
7/20/2022

1

Chapter 5

Hashing

Introduction

2

−hashing performs basic operations, such as insertion,

deletion, and finds in constant average time

−better than other ADTs we’ve seen so far

Hashing

3

−a hash table is merely an array of some fixed size

−hashing converts search keys into locations in a hash table

−searching on the key becomes something like array

lookup

−hashing is typically a many-to-one map: multiple keys are

mapped to the same array index

−mapping multiple keys to the same position results in a

collision that must be resolved

− two parts to hashing:

−a hash function, which transforms keys into array indices

−a collision resolution procedure

Hashing Functions

4

− let 𝐾 be the set of search keys

−hash functions map 𝐾 into the set of 𝑀 slots in the hash
table

ℎ:𝐾 → {0, 1,… ,𝑀 − 1}

− ideally, ℎ distributes 𝐾 uniformly over the slots of the hash
table, to minimize collisions

− if we are hashing 𝑁 items, we want the number of items
hashed to each location to be close to 𝑁/𝑀

−example: Library of Congress Classification System

−hash function if we look at the first part of the call numbers
(e.g., E470, PN1995)

−collision resolution involves going to the stacks and
looking through the books

−almost all of CS is hashed to QA75 and QA76 (BAD)

Hashing Functions

5

−suppose we are storing a set of nonnegative integers

−given 𝑀, we can obtain hash values between 0 and 𝑀 −1
with the hash function

ℎ 𝑘 = 𝑘 %𝑀

−remainder when 𝑘 is divided by 𝑀

− fast operation, but we need to be careful when choosing 𝑀

−example: if 𝑀 = 2𝑝, ℎ(𝑘) is just the 𝑝 lowest-order bits of 𝑘

−are all the hash values equally likely?

−choosing 𝑀 to be a prime not too close to a power of 2 works

well in practice

Hashing Functions

6

−we can also use the hash function below for floating point

numbers if we interpret the bits as an integer

ℎ 𝑘 = 𝑘 %𝑀

− two ways to do this in C, assuming long int and double

types have the same length

− first method uses C pointers to accomplish this task

unsigned long *k;

double x;

k = (unsigned long *) &x;

long int hash = k % M;

1 2

3 4

5 6

7/20/2022

2

Hashing Functions

7

−we can also use the hash function below for floating point

numbers if we interpret the bits as an integer (cont.)

−second uses a union, which is a variable that can hold

objects of different types and sizes

union {

long int k;

double x;

} u;

u.x = 3.1416;

long int hash = u.k % M;

Hashing Functions

8

−we can hash strings by combining a hash of each character

char *s = "hello!";

unsigned long hash = 0;

for (int i = 0; i < strlen(s); i++) {

unsigned char w = s[i];

hash = (R * hash + w) % M;

}

−𝑅 is an additional parameter we get to choose

− if 𝑅 is larger than any character value, then this approach is

what you would obtain if you treated the string as a base-𝑅
integer

Hashing Functions

9

−K&R suggest a slightly simpler hash function, corresponding

to 𝑅 = 31

char *s;

unsigned hash;

for (hash = 0; *s != ‘\0’; s++) {

hash = 31 * hash + *s;

}

hash = hash % M;

−Weiss suggests 𝑅 = 37

Hashing Functions

10

−we can use the idea for strings if our search key has multiple

parts, say, street, city, state:

hash = ((street * R + city) % M) * R + state) % M;

−same ideas apply to hashing vectors

Hash Functions

11

− the choice of parameters can have a dramatic effect on the

results of hashing

−compare the text string’s hashing algorithm for different

pairs of 𝑅 and 𝑀

−plot histograms of the number of words hashed to each

hash table location; we use the American dictionary from

the aspell program as data (305,089 words)

Hash Functions

12

−example: 𝑅 = 31, 𝑀 = 1024

−good: words are evenly distributed

7 8

9 10

11 12

7/20/2022

3

Hash Functions

13

−example: 𝑅 = 32, 𝑀 = 1024

−very bad

Hash Functions

14

−example: 𝑅 = 31, 𝑀 = 1000

−better

Hash Functions

15

−example: 𝑅 = 32,𝑀 = 1000

−bad

Collision Resolution

16

−hash table collision

−occurs when elements hash to the same location in the

table

−various strategies for dealing with collision

−separate chaining

−open addressing

− linear probing

−other methods

Separate Chaining

17

−separate chaining

−keep a list of all elements that hash to the same location

−each location in the hash table is a linked list

−example: first 10 squares

Separate Chaining

18

− insert, search, delete in lists

−all proportional to length of linked list

− insert

−new elements can be inserted at head of list

−duplicates can increment counter

−other structures could be used instead of lists

−binary search tree

−another hash table

− linked lists good if table is large and hash function is good

13 14

15 16

17 18

7/20/2022

4

Separate Chaining

19

−how long are the linked lists in a hash table?

−expected value: Τ𝑁 𝑀 where 𝑁 is the number of keys

and 𝑀 is the size of the table

− is it reasonable to assume the hash table would exhibit

this behavior?

− load factor λ = Τ𝑁 𝑀

−average length of a list = λ

−time to search: constant time to evaluate the hash

function + time to traverse the list

−unsuccessful search: 1 + λ

−successful search: 1 + Τλ 2

Separate Chaining

20

−observations

− load factor more important than table size

−general rule: make the table as large as the number of

elements to be stored, λ ≈ 1

−keep table size prime to ensure good distribution

Separate Chaining

21

−declaration of hash structure

Separate Chaining

22

−hash member function

Separate Chaining

23

−routines for separate chaining

Separate Chaining

24

−routines for separate chaining

19 20

21 22

23 24

7/20/2022

5

Open Addressing

25

− linked lists incur extra costs

− time to allocate space for new cells

−effort and complexity of defining second data structure

−a different collision strategy involves placing colliding keys
in nearby empty slots

− if a collision occurs, try successive cells until an empty
one is found

−bigger table size needed with 𝑀 > 𝑁

− load factor should be below λ = 0.5

− three common strategies

− linear probing

−quadratic probing

−double hashing

Linear Probing

26

− linear probing insert operation

−when 𝑘 is hashed, if slot ℎ 𝑘 is open, place 𝑘 there

− if there is a collision, then start looking for an empty slot

starting with location ℎ 𝑘 + 1 in the hash table, and

proceed linearly through ℎ 𝑘 + 2,…, 𝑚 − 1, 0, 1, 2, …,

ℎ 𝑘 − 1 wrapping around the hash table, looking for an

empty slot

−search operation is similar

−checking whether a table entry is vacant (or is one we

seek) is called a probe

Linear Probing

27

−example: add 89, 18, 49, 58, 69 with ℎ 𝑘 = 𝑘 % 10 and

𝑓 𝑖 = 𝑖

Linear Probing

28

−as long as the table is not full, a vacant cell can be found

−but time to locate an empty cell can become large

−blocks of occupied cells results in primary clustering

−deleting entries leaves holes

−some entries may no longer be found

−may require moving many other entries

−expected number of probes

− for search hits: ~
1

2
1 +

1

1−λ

− for insertion and search misses: ~
1

2
1 +

1

1−λ 2

− for λ = 0.5, these values are Τ3 2 and Τ5 2, respectively

Linear Probing

29

−performance of linear probing (dashed) vs. more random

collision resolution

−adequate up to λ = 0.5

−Successful, Unsuccessful, Insertion

Quadratic Probing

30

−quadratic probing

−eliminates primary clustering

−collision function is quadratic

−example: add 89, 18, 49, 58, 69 with ℎ 𝑘 = 𝑘 % 10 and

𝑓 𝑖 = 𝑖2

25 26

27 28

29 30

7/20/2022

6

Quadratic Probing

31

− in linear probing, letting table get nearly full greatly hurts

performance

−quadratic probing

−no guarantee of finding an empty cell once the table gets

larger than half full

−at most, half of the table can be used to resolve

collisions

− if table is half empty and the table size is prime, then we

are always guaranteed to accommodate a new element

−could end up with situation where all keys map to the

same table location

Quadratic Probing

32

−quadratic probing

−collisions will probe the same alternative cells

−secondary clustering

−causes less than half an extra probe per search

Double Hashing

33

−double hashing

−𝑓 𝑖 = 𝑖 ∙ ℎ𝑎𝑠ℎ2 𝑥

−apply a second hash function to 𝑥 and probe across

longer distances

− function must never evaluate to 0

−make sure all cells can be probed

Double Hashing

34

−double hashing example

−ℎ𝑎𝑠ℎ2 𝑥 = 𝑅 − 𝑥 mod 𝑅 with 𝑅 = 7

−𝑅 is a prime smaller than table size

− insert 89, 18, 49, 58, 69

−ex. 49: 49 % 10 = 9 (taken), so add hash2 -> (7 - 0) % 10

Double Hashing

35

−double hashing example (cont.)

−note here that the size of the table (10) is not prime

− if 23 inserted in the table, it would collide with 58

−since ℎ𝑎𝑠ℎ2 23 = 7 − 2 = 5 and the table size is 10,

only one alternative location, which is taken

Rehashing

36

− table may get too full

−run time of operations may take too long

− insertions may fail for quadratic resolution

−too many removals may be intermixed with insertions

−solution: build a new table twice as big (with a new hash

function)

−go through original hash table to compute a hash value

for each (non-deleted) element

− insert it into the new table

31 32

33 34

35 36

7/20/2022

7

Rehashing

37

−example: insert 13, 15, 24, 6 into a hash table of size 7

−with ℎ 𝑘 = 𝑘 % 7

Rehashing

38

−example (cont.)

− insert 23

− table will be over 70% full; therefore, a new table is

created

Rehashing

39

−example (cont.)

−new table is size 17

−new hash function ℎ 𝑘 = 𝑘 % 17

−all old elements are inserted into new

table

Rehashing

40

−rehashing run time 𝑂 𝑁 since 𝑁 elements and to rehash

the entire table of size roughly 2𝑁

−must have been Τ𝑁 2 insertions since last rehash

−rehashing may run OK if in background

− if interactive session, rehashing operation could produce

a slowdown

−rehashing can be implemented with quadratic probing

−could rehash as soon as the table is half full

−could rehash only when an insertion fails

−could rehash only when a certain load factor is reached

−may be best, as performance degrades as load factor

increases

Hash Tables with Worst-Case 𝑂(1) Access

41

−hash tables so far

−𝑂(1) average case for insertions, searches, and

deletions

−separate chaining: worst case ϴ Τlog𝑁 log log𝑁

−some queries will take nearly logarithmic time

−worst-case 𝑂(1) time would be better

− important for applications such as lookup tables for

routers and memory caches

− if 𝑁 is known in advance, and elements can be

rearranged, worst-case 𝑂(1) time is achievable

Hash Tables with Worst-Case 𝑂(1) Access

42

−perfect hashing

−assume all 𝑁 items known in advance

−separate chaining

− if the number of lists continually increases, the lists will
become shorter and shorter

−with enough lists, high probability of no collisions

−two problems

−number of lists might be unreasonably large

−the hashing might still be unfortunate

−𝑀 can be made large enough to have probability
1

2
of no collisions

−if collision detected, clear table and try again with a
different hash function (at most done 2 times)

37 38

39 40

41 42

7/20/2022

8

Hash Tables with Worst-Case 𝑂(1) Access

43

−perfect hashing (cont.)

−how large must 𝑀 be?

−theoretically, 𝑀 should be 𝑁2, which is impractical

−solution: use 𝑁 lists

−resolve collisions by using hash tables instead of

linked lists

−each of these lists can have 𝑛2 elements

−each secondary hash table will use a different hash

function until it is collision-free

−can also perform similar operation for primary hash

table

− total size of secondary hash tables is at most 2𝑁

Hash Tables with Worst-Case 𝑂(1) Access

44

−perfect hashing (cont.)

−example: slots 1, 3, 5, 7 empty; slots 0, 4, 8 have 1

element each; slots 2, 6 have 2 elements each; slot 9

has 3 elements

Hash Tables with Worst-Case 𝑂(1) Access

45

−cuckoo hashing

−ϴ Τlog𝑁 log log𝑁 bound known for a long time

−researchers surprised in 1990s to learn that if one of two

tables were randomly chosen as items were inserted,

the size of the largest list would be ϴ log log𝑁 , which is

significantly smaller

−main idea: use 2 tables

−neither more than half full

−use a separate hash function for each

− item will be stored in one of these two locations

−collisions resolved by displacing elements

Hash Tables with Worst-Case 𝑂(1) Access

46

−cuckoo hashing (cont.)

−example: 6 items; 2 tables of size 5; each table has

randomly chosen hash function

−A can be placed at position 0 in Table 1 or position 2 in

Table 2

−a search therefore requires at most 2 table accesses in

this example

− item deletion is trivial

Hash Tables with Worst-Case 𝑂(1) Access

47

−cuckoo hashing (cont.)

− insertion

−ensure item is not already in one of the tables

−use first hash function and if first table location is

empty, insert there

− if location in first table is occupied

−displace element there and place current item in

correct position in first table

−displaced element goes to its alternate hash position

in the second table

Hash Tables with Worst-Case 𝑂(1) Access

48

−cuckoo hashing (cont.)

−example: insert A

− insert B (displace A)

43 44

45 46

47 48

7/20/2022

9

Hash Tables with Worst-Case 𝑂(1) Access

49

−cuckoo hashing (cont.)

− insert C

− insert D (displace C) and E

Hash Tables with Worst-Case 𝑂(1) Access

50

−cuckoo hashing (cont.)

− insert F (displace E) – (E displaces A)

−(A displaces B) – (B relocated)

Hash Tables with Worst-Case 𝑂(1) Access

51

−cuckoo hashing (cont.)

− insert G

−displacements are cyclical

−G D B A E F C G

−can try G’s second hash value in second table, but it

also results in a displacement cycle

Hash Tables with Worst-Case 𝑂(1) Access

52

−cuckoo hashing (cont.)

−cycles

−if table’s load value < 0.5, probability of a cycle is very

low

−insertions should require < 𝑂 log𝑁 displacements

− if a certain number of displacements is reached on an

insertion, tables can be rebuilt with new hash functions

Hash Tables with Worst-Case 𝑂(1) Access

53

−cuckoo hashing (cont.)

−variations

−higher number of tables (3 or 4)

−place item in second hash slot immediately instead of

displacing other items

−allow each cell to store multiple keys

−space utilization increased

Hash Tables with Worst-Case 𝑂(1) Access

54

−cuckoo hashing (cont.)

−benefits

−worst-case constant lookup and deletion times

−avoidance of lazy deletion

−potential for parallelism

−potential issues

−extremely sensitive to choice of hash functions

−time for insertion increases rapidly as load factor

approaches 0.5

49 50

51 52

53 54

7/20/2022

10

Hash Tables with Worst-Case 𝑂(1) Access

55

−hopscotch hashing

− improves on linear probing algorithm

− linear probing tries cells in sequential order, starting

from hash location, which can be long due to primary

and secondary clustering

− instead, hopscotch hashing places a bound on

maximal length of the probe sequence

−results in worst-case constant-time lookup

−can be parallelized

Hash Tables with Worst-Case 𝑂(1) Access

56

−hopscotch hashing (cont.)

− if insertion would place an element too far from its

hash location, go backward and evict other elements

−evicted elements cannot be placed farther than the

maximal length

−each position in the table contains information about

the current element inhabiting it, plus others that hash

to it

Hash Tables with Worst-Case 𝑂(1) Access

57

−hopscotch hashing (cont.)

−example: MAX_DIST = 4

−each bit string provides 1 bit of information about the

current position and the next 3 that follow

−1: item hashes to current location; 0: no

Hash Tables with Worst-Case 𝑂(1) Access

58

−hopscotch hashing (cont.)

−example: insert H in 9

−try in position 13, but too far, so try candidates for
eviction (10, 11, 12)

−E would move too far away, so evict G in 11

Hash Tables with Worst-Case 𝑂(1) Access

59

−hopscotch hashing (cont.)

−example: insert I in 6

−position 14 too far, so try positions 11, 12, 13

−H would move too far away, but G can move down one

−position 13 still too far; F can move down one ***

Hash Tables with Worst-Case 𝑂(1) Access

60

−hopscotch hashing (cont.)

−example: insert I in 6

−position 12 still too far, so try positions 9, 10, 11

−B can move down three

−now slot is open for I, fourth from 6

55 56

57 58

59 60

7/20/2022

11

Hash Tables with Worst-Case 𝑂(1) Access

61

−universal hashing

− in principle, we can end up with a situation where all of

our keys are hashed to the same location in the hash

table (bad)

−more realistically, we could choose a hash function

that does not evenly distribute the keys

−to avoid this, we can choose the hash function

randomly so that it is independent of the keys being

stored

−yields provably good performance on average

Hash Tables with Worst-Case 𝑂(1) Access

62

−universal hashing (cont.)

− let 𝐻 be a finite collection of hash functions mapping

our set of keys 𝐾 to the range {0,1,…, 𝑀− 1}

−𝐻 is a universal collection if for each pair of distinct

keys 𝑘, 𝑙 ∈ 𝐾, the number of hash functions ℎ ∈ 𝐻 for

which ℎ 𝑘 = ℎ(𝑙) is at most 𝐻 /𝑀

−that is, with a randomly selected hash function ℎ ∈ 𝐻,

the chance of a collision between distinct 𝑘 and 𝑙 is not

more than the probability Τ1 𝑀 of a collision if ℎ 𝑘
and ℎ 𝑙 were chosen randomly and independently

from {0,1,…, 𝑀− 1}

Hash Tables with Worst-Case 𝑂(1) Access

63

−universal hashing (cont.)

−example: choose a prime 𝑝 sufficiently large that every

key 𝑘 is in the range 0 to 𝑝 − 1 (inclusive)

− let 𝐴 = 0, 1,… , 𝑝 − 1 and 𝐵 = 1,… , 𝑝 − 1

then the family

ℎ𝑎,𝑏 𝑘 = 𝑎𝑘 + 𝑏 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑀 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵

is a universal class of hash functions

Hash Tables with Worst-Case 𝑂(1) Access

64

−extendible hashing

−amount of data too large to fit in memory

−main consideration is then the number of disk

accesses

−assume we need to store 𝑁 records and 𝑀 = 4
records fit in one disk block

−current problems

−if probing or separate chaining is used, collisions

could cause several blocks to be examined during a

search

−rehashing would be expensive in this case

Hash Tables with Worst-Case 𝑂(1) Access

65

−extendible hashing (cont.)

−allows search to be performed in 2 disk accesses

−insertions require a bit more

−use B-tree

−as 𝑀 increases, height of B-tree decreases

−could make height = 1, but multi-way branching

would be extremely high

Hash Tables with Worst-Case 𝑂(1) Access

66

−extendible hashing (cont.)

−example: 6-bit integers

−root contains 4 pointers determined by first 2 bits

−each leaf has up to 4 elements

61 62

63 64

65 66

7/20/2022

12

Hash Tables with Worst-Case 𝑂(1) Access

67

−extendible hashing (cont.)

−example: insert 100100

−place in third leaf, but full

−split leaf into 2 leaves, determined by 3 bits

Hash Tables with Worst-Case 𝑂(1) Access

68

−extendible hashing (cont.)

−example: insert 000000

−first leaf split

Hash Tables with Worst-Case 𝑂(1) Access

69

−extendible hashing (cont.)

−considerations

−several directory splits may be required if the

elements in a leaf agree in more than D+1 leading

bits

−number of bits to distinguish bit strings

−does not work well with duplicates (> 𝑀 duplicates:

does not work at all)

Hash Tables with Worst-Case 𝑂(1) Access

70

− final points

−choose hash function carefully

−watch load factor

−separate chaining: close to 1

−probe hashing: 0.5

−hash tables have some limitations

−not possible to find min/max

−not possible to search for a string unless the exact

string is known

−binary search trees can do this, and 𝑂(log𝑁) is only

slightly worse than 𝑂(1)

Hash Tables with Worst-Case 𝑂(1) Access

71

− final points (cont.)

−hash tables good for

−symbol table

−gaming

−remembering locations to avoid recomputing

through transposition table

−spell checkers

67 68

69 70

71

