k \% M$$

 $-\underline{\text{remainder}}$ when k is divided by M

-fast operation, but we need to be careful when choosing M

-example: if $M = 2^p$, h(k) is just the *p* lowest-order bits of *k*

-are all the hash values equally likely?

-choosing *M* to be a <u>prime</u> not too close to a power of 2 works well in practice

-we can also use the hash function below for floating point numbers if we interpret the bits as an <u>integer</u>

$$h(k) = k \% M$$

- -two ways to do this in C, assuming long int and double types have the same length
- -first method uses C pointers to accomplish this task

```
unsigned long *k;
double x;
k = (unsigned long *) &x;
long int hash = k % M;
```

- -we can also use the hash function below for floating point numbers if we interpret the bits as an integer (cont.)
- -second uses a <u>union</u>, which is a variable that can hold objects of different types and sizes

```
union {
  long int k;
  double x;
  } u;
u.x = 3.1416;
long int hash = u.k % M;
```

-we can hash strings by combining a hash of each character

```
char *s = "hello!";
unsigned long hash = 0;
for (int i = 0; i < strlen(s); i++) {
  unsigned char w = s[i];
  hash = (R * hash + w) % M;
}
```

- -R is an additional parameter we get to choose
- if R is larger than any character value, then this approach is what you would obtain if you treated the string as a base-R integer

-K&R suggest a slightly simpler hash function, corresponding to R = 31

```
char *s;
unsigned hash;
for (hash = 0; *s != `\0'; s++) {
    hash = 31 * hash + *s;
}
hash = hash % M;
```

```
-Weiss suggests R = 37
```

-we can use the idea for strings if our search key has <u>multiple</u> parts, say, street, city, state:

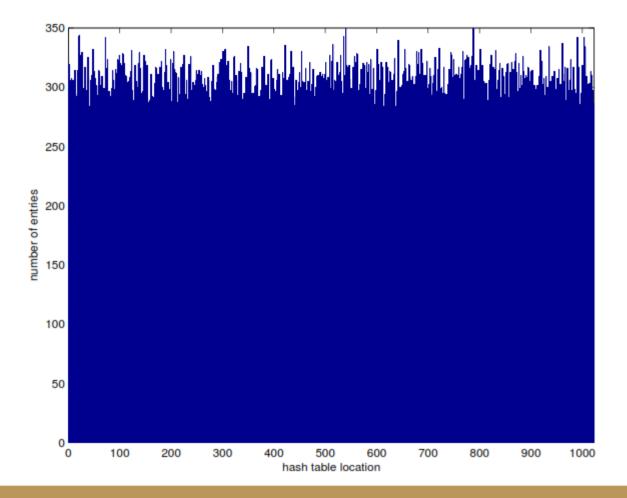
```
hash = ((street * R + city) % M) * R + state) % M;
```

-same ideas apply to hashing vectors

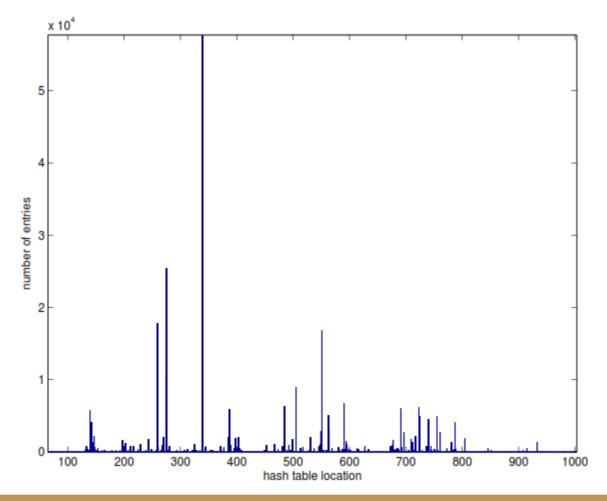
- -the choice of parameters can have a <u>dramatic</u> effect on the results of hashing
- -compare the text string's hashing algorithm for different pairs of *R* and *M*
 - -plot <u>histograms</u> of the number of words hashed to each hash table location; we use the American dictionary from the aspell program as data (305,089 words)

-example: R = 31, M = 1024

-good: words are evenly distributed

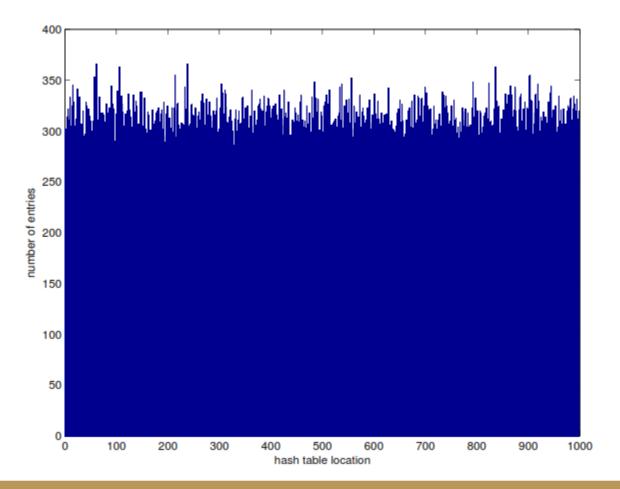


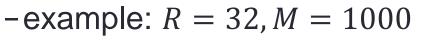
-example: R = 32, M = 1024-very bad



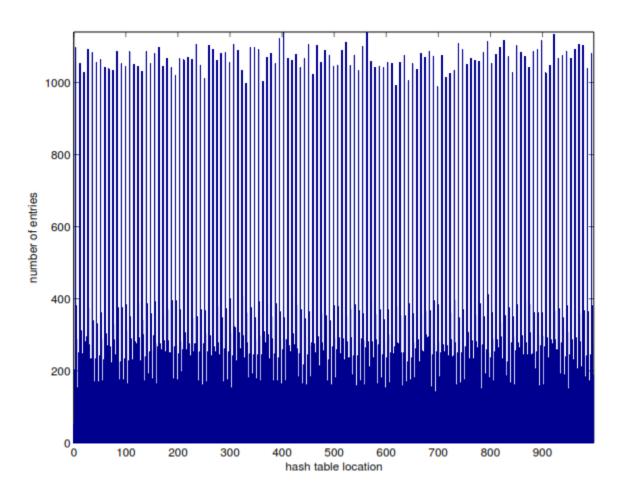
-example: R = 31, M = 1000

-better





-bad

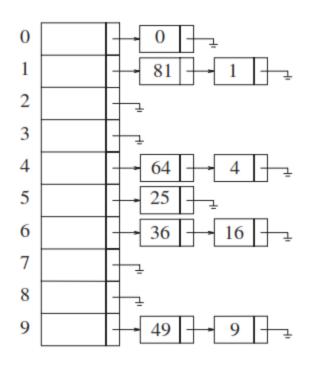


Collision Resolution

- -hash table collision
 - -occurs when elements hash to the <u>same location</u> in the table
 - -various strategies for dealing with collision
 - -separate chaining
 - -open addressing
 - -linear probing
 - -other methods

-separate chaining

- -keep a list of all elements that <u>hash</u> to the same location
- -each location in the hash table is a linked list
- -example: first 10 squares



-insert, search, delete in lists

-all proportional to length of linked list

-insert

- -new elements can be inserted at head of list
- -duplicates can increment <u>counter</u>
- -other structures could be used instead of lists
 - -binary search tree
 - -another hash table
- -linked lists good if table is large and hash function is good

-how long are the linked lists in a hash table?

- -<u>expected</u> value: *N*/*M* where *N* is the number of keys and *M* is the size of the table
- -is it reasonable to assume the hash table would exhibit this behavior?
 - -load factor $\lambda = N/M$
 - -average length of a list = λ
 - -time to search: <u>constant</u> time to evaluate the hash function + time to <u>traverse</u> the list
 - -unsuccessful search: $1 + \lambda$
 - -successful search: $1 + (\lambda/2)$

-observations

- -load factor more important than table size
- –general rule: make the table as large as the number of elements to be stored, $\lambda\approx 1$
- -keep table size prime to ensure good distribution

-declaration of hash structure

```
template <typename HashedObj>
 1
 2
      class HashTable
 3
 4
         public:
 5
           explicit HashTable( int size = 101 );
 6
 7
           bool contains( const HashedObj & x ) const;
 8
           void makeEmpty( );
 9
           bool insert( const HashedObj & x );
10
11
           bool insert( HashedObj && x );
           bool remove( const HashedObj & x );
12
13
14
        private:
           vector<list<HashedObj>> theLists; // The array of Lists
15
           int currentSize;
16
17
           void rehash( );
18
           size t myhash( const HashedObj & x ) const;
19
20
      };
```

-hash member function

1 size_t myhash(const HashedObj & x) const
2 {
3 static hash<HashedObj> hf;
4 return hf(x) % theLists.size();
5 }

-routines for separate chaining

```
1
         void makeEmpty( )
 2
             for( auto & thisList : theLists )
 3
 4
                 thisList.clear( );
 5
         }
 б
         bool contains( const HashedObj & x ) const
 7
 8
             auto & whichList = theLists[ myhash( x ) ];
 9
             return find( begin( whichList ), end( whichList ), x ) != end( whichList );
10
11
         }
12
         bool remove( const HashedObj & x )
13
14
             auto & whichList = theLists[ myhash( x ) ];
15
             auto itr = find( begin( whichList ), end( whichList ), x );
16
17
             if( itr == end( whichList ) )
18
19
                 return false;
20
             whichList.erase( itr );
21
22
             --currentSize;
23
             return true;
24
```

-routines for separate chaining

```
bool insert( const HashedObj & x )
 1
 2
         {
             auto & whichList = theLists[ myhash( x ) ];
 3
             if( find( begin( whichList ), end( whichList ), x ) != end( whichList ) )
 4
 5
                 return false;
             whichList.push_back( x );
 б
 7
                 // Rehash; see Section 5.5
 8
             if( ++currentSize > theLists.size( ) )
9
                 rehash( );
10
11
12
             return true;
13
         }
```

Open Addressing

- -linked lists incur extra costs
 - -time to allocate space for new cells
 - -effort and complexity of defining second data structure
- a different collision strategy involves placing colliding keys in nearby <u>empty</u> slots
 - -if a collision occurs, try <u>successive</u> cells until an empty one is found
 - -bigger table size needed with M > N
 - -load factor should be below $\lambda = 0.5$
- -three common strategies
 - -linear probing
 - -quadratic probing
 - -double hashing

-linear probing insert operation

- -when k is hashed, if slot h(k) is open, place k there
- -if there is a collision, then start looking for an empty slot starting with location h(k) + 1 in the hash table, and proceed <u>linearly</u> through h(k) + 2, ..., m - 1, 0, 1, 2, ...,h(k) - 1 wrapping around the hash table, looking for an empty slot
- -search operation is similar
- -checking whether a table entry is vacant (or is one we seek) is called a probe

Linear Probing

-example: add 89, 18, 49, 58, 69 with h(k) = k % 10 and f(i) = i

	Empty Table	After 89	After 18	After 1 9	After 58	After 69
0				49	49	49
1					58	58
2						69
3						
4						
5						
6						
7						
8			18	18	18	18
9		89	89	89	89	89

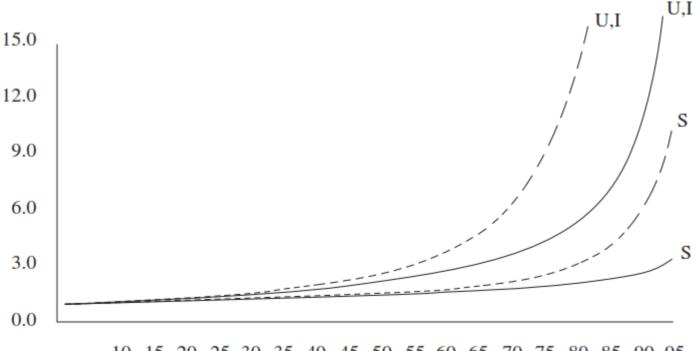
-as long as the table is not full, a vacant cell can be found

- -but time to locate an empty cell can become large
- -blocks of occupied cells results in primary clustering
- -deleting entries leaves holes
 - -some entries may no longer be found
 - -may require moving many other entries
- -expected number of probes
 - -for search hits: $\sim \frac{1}{2} \left(1 + \frac{1}{(1-\lambda)} \right)$
 - -for insertion and search misses: $\sim \frac{1}{2} \left(1 + \frac{1}{(1-\lambda)^2} \right)$

-for $\lambda = 0.5$, these values are 3/2 and 5/2, respectively

Linear Probing

- -performance of linear probing (dashed) vs. more random collision resolution
 - -adequate up to $\lambda = 0.5$
- -Successful, Unsuccessful, Insertion



.10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

Quadratic Probing

-quadratic probing

- -eliminates primary clustering
- -collision function is quadratic
- -example: add 89, 18, 49, 58, 69 with h(k) = k % 10 and $f(i) = i^2$

	Empty Table	After 89	After 18	After 49	After 58	After 69
0				49	49	49
1						
2					58	58
3						69
4						
5						
6						
7						
8			18	18	18	18
9		89	89	89	89	89

Quadratic Probing

- -in linear probing, letting table get nearly <u>full</u> greatly hurts performance
- -quadratic probing
 - -no guarantee of finding an empty cell once the table gets larger than half full
 - -at most, <u>half</u> of the table can be used to resolve collisions
 - if table is half empty and the table size is prime, then we are always guaranteed to accommodate a new element
 - -could end up with situation where all keys map to the same table location

-quadratic probing

- -collisions will probe the same alternative cells
- -secondary clustering
- -causes less than half an extra probe per search

-double hashing

- $-f(i) = i \cdot hash_2(x)$
- -apply a second hash function to *x* and probe across longer distances
- -function must never evaluate to <u>0</u>
- -make sure all cells can be probed

Double Hashing

-double hashing example

- $-hash_2(x) = R (x \mod R)$ with R = 7
- -R is a prime smaller than table size
- -insert 89, 18, 49, 58, 69

-ex. 49: 49 % 10 = 9 (taken), so add $hash_2 \rightarrow (7 - 0) \% 10$

	Empty Table	After 89	After 18	After 49	After 58	After 69
0						69
1						
2						
3					58	58
4						
5						
6				49	49	49
7						
8			18	18	18	18
9		89	89	89	89	89

Double Hashing

-double hashing example (cont.)

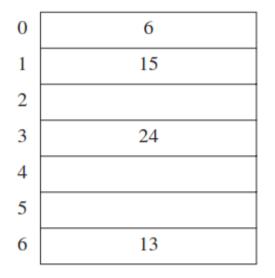
- -note here that the size of the table (10) is not prime
- -if 23 inserted in the table, it would collide with 58
 - -since $hash_2(23) = 7 2 = 5$ and the table size is 10, only one alternative location, which is taken

	Empty Table	After 89	After 18	After 49	After 58	After 69
0						69
1						
2						
3					58	58
4						
5						
6				49	49	49
7						
8			18	18	18	18
9		89	89	89	89	89

-table may get too full

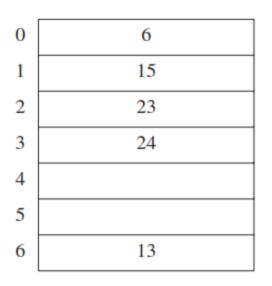
- -run time of operations may take too long
- -insertions may fail for quadratic resolution
 - -too many removals may be intermixed with insertions
- -solution: build a new table <u>twice as big</u> (with a new hash function)
 - -go through original hash table to compute a hash value for each (non-deleted) element
 - -insert it into the new table

-example: insert 13, 15, 24, 6 into a hash table of size 7 -with h(k) = k % 7



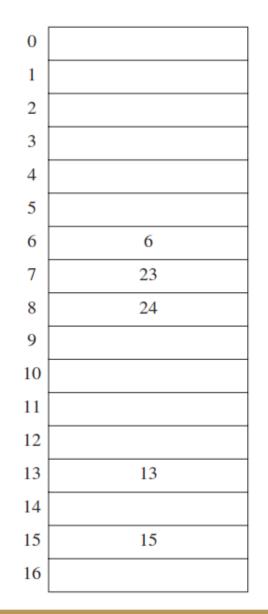
-example (cont.)

- -insert 23
- -table will be over 70% full; therefore, a new table is created



Rehashing

- -example (cont.)
 - -new table is size 17
 - -new hash function h(k) = k % 17
 - -all old elements are inserted into new table



- -rehashing run time O(N) since N elements and to rehash the entire table of size roughly 2N
 - -must have been N/2 insertions since last rehash
- -rehashing may run OK if in background
 - -if interactive session, rehashing operation could produce a slowdown
- -rehashing can be implemented with quadratic probing
 - -could rehash as soon as the table is half full
 - -could rehash only when an insertion fails
 - -could rehash only when a certain load factor is reached
 - -may be best, as performance degrades as load factor increases

-hash tables so far

- -O(1) average case for insertions, searches, and deletions
- -separate chaining: worst case $\Theta(\log N / \log \log N)$
 - -some queries will take nearly logarithmic time
- -worst-case O(1) time would be better
 - -important for applications such as lookup tables for routers and memory caches
 - -if N is known in advance, and elements can be rearranged, worst-case O(1) time is achievable

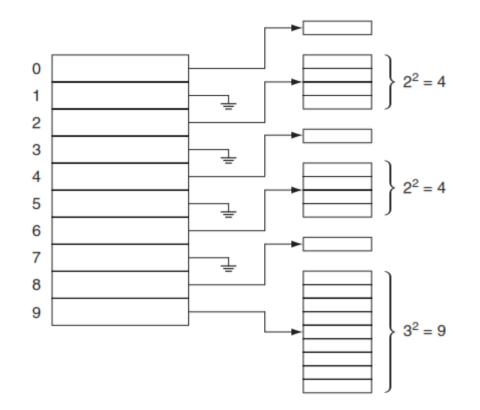
- -perfect hashing
 - -assume all N items known in advance
 - -separate chaining
 - -if the number of lists continually increases, the lists will become shorter and shorter
 - -with enough lists, high probability of no collisions
 - -two problems
 - -number of lists might be unreasonably large
 - -the hashing might still be unfortunate
 - -M can be made large enough to have probability $\frac{1}{2}$ of no collisions
 - -if collision detected, clear table and try again with a different hash function (at most done 2 times)

-perfect hashing (cont.)

- -how large must M be?
 - -theoretically, M should be N^2 , which is impractical
- -solution: use N lists
 - -resolve collisions by using hash tables instead of linked lists
 - -each of these lists can have n^2 elements
- -each secondary hash table will use a different hash function until it is <u>collision-free</u>
 - -can also perform similar operation for primary hash table
- -total size of secondary hash tables is at most 2N

-perfect hashing (cont.)

example: slots 1, 3, 5, 7 empty; slots 0, 4, 8 have 1
element each; slots 2, 6 have 2 elements each; slot 9
has 3 elements

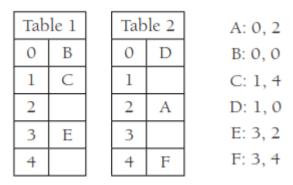


-cuckoo hashing

- $-\Theta(\log N/\log \log N)$ bound known for a long time
- -researchers surprised in 1990s to learn that if one of two tables were <u>randomly</u> chosen as items were inserted, the size of the largest list would be $\Theta(\log \log N)$, which is significantly smaller
- -main idea: use 2 tables
 - -neither more than <u>half</u> full
 - -use a separate hash function for each
 - -item will be stored in one of these two locations
 - -collisions resolved by displacing elements

-cuckoo hashing (cont.)

-example: 6 items; 2 tables of size 5; each table has randomly chosen hash function

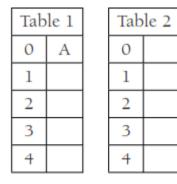


- A can be placed at position 0 in Table 1 or position 2 in Table 2
- a search therefore requires at most 2 table accesses in this example
- -item deletion is trivial

- -cuckoo hashing (cont.)
 - -insertion
 - -ensure item is not already in one of the tables
 - -use first hash function and if first table location is <u>empty</u>, insert there
 - -if location in first table is occupied
 - -<u>displace</u> element there and place current item in correct position in first table
 - -displaced element goes to its alternate hash position in the second table

-cuckoo hashing (cont.)

-example: insert A



A: 0, 2

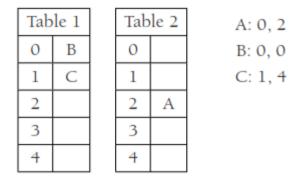
-insert B (displace A)

Table 1		Tab	le 2
0	В	0	
1		1	
2		2	А
3		3	
4		4	

A:	0,	2
B:	0.	0

-cuckoo hashing (cont.)

-insert C



-insert D (displace C) and E

Tab	le 1	Tab	le 1
0	В	0	
1	D	1	
2		2	А
3	E	3	
4		4	C

A:	0,	2
B:	0,	0

- C: 1, 4 D: 1, 0
- E: 3, 2

-cuckoo hashing (cont.)

-insert F (displace E)

Table 1		
0 B		
1	D	
2		
3	F	
4		

Tab	le 2	A: 0, 2
0		B: 0, 0
1		C: 1, 4
2	А	D: 1, 0
3		E: 3, 2
4	С	F: 3, 4

0

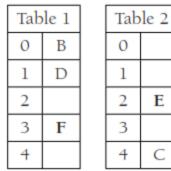
1

2

3

E

С



A:	0,	2
B:	0,	0
C:	1,	4
D:	1,	0
E:	3,	2
F:	3,	4

-(A displaces B)

Table 1		Tab	le 2
0	Α	0	
1	D	1	
2		2	E
3	F	3	
4		4	С

A:	0,	2
B:	0,	0
C:	1,	4
D:	1,	0
E:	3,	2
F:	3.	4

- (B relocated)

Tab		
0		
1	D	
2		
3	F	
4		

Table 2		
0	В	
1		
2	E	
3		
4	С	

A: 0, 2 B: 0, 0 C: 1, 4 D: 1, 0 E: 3, 2

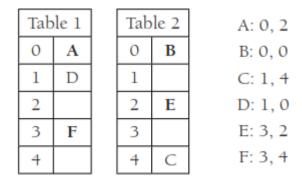
F: 3, 4

-cuckoo hashing (cont.)

-insert G

0 B 0 D C: 1 C 1 D: D:	0,0
1 C 1 D:	-
	1,4
2 2 A F	1,0
3 E 3 I	3, 2
4 4 F	3,4 1,2

-displacements are cyclical -GDBAEFCG



-can try G's second hash value in second table, but it also results in a displacement cycle

- -cuckoo hashing (cont.)
 - -cycles
 - -if table's load value < 0.5, probability of a cycle is very low
 - -insertions should require $< O(\log N)$ displacements
 - -if a certain number of displacements is reached on an insertion, tables can be <u>rebuilt</u> with new hash functions

- -cuckoo hashing (cont.)
 - -variations
 - -higher number of tables (3 or 4)
 - -place item in second hash slot immediately instead of <u>displacing</u> other items
 - -allow each cell to store multiple keys

-space utilization	increased
--------------------	-----------

	1 item per cell	2 items per cell	4 items per cell
2 hash functions	0.49	0.86	0.93
3 hash functions	0.91	0.97	0.98
4 hash functions	0.97	0.99	0.999

- -cuckoo hashing (cont.)
 - -benefits
 - -worst-case constant lookup and deletion times
 - -avoidance of lazy deletion
 - -potential for parallelism
 - -potential issues
 - -extremely sensitive to choice of hash functions
 - -time for insertion increases rapidly as load factor approaches 0.5

- -hopscotch hashing
 - -improves on linear probing algorithm
 - -linear probing tries cells in sequential order, starting from hash location, which can be long due to primary and secondary clustering
 - -instead, hopscotch hashing places a bound on <u>maximal length</u> of the probe sequence
 - -results in worst-case constant-time lookup
 - -can be parallelized

- -hopscotch hashing (cont.)
 - -if insertion would place an element too far from its hash location, go backward and evict other elements
 - -evicted elements cannot be placed farther than the maximal length
 - each position in the table contains information about the current element inhabiting it, plus others that <u>hash</u> to it

-example: $MAX_DIST = 4$

	Item	Нор
6	С	1000
7	А	1100
8	D	0010
9	В	1000
10	Е	0000
11	G	1000
12	F	1000
13		0000
14		0000

- -each bit string provides 1 bit of information about the current position and the next 3 that follow
 - -1: item hashes to current location; 0: no

A: 7 B: 9

C: 6 D: 7 E: 8

F: 12

G: 11

-example: insert H in 9

	Item	Нор]		Item	Нор			Item	Нор	
]								
6	С	1000]	6	С	1000		6	С	1000	A: 7
7	А	1100		7	А	1100		7	А	1100	B: 9
8	D	0010]	8	D	0010		8	D	0010	C: 6
9	В	1000		9	В	1000		9	В	1010	D: 7
10	Е	0000	\rightarrow	10	Е	0000	\rightarrow	10	E	0000	E: 8
11	G	1000	1	11		0010	1	11	Н	0010	F: 12
12	F	1000	1	12	F	1000	1	12	F	1000	G: 11
13		0000	1	13	G	0000	1	13	G	0000	H: 9
14		0000	1	14		0000		14		0000	
		-]								

- -try in position 13, but too far, so try candidates for eviction (10, 11, 12)
- -E would move too far away, so evict G in 11

-example: insert I in 6

	-		,				,			
	Item	Нор			Item	Нор			Item	Нор
6	С	1000		6	С	1000		6	С	1000
7	А	1100		7	А	1100]	7	А	1100
8	D	0010		8	D	0010]	8	D	0010
9	В	1010		9	В	1010		9	В	1010
10	E	0000		10	E	0000		10	Е	0000
11	Н	0010	1	11	Н	0001	1	11	Н	0001
12	F	1000	1	12	F	1000	1	12		0100
13	G	0000	1	13		0000	1	13	F	0000
14		0000	1	14	G	0000	1	14	G	0000
		-				•	1			
1.4			· .		4		, ,		4.0	1.0

-position 14 too far, so try positions 11, 12, 13

- -H would move too far away, but G can move down one
- -position 13 still too far; F can move down one ***

-example: insert I in 6

	Item	Нор			Item	Нор			Item	Нор	
6	С	1000		6	5 C 1000	6	С	1001	1		
7	А	1100		7	А	1100		7	А	1100	1
8	D	0010		8	D	0010		8	D	0010	(
9	В	1010		9		0011		9	Ι	0011	1
10	Е	0000	\rightarrow	10	Е	0000	\rightarrow	10	Е	0000	E: 8 F: 1 G: 1
11	Н	0001]	11	Н	0001	1	11	Н	0001	
12		0100		12	В	0100	1	12	В	0100	I
13	F	0000		13	F	0000		13	F	0000	1
14	G	0000		14	G	0000		14	G	0000	1

-position 12 still too far, so try positions 9, 10, 11

- -B can move down three
- -now slot is open for I, fourth from 6

-universal hashing

- -in principle, we can end up with a situation where all of our keys are hashed to the <u>same location</u> in the hash table (bad)
- -more realistically, we could choose a hash function that does not evenly distribute the keys
- to avoid this, we can choose the hash function <u>randomly</u> so that it is independent of the keys being stored
- -yields provably good performance on average

-universal hashing (cont.)

- -let *H* be a finite collection of <u>hash</u> functions mapping our set of keys *K* to the range $\{0, 1, ..., M - 1\}$
- -H is a <u>universal</u> collection if for each pair of distinct keys $k, l \in K$, the number of hash functions $h \in H$ for which h(k) = h(l) is at most |H|/M
- -that is, with a randomly selected hash function $h \in H$, the chance of a <u>collision</u> between distinct k and l is not more than the probability (1/M) of a collision if h(k)and h(l) were chosen randomly and independently from $\{0, 1, ..., M - 1\}$

-universal hashing (cont.)

- -example: choose a prime p sufficiently large that every key k is in the range 0 to p 1 (inclusive)
- -let $A = \{0, 1, ..., p 1\}$ and $B = \{1, ..., p 1\}$ then the family

 $h_{a,b}(k) = ((ak + b) \mod p) \mod M \ a \in A, b \in B$

is a universal class of hash functions

-extendible hashing

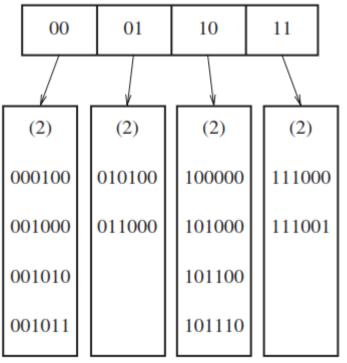
- -amount of data too large to fit in memory
 - -main consideration is then the number of disk accesses
- -assume we need to store N records and M = 4 records fit in one disk block
- -current problems
 - -if probing or separate chaining is used, collisions could cause <u>several blocks</u> to be examined during a search
 - -rehashing would be expensive in this case

-extendible hashing (cont.)

- -allows search to be performed in $\underline{2}$ disk accesses
 - -insertions require a bit more
- -use B-tree
 - -as *M* increases, height of B-tree decreases

-could make height = 1, but multi-way branching would be extremely high

extendible hashing (cont.)example: 6-bit integers

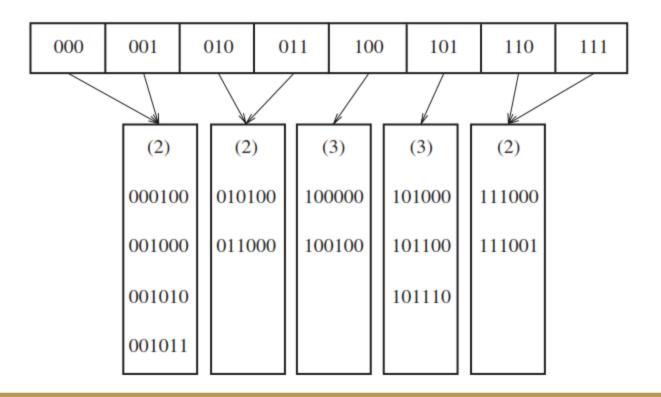


-root contains 4 pointers determined by first 2 bits

-each leaf has up to 4 elements

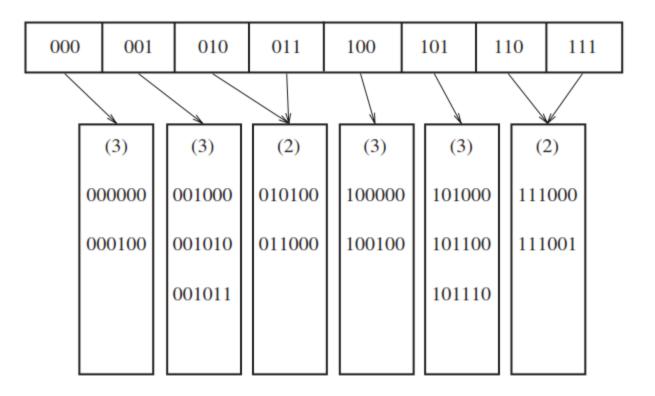
-extendible hashing (cont.)

- -example: insert 100100
 - -place in third leaf, but full
 - -split leaf into 2 leaves, determined by 3 bits



-extendible hashing (cont.) -example: insert 000000

-first leaf split



-extendible hashing (cont.)

- -considerations
 - -several directory <u>splits</u> may be required if the elements in a leaf agree in more than D+1 leading bits
 - -number of bits to distinguish bit strings
 - -does not work well with <u>duplicates</u> (> M duplicates: does not work at all)

-final points

- -choose hash function carefully
- -watch load factor
 - -separate chaining: close to 1
 - -probe hashing: 0.5
- -hash tables have some limitations
 - -not possible to find min/max
 - -not possible to <u>search</u> for a string unless the exact string is known
 - -binary search trees can do this, and $O(\log N)$ is only slightly worse than O(1)

-final points (cont.)

- -hash tables good for
 - -symbol table
 - -gaming

-remembering locations to avoid recomputing through transposition table

-spell checkers