Chapter 6 Heaps

- -some systems applications require that items be processed in specialized ways
 - -printing
 - -may not be best to place on a queue
 - -some jobs may be more important
 - -small 1-page jobs should be printed before a 100-page job
 - -operating system <u>scheduler</u>
 - -processes run only for a slice of time
 - -queue: FIFO
 - -some short jobs may take too long
 - -other jobs are more important and should not wait

Heap Model

-specialized queue required

- -heap (priority queue)
- -provides at least
 - -insert
 - -deleteMin: finds, returns, and removes min (or max)
 - -other operations common
- -used in other applications
 - -external sorting
 - -greedy algorithms
 - -discrete event simulation

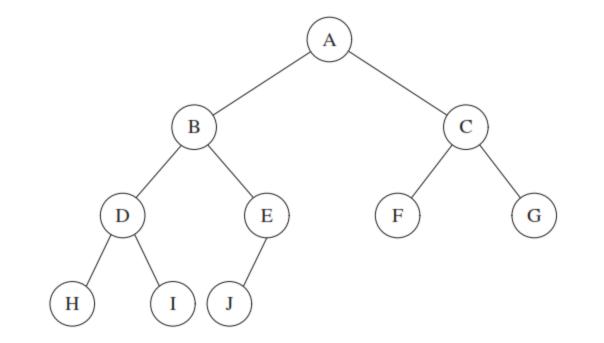
-heaps can be implemented with

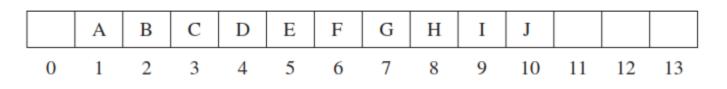
- -linked list, with insertions at head
 - -insert O(1)
 - -deleteMin O(N)
- -ordered linked list (worse due to number of insertions)
 - -insert O(N)
 - -deleteMin O(1)
- -binary search tree
 - -insert $O(\log N)$
 - -deleteMin $O(\log N)$
 - -since only min is deleted, tree will be unbalanced
 - -overkill since other included operations not required

- -binary heap common
 - -simply termed *heap*
- -two properties
 - -<u>structure</u>
 - -heap <u>order</u>
- -operations can <u>destroy</u> one of the properties
 - operation must continue until heap properties have been restored, which is typically simple

-structure property

- -completely filled
 - -except bottom level, which is filled from left to right
 - -complete binary tree has between 2^h and $2^{h+1} 1$ nodes
 - -height: [log N]
- -can be represented with an array (no links necessary)
 - -array position *i*
 - -left child in 2i
 - -right child in 2i + 1
 - -parent in $\lfloor i/2 \rfloor$
 - -operations simple
 - -maximum heap size must be known in advance



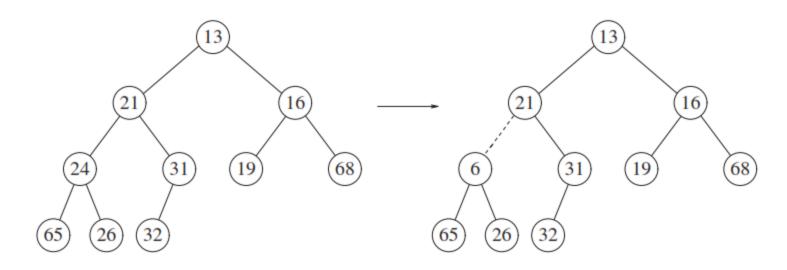


-heap-order property

- -allows operations to be performed quickly
- -want to be able to find minimum quickly

-smallest element at root

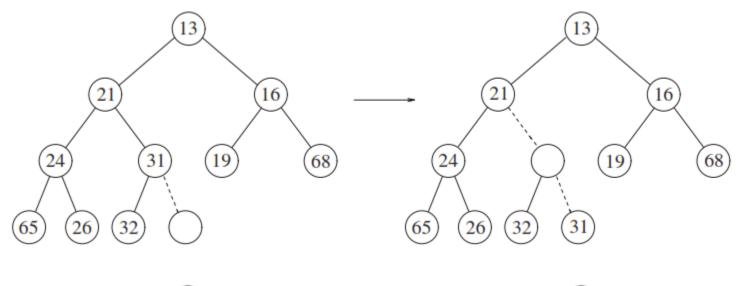
- -any subtree should also be a heap
 - -any node should be smaller than all its descendants

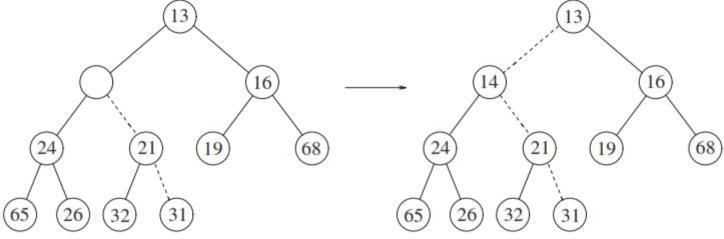


Heap Operations

- -two main heap operations
 - -insert
 - -deleteMin
- -insert
 - -need to maintain structure property
 - -create hole in next available location (at bottom of tree)
 - -place new value there if possible
 - -otherwise, slide parent into hole and bubble up hole
 - -continue until new value can be inserted
 - -termed percolate up strategy

-example: insert 14





Heap Operations

-insert (cont.)

- -could have used repeated swaps, but a swap requires three assignments
- if element percolated up d levels
 - -swap method: 3d assignments
 - -non-swap method: d + 1 assignments
- -if new element is smaller than all others in heap, hole will percolate to the <u>root</u>
- -hole will be at index 1 and we will break out of the loop
 - -if extra check for 1 in loop, adds unnecessary time
 - -could place a copy of new value in position $\underline{0}$

-insert (cont.)

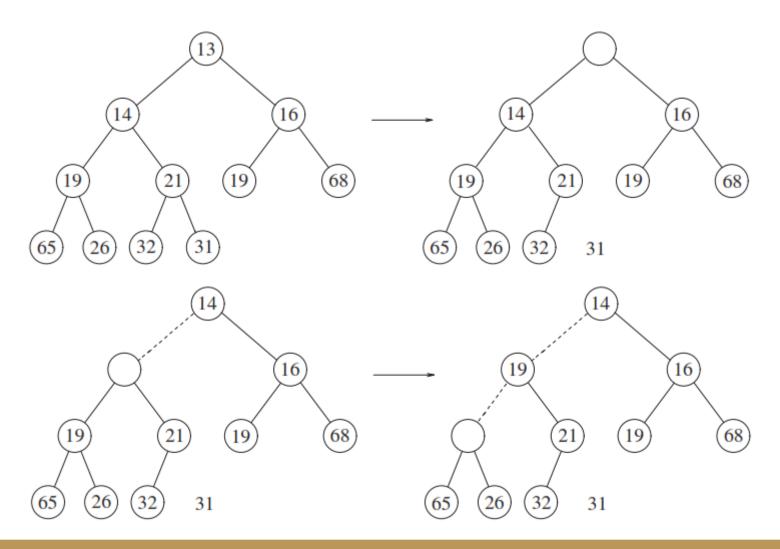
- -could require as much as $O(\log N)$
- -on average, percolation terminates early
 - -on average 2.607 comparisons are required

Heap Operations

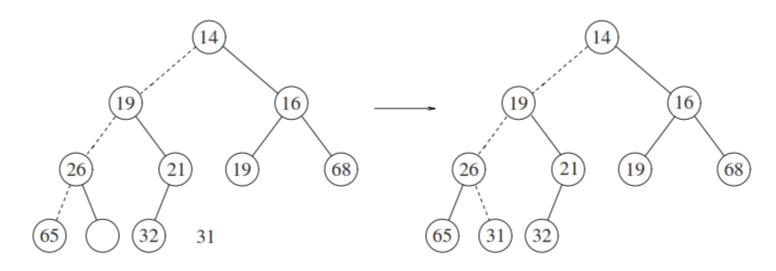
-deleteMin

- -finding minimum easy
- -<u>removing</u> minimum more difficult
 - -hole is created at root
 - -last element in complete binary tree must move
 - -if last element can be placed in hole, done
 - -otherwise, slide hole's smaller child into hole
 - -hole slides down one level
 - -repeat until last element can be placed in hole
- -worst case: $O(\log N)$
- -average case: $O(\log N)$

-example: deleteMin (13)

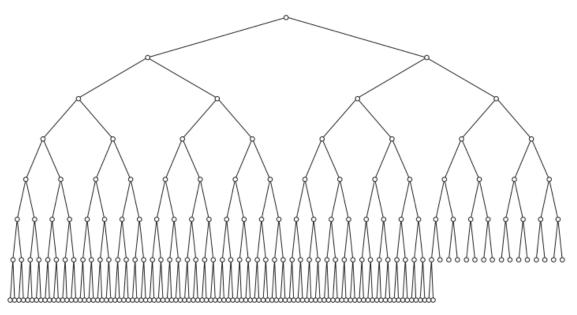


-example: deleteMin (13) (cont.)



-other heap operations

- -finding minimum fast
- -finding maximum not possible without linear scan through entire heap
 - -maximum in one of the leaves
- -could use separate data structure, such as hash table



Heap Operations

-other heap operations (cont.)

- -decreaseKey
 - -lowers value at position p by given amount
 - -percolate up
 - -example: change process priority for more run time
- -increaseKey
 - -increases value at position p by given amount
 - -percolate down
 - -example: drop process priority if taking too much time
- -remove
 - -decreaseKey to root, then deleteMin
 - -example: process is terminated early by user

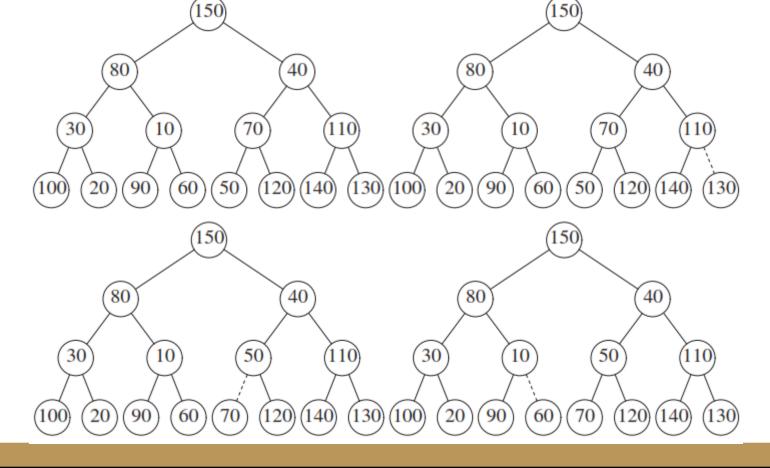
Heap Operations

-other heap operations (cont.)

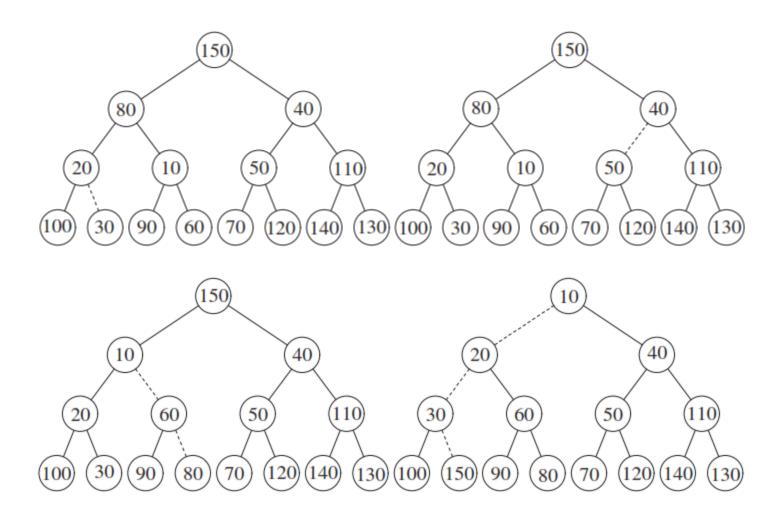
- -buildHeap
 - -place N items into the tree in any order
 - -maintains structure property
 - -use percolateDown(*i*) from node *i*

-example: start with random placement

- -start with percolateDown(7)
- -each dashed line represents 2 comparisons



-example: (cont.)



-selection problem

- -from a list of N elements, find kth largest
- -original algorithm
 - -sort list and index kth element
 - -with simple sort, $O(N^2)$
- -alternative algorithm
 - -read \underline{k} elements into array and sort them
 - -smallest is in *k*th position
 - -other elements processed one by one, placing them into the array
 - -running time $O(N \cdot k)$
 - -if $k = [N/2], O(N^2)$

Heap Applications

-selection problem (cont.)

- -if heap is used
 - -build heap of N elements
 - -perform k deleteMin operations
 - -last element extracted is kth smallest element

 $-\mathrm{if} \ k = [N/2], \ \Theta(N \log N)$

- -another algorithm using heap
 - -as in previous algorithm, but put k elements in heap
 - -other elements processed one by one, placing them into the array
 - -find smallest in array
 - -running time $\Theta(N \log N)$

-event simulation

- -bank where customers arrive and wait until one of k tellers is available
 - -customer <u>arrival</u> and <u>service time</u> based on probability distribution function
 - -compute statistics on the length of time a customer must wait, or the length of the line
 - -need to consider event that will occur in the least amount of time
 - -heap can be used to order events

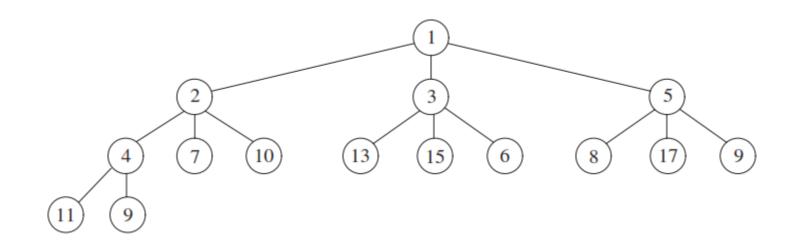
d-Heaps

-d-heap

- -same as <u>binary</u> heap, but all nodes have d children
- -tends to be more shallow than binary heap
- -running time reduced to $O(\log_d N)$
- deleteMin more expensive since more <u>comparisons</u> required
- -useful when heap is too large to fit entirely into main memory
- -4-heaps may outperform 2-heaps (binary heaps)

d-Heaps

-example: *d*-heap with d = 3



Leftist Heaps

- -one weakness of heaps so far is <u>combining</u> two heaps is difficult
- -three data structures that can help
 - -leftist heaps
 - -<u>skew</u> heaps
 - -binomial queues

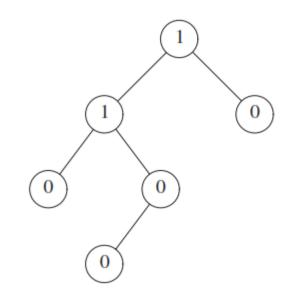
-leftist heaps

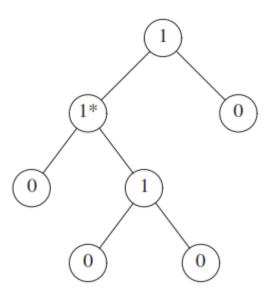
- -can be difficult to design a data structure for <u>merging</u> that uses an array, but runs efficiently
 - -linked data structure therefore required
- -leftist heap
 - -structure and ordering properties of binary heaps
 - -difference is that heap is not perfectly balanced
 - -very unbalanced is desired

-leftist heaps (cont.)

- -null path length (npl): length of shortest path from current node to a node without two children
 - -npl of a node with zero or one child is 0
 - -npl of a null pointer is -1
- -npl of each node is 1 more than the minimum of the null path lengths of its <u>children</u>
- -leftist heap property
 - -npl of the left child is at least as large as that of the right child
 - -biases tree to <u>deeper</u> left subtree

-example: leftist heap





-leftist heaps operations

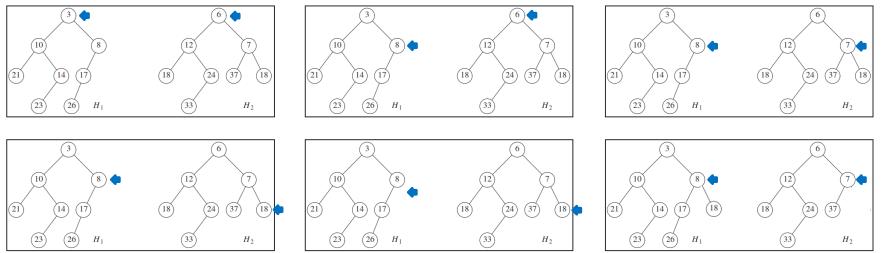
- -all work should be done on the right path, which is guaranteed to be short
- -<u>inserts</u> and <u>merges</u> may destroy the leftist heap property
 -not difficult to fix

-leftist heaps operations (cont.)

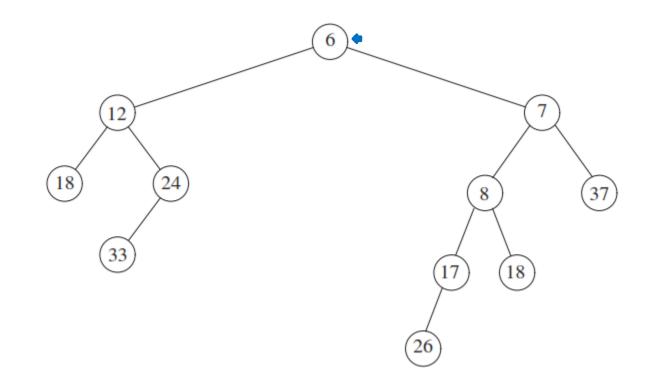
- -merging
 - -insertion special case of merging a 1-node heap with a larger heap
 - -if either of the two heaps is <u>empty</u>, return the other heap
 - -otherwise, compare roots
 - -<u>recursively</u> merge heap with the larger root with the right subheap of the heap with the smaller root

-leftist heaps operations (cont.)

- -merging example
 - -start comparing at roots; take right branch of smaller; merge when hitting dead end; recurse back up tree



- -leftist heaps operations (cont.)
 - -merging example
 - -must swap children anytime subtree non-leftist

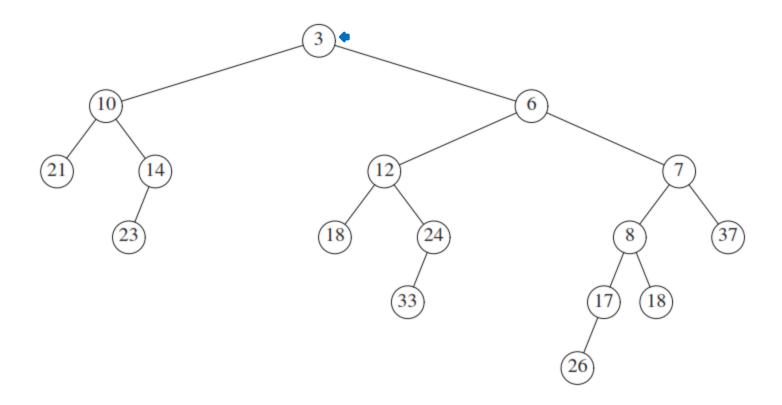


Leftist Heaps

-leftist heaps operations (cont.)

-merging example

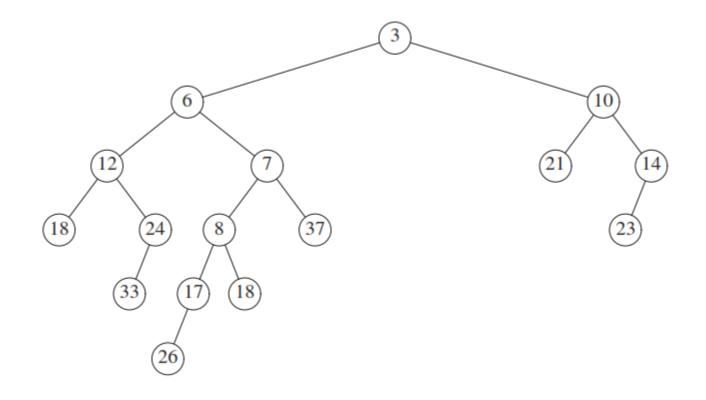
-result is not leftist: left npl = 1, right npl = 2



Leftist Heaps

-leftist heaps operations (cont.)

- -merging example
 - -fix by swapping children



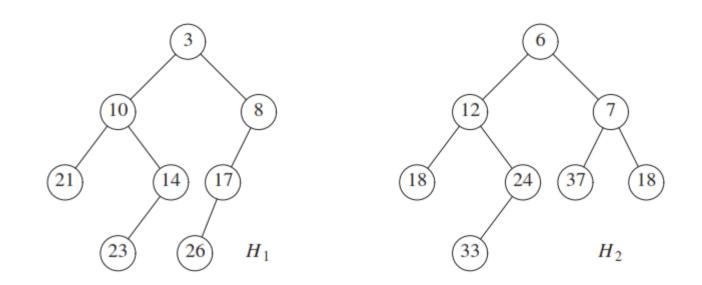
- -self-adjusting version of leftist heap
- -relationship of skew heap to leftist heap is analogous to splay trees and <u>AVL</u> trees
- -skew heaps
 - -binary trees with heap order
 - -but no structural constraint
 - -no information kept about null path length
 - -right path can be arbitrarily long
 - -worst case of all operations: O(N)
 - -for *M* operations, total worst case: *O*(*M* log *N*), or *O*(log *N*) <u>amortized</u>

-skew heaps (cont.)

- -fundamental operation is merging
- -after merging, for leftists heaps, check both children for structure and swap children if needed
- -in skew heaps, <u>always</u> swap children
 - -except largest nodes on right paths do not swap children
 - -no extra space required to maintain path lengths
 - -no tests required to determine when to swap children

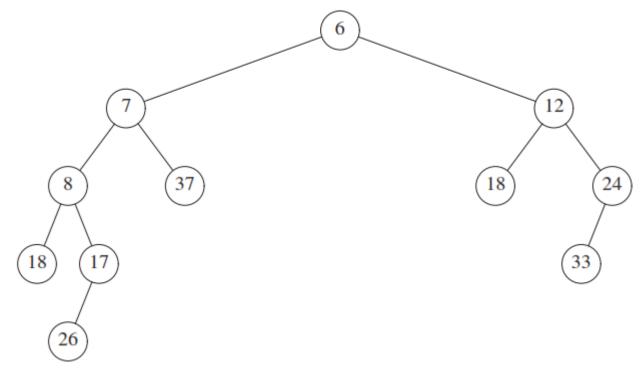
-skew heaps example

- -merge two skew heaps
 - -tree with larger root will merge onto tree with smaller root



-skew heaps example (cont.)

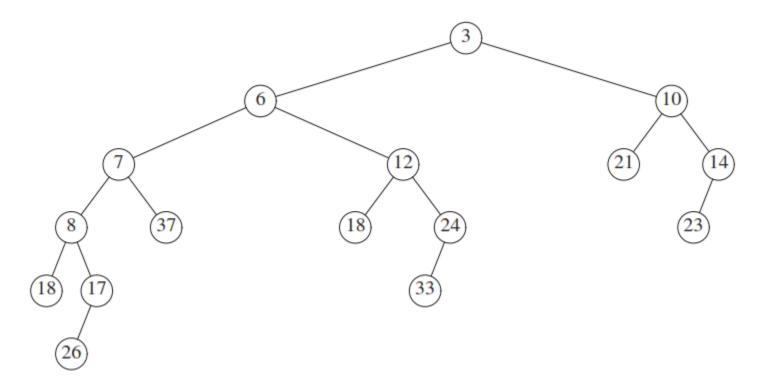
-recursively merge H_2 with the subheap of H_1 rooted at 8



-heap happens to be leftist

-skew heaps example (cont.)

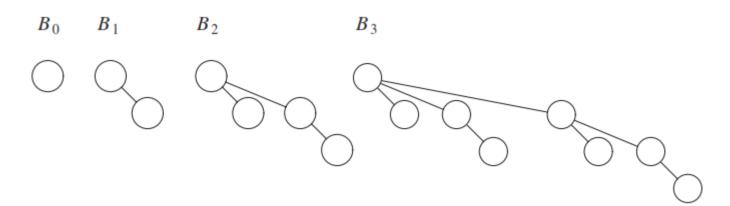
-make this heap the new left child of H_1 and the old left child of H_1 becomes the new right child



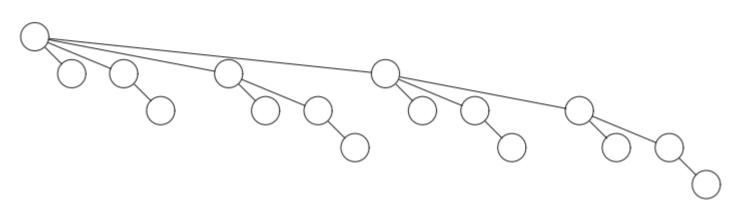
-binomial queues

- -keep a collection of heap-ordered trees, known as a forest
- -at most one binomial tree of every height
 - -heap order imposed on each binomial tree
 - -can represent any priority queue
 - -example: a priority queue of size 13 can be represented by the forest B_3, B_2, B_0 or 1101
- -worst case of all operations: $O(\log N)$

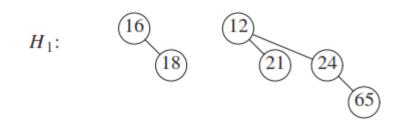
-binomial queues example



 B_4



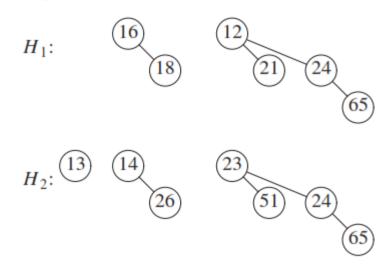
-binomial queue of size 6 example



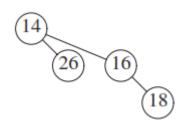
-binomial queue operations

- -minimum element found by scanning roots of all trees
 - -found in $O(\log N)$
 - -can keep ongoing information to reduce to O(1)
- -merging two queues
 - -merge takes $O(\log N)$

-merge example

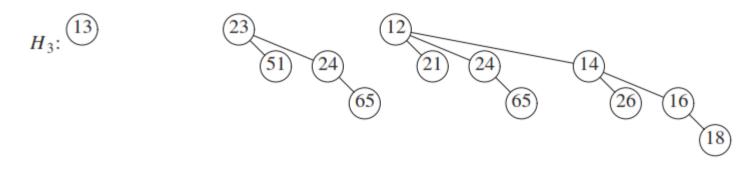


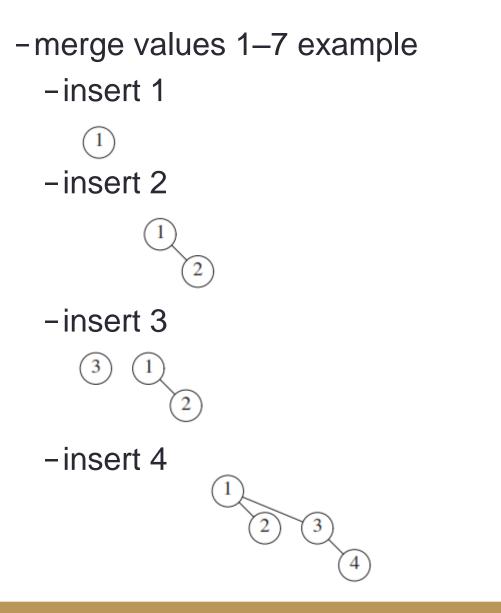
-merge of two B_1 trees



-merge example (cont.)

-now we have three binomial trees of height 3; keep one and merge the other two (with two smallest roots)





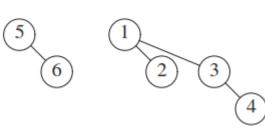
-merge values 1–7 example (cont.)

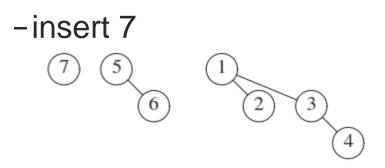
2

3

-insert 5

5

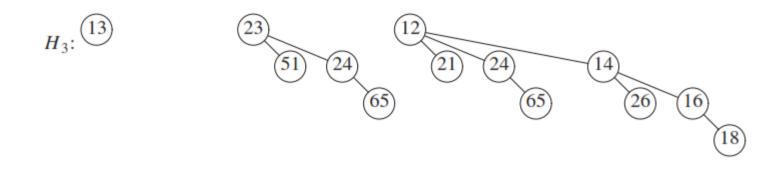




-deleteMin example

(21)

H″: ⁽



-separate tree with minimum root from rest of tree

16

65

-remaining trees after removing min

-deleteMin example (cont.)

-after merge

