
6/20/2024

1

Chapter 7

Sorting

Introduction

2

−sorting

− fundamental task in data management

−well-studied problem in computer science

−basic problem

−given an array of items where each item contains a key,

rearrange the items so that the keys appear in ascending

order

− the key may be only part of the item begin sorted

−e.g., the item could be an entire block of information

about a student, while the search key might be only the

student's name

Introduction

3

−we will assume

− the array to sort contains only integers

−defined < and > operators (comparison-based sorting)

−all 𝑁 array positions contain data to be sorted

− the entire sort can be performed in main memory

−number of elements is relatively small: < a few million

−given a list of n items, 𝑎0, 𝑎1, … , 𝑎𝑛−1, we will use the
notation 𝑎𝑖 ≤ 𝑎𝑗 to indicate that the search key for a 𝑎𝑖 does

not follow that of 𝑎𝑗

−sorts that cannot be performed in main memory

−may be performed on disk or tape

−known as external sorting

Sorting Algorithms

4

−𝑂 𝑁2 sorts

− insertion sort

−selection sort

−bubble sort

−why 𝑂 𝑁2 ?

−Shellsort: subquadratic

−𝑂(𝑁 lg 𝑁) sorts

−heapsort

−mergesort

−quicksort

−a lower bound on sorting by pairwise comparison

−𝑂 𝑁 sorting algorithms: count sort

−string sorts

Sorting

5

−given 𝑁 keys to sort, there are 𝑁! possible permutations of

the keys!

−e.g, given 𝑁 = 3 and the keys 𝑎, 𝑏, 𝑐, there are

 3! = 3 ∙ 2 ∙ 1 = 6 possible permutations:

 𝑎𝑏𝑐 𝑎𝑐𝑏 𝑏𝑎𝑐 𝑏𝑐𝑎 𝑐𝑎𝑏 𝑐𝑏𝑎

−brute force enumeration of permutations is not

computationally feasible once 𝑁 > 10

−13! = 6.2270 × 109

−20! = 2.4329 × 1018

Sorting

6

−cost model for sorting

− the basic operations we will count are comparisons and

swaps

− if there are array accesses that are not associated with

comparisons or swaps, we need to count them, too

−programming notes

− if the objects being sorted are large, we should swap

pointers to the objects, rather than the objects themselves

−polymorphism: general-purpose sorting algorithms vs

templated algorithms

1 2

3 4

5 6

6/20/2024

2

Insertion Sort

7

− insertion sort

−simple

−𝑁 − 1 passes

− in pass 𝑝, 𝑝 = 1, … , 𝑁 − 1, we move 𝑎𝑝 to its correct

location among 𝑎0, … , 𝑎𝑝

− for passes 𝑝 = 1 to 𝑁 − 1, insertion sort ensures that the

elements in positions 0 to 𝑝 are in sorted order

−at the end of pass 𝑝, the elements in positions 0 to 𝑝 are in

sorted order

Insertion Sort

8

−algorithm

for (p = 1; p < N; p++) {

 tmp = 𝒂𝒑

 for (j = p; (j > 0) && (tmp < 𝒂𝒋−𝟏); j--) {

 swap 𝒂𝒋 and 𝒂𝒋−𝟏

 }

 𝒂𝒋 = tmp

}

Insertion Sort

9

− to avoid the full swap, we can use the following code:

for (p = 1; p < N; p++) {

 tmp = 𝒂𝒑

 for (j = p; (j > 0) && (tmp < 𝒂𝒋−𝟏); j--) {

 𝒂𝒋 = 𝒂𝒋−𝟏

 }

 𝒂𝒋 = tmp

}

Insertion Sort

10

−example

Insertion Sort

11

−example

 position 0 1 2 3 4 5

 initial sequence 42 6 1 54 0 7

 p = 1 6 42 1 54 0 7

 p = 2 6 1 42 54 0 7

 1 6 42 54 0 7

 p = 3 1 6 42 54 0 7

 p = 4 1 6 42 0 54 7

 1 6 0 42 54 7

 1 0 6 42 54 7

 0 1 6 42 54 7

 p = 5 0 1 6 42 7 54

 0 1 6 7 42 54

Insertion Sort

12

−analysis

−best case: the keys are already sorted – 𝑛 − 1

comparisons, no swaps

−worst case: the keys are in reverse sorted order

−expected (average) case: ?

7 8

9 10

11 12

6/20/2024

3

Insertion Sort

13

−analysis

−given 𝑎0, … , 𝑎𝑛−1 that we wish to sort in ascending order, an
inversion is any pair that is out of order relative to one
another: 𝑎𝑖, 𝑎𝑗 for which 𝑖 < 𝑗 but 𝑎𝑖 > 𝑎𝑗

− the list

 42, 6, 9, 54, 0

 contains the following inversions:

42, 6 , 42, 9 , 42, 0 , 6, 0 , 9, 0 , (54, 0)

−swapping an adjacent pair of elements that are out of order
removes exactly one inversion

−thus, any sort that operates by swapping adjacent terms
requires as many swaps as there are inversions

Insertion Sort

14

−number of inversions

−a list can have between 0 and 𝑁(𝑁 − 1)/2 inversions, the

latter of which occurs when 𝑎0 > 𝑎1 > ⋯ > 𝑎𝑁−1

− thus, counting inversions also says the worst-case behavior

of insertion is quadratic

−what do inversions tell us about the expected behavior?

− let 𝑃 be the probability space of all permutations of 𝑁

distinct elements with equal probability

−Theorem: The expected number of inversions in a list

taken from 𝑃 is 𝑁(𝑁 − 1)/4

−thus, the expected complexity of insertion sort is

quadratic

Insertion Sort

15

−proof

−observe that any pair in a list that is an inversion is in the

correct order in the reverse of that list

− this means that if we look at a list and its reverse and count

the total number of inversions, then the combined number

of inversions is 𝑁(𝑁 − 1)/2

list inversions reverse lists inversions

1, 2, 3, 4 0 4, 3, 2, 1 6

2, 1, 3, 4 1 4, 3, 1, 2 5

3, 2, 1, 4 3 4, 1, 2, 3 3

Insertion Sort

16

−proof (cont.)

−since there are 𝑁!/2 distinct pairs of lists and their

reverses, there is a total of

𝑁!

2

𝑁(𝑁−1)

2
= 𝑁!

𝑁(𝑁−1)

4

inversions among the 𝑁! possible lists of 𝑁 distinct objects

− this means that the expected number of inversions in any

given list is 𝑁(𝑁 − 1)/4

Insertion Sort

17

− in summary

− for randomly ordered arrays of length 𝑁 with distinct keys,

insertion sort uses

−~𝑁2/4 comparisons and ~𝑁2/4 swaps on average

−~𝑁2/2 comparisons and ~𝑁2/2 swaps in the worst case

−𝑁 − 1 comparisons and 0 swaps in the best case

Selection Sort

18

−selection sort

− find the smallest item and exchange it with the first entry

− find the next smallest item and exchange it with the second

entry

− find the next smallest item and exchange it with the third

entry

…

13 14

15 16

17 18

6/20/2024

4

Selection Sort

19

−algorithm

for (p = 0; p < N; p++) {

 m = p

 for (j = p+1; j < N; j++) {

 if (𝒂𝒋 < 𝒂𝒎) {

 m = j

 }

 }

 swap 𝒂𝒎 and 𝒂𝒑

}

Selection Sort

20

−example

 position 0 1 2 3 4

 initial sequence 6 42 9 54 0

 after p = 0 0 42 9 54 6

 after p = 1 0 6 9 54 42

 after p = 2 0 6 9 54 42

 after p = 3 0 6 9 42 54

Selection Sort

21

−complexity

−𝑁2/2 comparisons and 𝑁 swaps to sort an array of

length 𝑁

− the amount of work is independent of the input

−selection sort is no faster on sorted input than on random

input

−selection sort involves a smaller number of swaps than

any of the other sorting algorithms we will consider

Selection Sort

22

−proof

− there is one swap per iteration of the outermost loop, which

is executed 𝑁 times

− there is one comparison made in each iteration of the

innermost loop, which is executed

෍

𝑖=0

𝑁−1

෍

𝑗=𝑖+1

𝑁−1

1 = ෍

𝑖=0

𝑁−1

𝑁 − 1 − 𝑖 + 1 + 1 = ෍

𝑖=0

𝑁−1

(𝑁 − 𝑖 + 1)

= 𝑁2 −
𝑁 − 1 𝑁

2
+ 𝑁 =

𝑁2

2
+

3𝑁

2
~

𝑁2

2

Bubble Sort

23

−bubble sort

−read the items from left to right

− if two adjacent items are out of order, swap them

−repeat until sorted

−a sweep with no swaps means we are done

Bubble Sort

24

−algorithm

not_done = true

while (not_done) {

 not_done = false

 for (i = 0 to N - 2) {

 if (𝒂𝒊 > 𝒂𝒊+𝟏) {

 swap 𝒂𝒊 and 𝒂𝒋

 not_done = true

 }

 }

}

19 20

21 22

23 24

6/20/2024

5

Bubble Sort

25

−example

 initial sequence 42 6 9 54 0

 while-loop 6 42 9 54 0

 6 9 42 54 0

 6 9 42 0 54

 while-loop 6 9 0 42 54

 while-loop 6 0 9 42 54

 while-loop 0 6 9 42 54

Bubble Sort

26

−complexity

− if the data are already sorted, we make only one sweep

through the list

−otherwise, the complexity depends on the number of times

we execute the while-loop

−since bubble sort swaps adjacent items, it will have

quadratic worst-case and expected-case complexity

Shellsort

27

−Shellsort

−Donald L. Shell (1959), A high-speed sorting procedure,
Communications of the ACM 2 (7): 3032.

−swapping only adjacent items dooms us to quadratic worst-
case behavior, so swap non-adjacent items!

−Shellsort starts with an increment sequence

ℎ𝑡 > ℎ𝑡−1 > ⋯ > ℎ2 > ℎ1 = 1

− it uses insertion sort to sort

−every ℎ𝑡-th term starting at 𝑎0, then 𝑎0, … , then 𝑎ℎ𝑡−1

−every ℎ𝑡−1-th term starting at 𝑎0, then 𝑎0, … , then 𝑎ℎ𝑡−1−1

−etc.

−every term (ℎ1 = 1) starting at 𝑎0, after which the array is
sorted

Shellsort

28

−Shellsort

−suppose we use the increment sequence 15, 7, 5, 3, 1, and

have finished the 15-sort and 7-sort

− then we know that

𝑎0 ≤ 𝑎15 ≤ 𝑎30 ≤ ⋯
𝑎0 ≤ 𝑎7 ≤ 𝑎14 ≤ ⋯

−we also know that

𝑎15 ≤ 𝑎22 ≤ 𝑎29 ≤ 𝑎36 ≤ ⋯

−putting these together, we see that

𝑎0 ≤ 𝑎7 ≤ 𝑎22 ≤ 𝑎29 ≤ 𝑎36

Shellsort

29

−Shellsort

−after we have performed the sort using increment ℎ𝑘, the

array is ℎ𝑘-sorted: all elements that are ℎ𝑘 terms apart are

in the correct order:

𝑎𝑖 ≤ 𝑎𝑖+ℎ𝑘

− the key to Shellsort's efficiency is the following fact: an ℎ𝑘-

sorted array remains ℎ𝑘-sorted after sorting with increment

ℎ𝑘−1

Shellsort

30

−examples

 http://interactivepython.org/KKOkZ/courselib/static/pythonds/SortSearch/TheShellSort.html

0 1 2 3 4 5 6 7 8 9 10 11 12

25 26

27 28

29 30

6/20/2024

6

Shellsort

31

−complexity

−a good increment sequence ℎ𝑡, ℎ𝑡−1, … , ℎ1 = 1 has the
property that for any element 𝑎𝑝, when it is time for the ℎ𝑘-

sort, there are only a few elements to the left of 𝑝 that are
larger than 𝑎𝑝

−Shell's original increment sequence has 𝑁2 worst-case

behavior:

 ℎ𝑡 =
𝑁

2
, ℎ𝑘 =

ℎ𝑘+1

2

Shellsort

32

−complexity (cont.)

− the sequences

2𝑘 − 1 = 1, 3, 7, 15, 31, … , (T. H. Hibbard, 1963)

3𝑘−1

2
= 1, 4, 13, 40, 121 (V. R. Pratt, 1971)

 yield 𝑂 𝑁 Τ3 2 worst-case complexity

−other sequences yield 𝑂 𝑁 Τ4 3 worst-case complexity

Heapsort

33

−priority queues can be used to sort in 𝑂(𝑁 lg 𝑁)

−strategy

−build binary heap of 𝑁 elements – 𝑂(𝑁) time

−perform 𝑁 deleteMin operations – 𝑂(𝑁 lg 𝑁)

−elements (smallest first) stored in second array, then copied

back into original array – 𝑂(𝑁) time

−requires extra array, which doubles memory requirement

Heapsort

34

−can avoid extra array by storing element in original array

−heap leaves an open space as each smallest element is

deleted

−store element in newly opened space, which is no longer

used by the heap

−results in list of decreasing order in array

− to achieve increasing order, change ordering of heap to

max heap

−when complete, array contains elements in ascending

order

Heapsort

35

−max heap after buildHeap phase

Heapsort

36

−max heap after first deleteMax

31 32

33 34

35 36

6/20/2024

7

Heapsort

37

−analysis

−building binary heap of 𝑁 elements – < 2𝑁 comparisons

− total deleteMax operations – 2𝑁 lg 𝑁 − 𝑂(𝑁) if 𝑁 ≥ 2

−heapsort in worst case – 2𝑁 lg 𝑁 − 𝑂(𝑁)

−average case extremely complex to compute – 2𝑁 lg 𝑁 −
𝑂 𝑁 lg lg 𝑁

− improved to 2𝑁 lg 𝑁 − 𝑂(𝑁) or simply 𝑂(𝑁 lg 𝑁)

−heapsort useful if we want to sort the largest 𝑘 or smallest 𝑘

elements and 𝑘 ≪ 𝑁

Mergesort

38

−mergesort is a divide-and-conquer algorithm

− in Vol. III of The Art of Computer Programming, Knuth

attributes the algorithm to John von Neumann (1945)

− the idea of mergesort is simple:

−divide the array in two

−sort each half

−merge the two subarrays using mergesort

−merging simple since subarrays sorted

−mergesort can be implemented recursively and non-

recursively

−runs in 𝑂(𝑁 lg 𝑁), worst case

Mergesort

39

−merging algorithm takes two arrays, 𝐴 and 𝐵, and output

array 𝐶

−also uses three counters: 𝐴𝑐𝑡𝑟, 𝐵𝑐𝑡𝑟, 𝐶𝑐𝑡𝑟

− initialized to beginning of respective arrays

−smaller of 𝐴[𝐴𝑐𝑡𝑟] and 𝐵[𝐵𝑐𝑡𝑟] copied to 𝐶[𝐶𝑐𝑡𝑟]

−when either input array exhausted, the remainder of the

other list is copied to 𝐶

Mergesort

40

−example

Mergesort

41

−example (cont.)

Mergesort

42

−example (cont.)

−another way to visualize

37 38

39 40

41 42

6/20/2024

8

Mergesort

43

− time to merge two lists is linear – at most 𝑁 − 1 comparisons

−every comparison adds an element to 𝐶

−mergesort easy to characterize

− if 𝑁 = 1, only one element to sort

−otherwise, recursively mergesort first half and second half

−merge these two halves

−problem is divided into smaller problems and solved

recursively, and conquered by patching the solutions

together

Mergesort

44

−analysis

−running time represented by recurrence relation

−assume 𝑁 is a power of 2 so that list is always divided

evenly

− for 𝑁 = 1, time to mergesort is constant

−otherwise, time to mergesort 𝑁 numbers is time to perform

two recursive mergesort of size 𝑁/2, plus the time to

merge, which is linear

𝑇 1 = 1

𝑇 𝑁 = 2𝑇
𝑁

2
+ 𝑁

Mergesort

45

−analysis (cont.)

−standard recurrence relation

−can be solved in at least two ways

−telescoping – divide the recurrence through by 𝑁

−substitution

Mergesort

46

−solving mergesort recurrence relation using telescoping

Mergesort

47

−solving mergesort recurrence relation using telescoping

(cont.)

Mergesort

48

−solving mergesort recurrence relation using substitution

(cont.)

43 44

45 46

47 48

6/20/2024

9

Mergesort

49

Mergesort

50

−proof by induction

Prove: 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑐1𝑛 𝑇 1 = 𝑐0 is equivalent to

 𝑇 𝑛 = 𝑐0𝑛 + 𝑐1𝑛 lg 𝑛

 let 𝑛 = 2𝑘

 Base: 𝑘 = 0 (or 𝑛 = 1)

 rr: 𝑇 1 = 𝑐0 by definition

 cf: 𝑇 1 = 𝑐0 · 1 + 𝑐1 · 1 · lg 1

 = 𝑐0 + 𝑐1 · 1 · 0

 = 𝑐0 ✓

 I.H.: Assume: 𝑇 2𝑘 : 2𝑇
2𝑘

2
+ 𝑐12𝑘 = 𝑐02𝑘 + 𝑐12𝑘 lg 2𝑘

 for some 𝑘 ≥ 1

Mergesort

51

−proof by induction (cont.)

I.S.: Show: 2𝑇
2𝑘+1

2
+ 𝑐12𝑘+1 = 𝑐02𝑘+1 + 𝑐12𝑘+1 lg 2𝑘+1

 2𝑇
2𝑘+1

2
+ 𝑐12𝑘+1 = 2𝑇 2𝑘 + 𝑐12𝑘+1

 = 2 𝑐02𝑘 + 𝑐12𝑘 lg 2𝑘 + 𝑐12𝑘+1 by I.H.

 = 𝑐02𝑘+1 + 𝑐12𝑘+1 lg 2𝑘 + 𝑐12𝑘+1

 = 𝑐02𝑘+1 + 𝑐12𝑘+1 lg 2𝑘 + 1

 = 𝑐02𝑘+1 + 𝑐12𝑘+1 lg 2𝑘 + lg 2

 = 𝑐02𝑘+1 + 𝑐12𝑘+1 lg 2𝑘+1 ✓

 By induction, we have therefore shown the original statement

 to be true.

Quicksort

52

−historically, quicksort has been fastest known generic sorting

algorithm

−average running time 𝑂(𝑁 lg 𝑁)

−worst case running time 𝑂(𝑁2), but can be made highly

unlikely

−can be combined with heapsort to achieve 𝑂(𝑁 lg 𝑁) average

and worst case time

Quicksort

53

−quicksort is a divide-and-conquer algorithm

−basic idea

−arbitrarily select a single item

− form three groups:

−those smaller than the item

−those equal to the item

−those larger than the item

−recursively sort the first and third groups

−concatenate the three groups

Quicksort

54

49 50

51 52

53 54

6/20/2024

10

Quicksort

55

− implementation performance good on most inputs

− if list contains many duplicates, performance is very good

−some issues

−making extra lists recursively consumes memory

−not much better than mergesort

− loop bodies too heavy

−can avoid equal category in loop

Quicksort

56

−classic quicksort algorithm to sort an array 𝑆

− if there are either 0 or 1 elements in 𝑆, then return

−choose an element 𝑣 in 𝑆 to serve as the pivot

−partition 𝑆 − 𝑣 into two disjoint subsets 𝑆1 and 𝑆2 with the

properties that

 𝑥 ≤ 𝑣 if 𝑥 ∈ 𝑆1 and

 𝑥 ≥ 𝑣 if 𝑥 ∈ 𝑆2

−apply quicksort recursively to 𝑆1 and 𝑆2

−note the ambiguity for elements equal to the pivot

− ideally, half of the duplicates would go into each sublist

Quicksort

57

−example

−pivot chosen randomly

Quicksort

58

−many methods for selecting pivot and partitioning elements

−performance very sensitive to even slight variances in

these choices

−comparison with mergesort

− like mergesort, recursively solves two subproblems and

requires linear additional work

−unlike mergesort, subproblems may not be of equal size

(bad)

Quicksort

59

−quicksort vs. mergesort

−mergesort: partitioning is trivial; the work is in the merge

−quicksort: the work is in the partitioning; the merge is trival

−mergesort: requires an auxiliary array to be efficient (in-

place variants exist that are less efficient, or which sacrifice

an important property called stability)

−quicksort: faster since partitioning step can be performed

efficiently in place (with a modest amount (lg 𝑁) space

needed to handle the recursion)

− in both sorts, more efficient to switch to insertion sort once

the arrays are sufficiently small to avoid the cost of the

overhead of recursion on small arrays

Quicksort

60

−example

−pivots in red

55 56

57 58

59 60

6/20/2024

11

Quicksort

61

−choosing the pivot

−popular, but bad, method: choose the first element in the

list

−OK if input is random

−not OK if input is presorted or in reverse order

−happens consistently in recursive calls

−results in quadratic time for presorted data for doing

nothing!

−occurs often

−alternative: choose larger of first two elements

−could pick the pivot randomly

−safe, but random number generation expensive

Quicksort

62

−choosing the pivot (cont.)

−median-of-three partitioning

−best choice would be median of sublist, but takes too

long to calculate

−good estimate by picking three elements randomly and

using middle element as pivot

−randomness not really helpful

−select first, middle, and last elements

−eliminates bad case for sorted input

−reduces number of comparisons by about 15%

−example: 8, 1, 4, 9, 6, 3, 5, 2, 7, 0

−from 8, 0, and (𝑙𝑒𝑓𝑡 + 𝑟𝑖𝑔ℎ𝑡)/2 , or 6, select 6

Quicksort

63

−partitioning strategy

− first, get pivot out of the way by swapping with last element

− two counters, 𝑖 and 𝑗

−𝑖 starts at first element

−𝑗 starts at next-to-last element

−move all the smaller elements to left and all larger elements

to right

Quicksort

64

−partitioning strategy (cont.)

−while 𝑖 is to the left of 𝑗

−move 𝑖 right, skipping over elements smaller than pivot

−move 𝑗 left, skipping over elements larger than pivot

−when 𝑖 and 𝑗 stop, 𝑖 is at a larger element and 𝑗 is at a

smaller element – swap them

−example

Quicksort

65

−partitioning strategy (cont.)

−example (cont.)

−after 𝑖 and 𝑗 cross, swap location 𝑖 with pivot

Quicksort

66

−partitioning strategy (cont.)

−at this point, all positions 𝑝 < 𝑖 contain smaller elements

than pivot, and all positions 𝑝 > 𝑖 contain larger elements

−how to handle equal elements

−should 𝑖 stop when element equal to pivot? what about 𝑗?

−𝑖 and 𝑗 should behave similarly to avoid all elements

equal to pivot collecting in one sublist

−best to have 𝑖 and 𝑗 stop and perform an unnecessary

swap to avoid uneven sublists (and quadratic run time!)

− for small arrays, and as sublists get small (< 20 elements),

use insertion sort

−fast and avoids degenerate median-of-three cases

61 62

63 64

65 66

6/20/2024

12

Quicksort

67

− implementation

−driver

−pass array and range (left and right) to be sorted

Quicksort

68

− implementation (cont.)

−median-of-three pivot selection

−sort a[left], a[right], and a[center] in place

−smallest of three ends up in first location

− largest in last location

−pivot in a[right – 1]

−𝑖 can be initialized to left + 1

−𝑗 can be initialized to right – 2

−since a[left] smaller than pivot, it will act as a sentinel

and stop 𝑗 from going past the beginning of the array

−storing pivot at a[right – 1] will act as a sentinel for 𝑖

Quicksort

69

− implementation (cont.)

−median-of-three

Quicksort

70

− implementation (cont.)

−main quicksort

Quicksort

71

− implementation (cont.)

−main quicksort (cont.)

Quicksort

72

− implementation (cont.)

−main quicksort (cont.)

−16: i and j start at one off

−22: swap can be written inline

−19-20: small inner loop very fast

67 68

69 70

71 72

6/20/2024

13

Quicksort

73

−analysis

−quicksort is interesting because its worst-case behavior

and its expected behavior are very different

− let 𝑇(𝑛) be the run-time needed to sort 𝑛 items

−𝑇(0) = 𝑇(1) = 1

−pivot selection is constant time

−cost of the partition is 𝑐𝑛

− if 𝑆1 has 𝑖 elements, then 𝑆2 has 𝑛 − 𝑖 − 1 elements,

and

𝑇(𝑛) = 𝑇(𝑖) + 𝑇(𝑛 − 𝑖 − 1) + 𝑐𝑛

Quicksort

74

−worst-case analysis

− the worst-case occurs when 𝑖 = 0 or 𝑖 = 𝑛 i.e., when

the pivot is the smallest or largest element every time

quicksort() is called

− in this case, without loss of generality we may assume that

𝑖 = 0, so

𝑇 𝑛 = 𝑇 0 + 𝑇 𝑛 − 1 + 𝑐𝑛 ~ 𝑇 𝑛 − 1 + 𝑐𝑛, 𝑛 > 1

− thus

𝑇(𝑛 − 1) = 𝑇(𝑛 − 2) + 𝑐(𝑛 − 1)
𝑇(𝑛 − 2) = 𝑇(𝑛 − 3) + 𝑐(𝑛 − 2)
𝑇(𝑛 − 3) = 𝑇(𝑛 − 4) + 𝑐(𝑛 − 3)

…
𝑇(3) = 𝑇(2) + 𝑐(3)
𝑇(2) = 𝑇(1) + 𝑐(2)

Quicksort

75

−worst-case analysis (cont.)

−combining these yields

𝑇 𝑛 = 𝑐𝑛 + 𝑐 𝑛 − 1 + 𝑐 𝑛 − 2 + … + 𝑐 × 3 + 𝑐 × 2 + 𝑇 1

−or

𝑇 𝑛 = 𝑇 1 + 𝑐 ෍

𝑘=2

𝑛

𝑘 ~𝑐
𝑛2

2

−quadratic!

− is it likely that at every recursive call to quicksort() we
will choose the smallest element as the pivot?

−yes, if the data are already sorted

Quicksort

76

−best-case analysis

− in the best case, the pivot is always the median of the data

being operated on

𝑇(𝑛) = 𝑇(𝑛/2) + 𝑇(𝑛/2) + 𝑐𝑛 = 2𝑇(𝑛/2) + 𝑐𝑛

−we know from the analysis of mergesort that the solution is

𝑇(𝑛) = ϴ(𝑛 lg 𝑛)

Quicksort

77

−average-case analysis

−assumption: any partition size is equally likely

− for instance, suppose 𝑛 = 7; since we remove the pivot,

the possible sizes of the partitions are

− in this case the expected value of 𝑇(𝑖) + 𝑇(𝑛 − 𝑖 − 1) is

Quicksort

78

73 74

75 76

77 78

6/20/2024

14

Quicksort

79

2𝑐

𝑛 + 1

Quicksort

80

Lower Bound for Pairwise Sorting

81

−no algorithm based on pairwise comparisons can guarantee

sorting 𝑛 items with fewer than lg 𝑛! ~ 𝑛 lg 𝑛 comparisons

− to show this, we first abstract the behavior of such

algorithms using a decision tree

−a decision tree is a binary tree in which each node

represents a set of possible orderings

− the root consists of the 𝑛! possible orderings of the items to

be sorted

− the edges represent the results of comparisons, and a

node comprises the orderings consistent with the

comparisons made on the path from the root to the node

−each leaf consists of a single sorted ordering

Lower Bound for Pairwise Sorting

82

Lower Bound for Pairwise Sorting

83

−a decision tree to sort 𝑛 items must have 𝑛! leaves

− this requires a tree of depth lg 𝑛! ~ 𝑛 lg 𝑛 by Stirling’s

approximation

− thus, the best case for sorting with pairwise comparisons is

Ω(𝑛 lg 𝑛)

Quickselect

84

− thus far, the best performance to select the 𝑘𝑡ℎ smallest

element is 𝑂(𝑁 lg 𝑁) using a priority queue (heap)

−quicksort can be modified to solve the selection problem

−quickselect

79 80

81 82

83 84

6/20/2024

15

Quickselect

85

− quickselect algorithm

− given a set 𝑆, let 𝑆 be its cardinality

− quickselect (𝑆, 𝑘)
− if there is 1 element in 𝑆, return 𝑘 = 1
−choose an element in 𝑆 to serve as the pivot

−partition 𝑆 − {𝑣} into two disjoint subsets 𝑆1 and 𝑆2 with the
properties that

 𝑥 ≤ 𝑣 if 𝑥 ∈ 𝑆1 and

 𝑥 ≥ 𝑣 if 𝑥 ∈ 𝑆2

−now the search proceeds on 𝑆1 and 𝑆2

−if 𝑘 ≤ 𝑆1 , then the 𝑘𝑡ℎ smallest element must be in 𝑆1, so
quickselect(𝑆1,𝑘)

−if 𝑘 = 1 + 𝑆1 , then the pivot is the 𝑘𝑡ℎ smallest, so return 𝑣
−otherwise, the 𝑘𝑡ℎ smallest element must be in 𝑆2, and it is

the (𝑘 − 𝑆1 − 1)-th element of 𝑆2, so return quickselect(𝑆2,
𝑘 − 𝑆1 − 1)

Quickselect

86

−example: find the median of 7 items (𝑘 = 4)

−red denotes pivots, while grey denotes the partition that is

ignored

−call quickselect (𝑆, 4); partition, then call quickselect (𝑆1,4);

once again, partition; at this point, 𝑆1 = 3, so the pivot is

the 4th element, and thus the answer

Quickselect

87

−example: find the median of 7 items (𝑘 = 4)

−call quickselect (𝑆, 4); partition; since 𝑆1 = 2, we want the

𝑘 − 𝑆1 − 1 = 4 − 1 − 1 = 1𝑠𝑡 smallest element of 𝑆2 , so

call quickselect (𝑆2,1); partition; since we are inside the call

quickselect (𝑆2,1), we want the 1st smallest element, so we

call quickselect (𝑆1,1), which immediately exits, returning

10

Quickselect

88

− quickselect complexity

− at each recursive step quickselect ignores one partition – will this

make it faster than quicksort?

− in the worst case, quickselect behaves like quicksort, and has 𝑛2

complexity

− this occurs if the one partition is empty at each partitioning,

and we have to look at all the terms in the other partition.

− best case behavior is linear

−occurs if each partition is equal

−since quickselect ignores one partition at each step, its

runtime 𝑇(𝑛) satisfies the recurrence

𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑐𝑛

− this leads to 𝑇(𝑛) being linear

Quickselect

89

− quickselect complexity (cont.)

− expected behavior

−suppose we choose our pivot 𝑣 randomly from the terms we
are searching

−suppose 𝑣 lies between the 25th and 75th percentiles of the
terms (i.e., 𝑣 is larger than 1/4 and smaller than 1/4 of the
terms)

− this means that neither partition can contain more than 3/4 of
the terms, so the partitions can't be too imbalanced; call such
a pivot “good”

−on average, how many 𝑣 do we need to choose before we get
a good one?

−a randomly chosen 𝑣 is good with probability ½ - a good
pivot lies in the middle of 50% of the terms

−choosing a good pivot is like tossing a coin and seeing
heads

Quickselect

90

−quickselect complexity (cont.)

−expected behavior (cont.)

−the expected number of tosses to see a heads is two

−to see this, let 𝐸 be the expected number of tosses

before seeing a heads

−toss the coin; if it's heads, we're done; if it's tails (which

occurs with probability 1/2) we have to toss it again, so

 𝐸 = 1 +
1

2
𝐸, whence 𝐸 = 2

−thus, on average, quickselect will take two partitions to

reduce the array to at most 3/4 of the original size

85 86

87 88

89 90

6/20/2024

16

Quickselect

91

−quickselect complexity (cont.)

−expected behavior (cont.)

− in terms of 𝑇(𝑛),

−expected value of 𝑇(𝑛) ≤ 𝑇(3𝑛/4) + expected time to

reduce the array

−since each partitioning step requires 𝑐𝑛 work, and we

expect to need 2 of them to reduce the array size to ≤
3𝑛/4, we have

𝑇(𝑛) ≤ 𝑇(3𝑛/4) + 𝑐𝑛

Quickselect

92

−quickselect complexity (cont.)

−expected behavior (cont.)

−consider the more general recurrence

 𝑇(𝑛) ≤ 𝑇(α𝑛) + 𝑐𝑛, where α < 1

−at the 𝑘𝑡ℎ level of the recursion, starting with 𝑘 = 1,

there is a single problem of size at most α𝑘𝑛

−the amount of work done at each level is thus at most

𝑐α𝑘𝑛

−the recursion continues until

α𝑚𝑛 ≤ 1

−so 𝑚 log α + log 𝑛 ≤ 0, or

𝑚 ≤ −
log 𝑛

log α

Quickselect

93

−quickselect complexity (cont.)

−expected behavior (cont.)

−thus, the total amount of work is bounded above by

𝑐𝑛 + 𝑐α𝑛 + 𝑐α2𝑛 + ⋯ + 𝑐α 𝑚 𝑛 = 𝑐𝑛
1 − α 𝑚+1

1 − α
≤ 𝑐𝑛

1

1 − α
= 𝑂(𝑛)

−thus, the best case and expected case behavior of

quickselect with a randomly chosen pivot is 𝑂(𝑛)

Introsort

94

− from D. R. Musser, Introspective sorting and selection

algorithms, Software: Practice and Experience 27 (8) 983-

993, 1997

− introsort is a hybrid of quicksort and heapsort

− introsort starts with quicksort, but switches to heapsort

whenever the number of levels of recursion exceed a

specified threshold (e.g., 2 lg 𝑛).

− if it switches to heapsort, the subarrays that remain to be

sorted will likely be much smaller than the original array

− this approach gives an 𝑛 lg 𝑛 guaranteed complexity, while

making the most of the efficiency of quicksort

Stability

95

−a sorting algorithm is stable if it preserves the relative order

of equal keys

−stable sorts:

− insertion sort

−mergesort

−unstable sorts:

−selection sort

−Shell sort

−quicksort

−heapsort

Stability

96

91 92

93 94

95 96

6/20/2024

17

C++ Standard Library Sorts

97

−sort(): introsort, guaranteed to be 𝑛 lg 𝑛

−stable_sort(): mergesort, guaranteed to be stable and

−𝑛 lg 𝑛 time, if a ϴ(𝑛)-sized auxiliary array can be allocated

−𝑛 lg2 𝑛 time for an in-place sort, otherwise

−partial_sort(): sort the 𝑘 largest (or smallest) items

String / Radix Sort

98

−we can use the special structure of character strings to
devise sorting algorithms

−here, a character should be understood in a general sense,
as an element of an alphabet, which is a collection of 𝑀 items
(presumably all requiring the same number of bits for their
representation)

− the alphabet is also assumed to have an ordering, so we may
sort characters

−as a special case, we can think of treating base-𝑏 numbers
as a string of digits from the range 0 to 𝑏𝑝 − 1 (𝑝-digit base-𝑏
numbers)

−since the base of a number system is sometimes called the
radix, the sorting algorithms we will discuss are frequently
called radix sorts

String Sorting: LSD

99

− in least-significant digit (LSD) first sorting, we sort using the

digits (characters) from least- to most-significant:

String Sorting: LSD

100

−algorithm:
for d from least- to most-significant digit {

 sort using counting sort on the least-significant digit

}

−observations:

−since counting sort is stable, LSD sorting is stable

−the stability of counting sort is essential to making LSD
sorting work

−algorithm assumes all the strings have the same length 𝑝

− time complexity: there are 𝑝 passes in the outmost loop; in
each loop iteration, we apply counting sort to 𝑁 digits in the
range 0 to 𝑏 − 1, requiring 𝑁 + 𝑏; total work: ϴ(𝑝 𝑁 + 𝑏)

−space complexity: 𝑁 + 𝑏 – same as counting sort

String Sorting: LSD

101

−why not go left-to-right?

− the same idea, but starting with the most significant digit,

doesn't work:

−why does right-to-left digit sorting work but left-to-right does

not?

String Sorting: LSD

102

− in the old days, we used Hollerith cards:

−early versions of Fortran and COBOL had limits of 72

characters per line

− this left columns 73-80 free for the card sequence number

− that way, if you dropped your deck of cards, you could go to...

97 98

99 100

101 102

6/20/2024

18

String Sorting: LSD

103

−… the card sorter

IBM Model 082 card sorter

String Sorting: LSD

104

− these machines used LSD:

−pile the disordered cards in the input hopper and sort by the

last digit in the sequence number

−now take the sorted decks and stack them in order

−place the combined deck back in the input hopper and sort

by the next-to-last digit in the sequence number

−repeat steps 2 and 3 until sorted

Sorting Algorithms Summary

105

−Shell sort is subquadratic with a suitable increment sequence

−Shell's original increment sequence is, in fact, quadratic in

the worst case

103 104

105

	Slide 1: Chapter 7 Sorting
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105

