Chapter 6
Heaps

'_\|
N|

Heap Model

-specialized queue required

-heap (priority queue)

-provides at least
-insert
-deleteMin: finds, returns, and removes min (or max)
-other operations common

-used in other applications
—external sorting
-greedy algorithms
-discrete event simulation

| LM|

Binary Heap

-binary heap common
-simply termed heap
-two properties
-structure
-heap order
-operations can destroy one of the properties

-operation must continue until heap properties have been
restored, which is typically simple

U-I|
°|

7/25/2022

Introduction

-some systems applications require that items be processed
in specialized ways
-printing
-may not be best to place on a queue
-some jobs may be more important
-small 1-page jobs should be printed before a 100-page
job
-operating system scheduler
-processes run only for a slice of time
-queue: FIFO
—-some short jobs may take too long
—other jobs are more important and should not wait

Heap Implementation

-heaps can be implemented with

-linked list, with insertions at head
-insert 0(1)
-deleteMin O(N)

-ordered linked list (worse due to number of insertions)
-insert O(N)
-deleteMin 0(1)

-binary search tree
-insert O(log N)
-deleteMin O(log N)
-since only min is deleted, tree will be unbalanced
-overkill since other included operations not required

| 'h|

Binary Heap

-structure property
-completely filled
-except bottom level, which is filled from left to right
-complete binary tree has between 2" and 2"*! — 1 nodes
-height: [log N]
-can be represented with an array (no links necessary)
—array position i
—left child in 2i
—right child in 2i + 1
—parentin |i/2]
-operations simple
-maximum heap size must be known in advance

Binary Heap

()
(
P
e ™.
Y RO
(8])
>~ Pt
7N ’N
G w» & B
/"'\/ 3~
VRPN
[TalsJc]ole]rfalu[o[T]
o 1 2 3 4 5 6 7 & 9 10 1 12 13

Heap Operations

-two main heap operations
-insert
-deleteMin
-insert
-need to maintain structure property
-create hole in next available location (at bottom of tree)
-place new value there if possible
-otherwise, slide parent into hole and bubble up hole
-continue until new value can be inserted
-termed percolate up strategy

Heap Operations

-insert (cont.)
-could have used repeated swaps, but a swap requires
three assignments
-if element percolated up d levels
-swap method: 3d assignments
-non-swap method: d + 1 assignments

-if new element is smaller than all others in heap, hole will
percolate to the root

-hole will be at index 1 and we will break out of the loop
-if extra check for 1 in loop, adds unnecessary time
-could place a copy of new value in position 0

s i |
11

7/25/2022

Binary Heap

-heap-order property
-allows operations to be performed quickly
-want to be able to find minimum quickly
-smallest element at root
-any subtree should also be a heap
-any node should be smaller than all its descendants

Binary Heap

-example: insert 14
Py —~
PON JO!
\
e N o 4 -
21) (16) - (21 -\c:\\
G N (19) ond Y j)
'\’_J DT (68) GNC (68)
Fy / I\ /
e . o e
03) (20)) O ©) G0 G2 @)
7 \ o
~ = o Sy
D) 10) N 14) Qn\
o~ T >~ o an (s o)
@ @ ® SERONONNC
[\ /o /A /
N en N AN N Iy
(es) (20) (32 (31 (63) (26) (32) (30)

10

Heap Operations

-insert (cont.)
-could require as much as 0(log N)
-on average, percolation terminates early
-on average 2.607 comparisons are required

12

Heap Operations

-deleteMin
~finding minimum easy
-removing minimum more difficult
-hole is created at root
-last element in complete binary tree must move
~if last element can be placed in hole, done
-otherwise, slide hole’s smaller child into hole
-hole slides down one level
-repeat until last element can be placed in hole
-worst case: O(log N)
-average case: 0(log N)

s
13

Binary Heap

—-example: deleteMin (13) (cont.)

15

Heap Operations

-other heap operations (cont.)
-decreaseKey
-lowers value at position p by given amount
—-percolate up
—-example: change process priority for more run time
-increaseKey
-increases value at position p by given amount
-percolate down
—-example: drop process priority if taking too much time
-remove
-decreaseKey to root, then deleteMin
-example: process is terminated early by user

s — A
17

7/25/2022

Binary Heap

-example: deleteMin (13)
P y
@))
- v/ N
@« i)'?,\
],?) RN CERC)
N Py "~ S o8
I\ JARY / /
LA L LA L
83) ih) @2 3y [f \20) ':":/' 31
.1_1)\ (12)
oy i () %)
L) ‘}I_nl\\ — I.\]_)!\ II:|<
O] \3 ® @ Q0 e ®
@®® u ®@®@ »

14

Heap Operations

-other heap operations
~finding minimum fast

-finding maximum not possible without linear scan through
entire heap

—-maximum in one of the leaves
-could use separate data structure, such as hash table

{

]
“l.,.
il

il

16

Heap Operations

-other heap operations (cont.)
-buildHeap
-place N items into the tree in any order
—maintains structure property
—use percolateDown(i) from node i

18

Binary Heap

-example: start with random placement
-start with percolateDown(7)
-each dashed line represents 2 comparisons

(150)
A

Heap Applications

-selection problem
-from a list of N elements, find kth largest
-original algorithm
-sort list and index kth element
-with simple sort, 0(N?)
-alternative algorithm
-read k elements into array and sort them
-smallest is in kth position

-other elements processed one by one, placing them into
the array

-running time O(N - k)
-if k = [N/2], O(N?)

-event simulation

-bank where customers arrive and wait until one of k tellers
is available

-customer arrival and service time based on probability
distribution function

-compute statistics on the length of time a customer must
wait, or the length of the line

-need to consider event that will occur in the least amount
of time

—heap can be used to order events

7/25/2022

Binary Heap

-example: (cont.)

Heap Applications

-selection problem (cont.)

-if heap is used
-build heap of N elements
-perform k deleteMin operations
-last element extracted is kth smallest element
-if k =[N/2], (N logN)

-another algorithm using heap
-as in previous algorithm, but put k elements in heap

-other elements processed one by one, placing them into
the array

~find smallest in array
-running time ©(N log N)

-d-heap

-same as binary heap, but all nodes have d children

-tends to be more shallow than binary heap

-running time reduced to O(logy N)

-deleteMin more expensive since more comparisons
required

-useful when heap is too large to fit entirely into main
memory

-4-heaps may outperform 2-heaps (binary heaps)

7/25/2022

-example: d-heap with d = 3 -one weakness of heaps so far is combining two heaps is
difficult
0 -three data structures that can help
o — T T - leftist heaps
» ’Lj\ - - /)—"f'\.\ -skew heaps
ONOROBNONCRO;
ONO;

-binomial queues

Leftist Heaps

-leftist heaps -leftist heaps (cont.)

-can be difficult to design a data structure for merging that -null path length (npl): length of shortest path from current
uses an array, but runs efficiently node to a node without two children
-linked data structure therefore required -npl of a node with zero or one child is 0

-leftist heap -npl of a null pointer is -1
-structure and ordering properties of binary heaps -npl of each node is 1 more than the minimum of the null
~difference is that heap is not perfectly balanced path lengths of its children

-very unbalanced is desired - leftist heap property

-npl of the left child is at least as large as that of the right
child

-biases tree to deeper left subtree

Leftist Heaps

-example: leftist heap -leftist heaps operations
o~ o -all work should be done on the right path, which is
/\ guaranteed to be short
"r') }\(“\,' 3 \, -inserts and merges may destroy the leftist heap property
Va N a -not difficult to fix
0) 1)/‘\
./
(o)

e — 1 |
29

Leftist Heaps

-leftist heaps operations (cont.)
-merging
-insertion special case of merging a 1-node heap with a
larger heap
~if either of the two heaps is empty, return the other heap
-otherwise, compare roots

-recursively merge heap with the larger root with the right
subheap of the heap with the smaller root

31

Leftist Heaps

-leftist heaps operations (cont.)
-merging example
-must swap children anytime subtree non-leftist

Leftist Heaps

-leftist heaps operations (cont.)
-merging example
~fix by swapping children

I
A
o -
SOy
// ™~ AN
(a2 1) (id
p=q /ql b
7N\ \ /
a8 33 (O] >\7\ (23)
Ry ,¥J \’_\ hy \.
/ A\
@) (@) ()
N LY RN
@

35

7/25/2022

Leftist Heaps

-leftist heaps operations (cont.)
-merging example
-start comparing at roots; take right branch of smaller;
merge when hitting dead end; recurse back up tree
. - -

. . .

32

Leftist Heaps

-leftist heaps operations (cont.)
-merging example
—result is not leftist: left npl = 1, right npl = 2

(B

Skew Heaps

-self-adjusting version of leftist heap

-relationship of skew heap to leftist heap is analogous to splay
trees and AVL trees

-skew heaps
-binary trees with heap order
-but no structural constraint
-no information kept about null path length
-right path can be arbitrarily long
-worst case of all operations: O(N)

-for M operations, total worst case: O(M log N), or O(log N)
amortized

36

Skew Heaps

-skew heaps (cont.)

SUGAREETS

-fundamental operation is merging
-after merging, for leftists heaps, check both children for

structure and swap children if needed
p

-in skew heaps, always swap children
-except largest nodes on right paths do not swap children

-no extra space required to maintain path lengths
-no tests required to determine when to swap children

-skew heaps example (cont.)
-recursively merge H, with the subheap of H, rooted at 8

- - |
39
Binomial Queues
-keep a collection of heap-ordered trees, known as a forest

Skew Heaps

-skew heaps example

-merge two skew heaps
~tree with larger root will merge onto tree with smaller root

(10
Jau
\
D (1a) (17) (W
4 07) (%)
/' /
= b e
@ G o &) H

7/25/2022

@

-G

Skew Heaps

)
AL

-skew heaps example (cont.)
-make this heap the new left child of H; and the old left child

of H; becomes the new right child

Ty
—
/ \
< e = e
(#) 37) U8 24
'~ —
@ &
® @ =)
)
~{
(:m
-,

-heap happens to be leftist

-binomial queues
-at most one binomial tree of every height

-heap order imposed on each binomial tree
—can represent any priority queue
—-example: a priority queue of size 13 can be represented
by the forest Bs, B, B, or 1101
-worst case of all operations:0(log N)

. OO0 0 0 0606—-69 > >"> > «(s1
40

-binomial queues example
By

By

~

42

Binomial Queues

-binomial queue of size 6 example

(ia (3
Hy: Rk

|
43

-merge example

e
e (1% _
&

45
Binomial Queues

-merge values 1-7 example
-insert 1
®
-insert 2

m
G
-insert 3
® @
O
-insert 4 @
1

e — v |
47

7/25/2022

Binomial Queues

-binomial queue operations
-minimum element found by scanning roots of all trees
~found in 0(log N)
-can keep ongoing information to reduce to 0(1)
-merging two queues
-merge takes O(log N)

-h|
B

Binomial Queues

-merge example (cont.)
-now we have three binomial trees of height 3; keep one
and merge the other two (with two smallest roots)

)
Hy

-3 |
46

-merge values 1-7 example (cont.)
-insert5

48

7/25/2022

Binomial Queues Binomial Queues

-deleteMin example -deleteMin example (cont.)
-after merge

®
. ®
-remaining trees after removing min
@0 (4 (i)
PRRCDINC u
[63)
©3)
— S — 0

49 50

