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Chapter 7

Sorting

Introduction
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−sorting

− fundamental task in data management

−well-studied problem in computer science

−basic problem

−given an array of items where each item contains a key, 

rearrange the items so that the keys appear in ascending 

order

− the key may be only part of the item begin sorted

−e.g., the item could be an entire block of information 

about a student, while the search key might be only the 

student's name

Introduction
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−we will assume 

− the array to sort contains only integers

−defined < and > operators (comparison-based sorting)

−all 𝑁 array positions contain data to be sorted

− the entire sort can be performed in main memory

−number of elements is relatively small: < a few million

−given a list of n items, 𝑎0, 𝑎1, … , 𝑎𝑛−1, we will use the 
notation 𝑎𝑖 ≤ 𝑎𝑗 to indicate that the search key for a 𝑎𝑖 does 

not follow that of 𝑎𝑗

−sorts that cannot be performed in main memory

−may be performed on disk or tape

−known as external sorting

Sorting Algorithms
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−𝑂 𝑁2  sorts

− insertion sort

−selection sort

−bubble sort

−why 𝑂 𝑁2 ?

−Shellsort: subquadratic

−𝑂(𝑁 lg 𝑁) sorts

−heapsort

−mergesort

−quicksort

−a lower bound on sorting by pairwise comparison

−𝑂 𝑁  sorting algorithms: count sort

−string sorts

Sorting
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−given 𝑁 keys to sort, there are 𝑁! possible permutations of 

the keys!

−e.g, given 𝑁 = 3 and the keys 𝑎, 𝑏, 𝑐, there are 

  3! = 3 ∙ 2 ∙ 1 =  6 possible permutations:

  𝑎𝑏𝑐 𝑎𝑐𝑏 𝑏𝑎𝑐 𝑏𝑐𝑎 𝑐𝑎𝑏 𝑐𝑏𝑎

−brute force enumeration of permutations is not 

computationally feasible once 𝑁 > 10

−13! = 6.2270 × 109

−20! = 2.4329 × 1018

Sorting
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−cost model for sorting

− the basic operations we will count are comparisons and 

swaps

− if there are array accesses that are not associated with 

comparisons or swaps, we need to count them, too

−programming notes

− if the objects being sorted are large, we should swap 

pointers to the objects, rather than the objects themselves

−polymorphism: general-purpose sorting algorithms vs 

templated algorithms

1 2
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Insertion Sort
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− insertion sort

−simple

−𝑁 − 1 passes

− in pass 𝑝, 𝑝 =  1, … , 𝑁 − 1, we move 𝑎𝑝 to its correct 

location among 𝑎0, … , 𝑎𝑝

− for passes 𝑝 =  1 to 𝑁 − 1, insertion sort ensures that the 

elements in positions 0 to 𝑝 are in sorted order

−at the end of pass 𝑝, the elements in positions 0 to 𝑝 are in 

sorted order

Insertion Sort
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−algorithm

for (p = 1; p < N; p++) {

   tmp = 𝒂𝒑

   for (j = p; (j > 0) && (tmp < 𝒂𝒋−𝟏); j--) {

      swap 𝒂𝒋 and 𝒂𝒋−𝟏

   }

   𝒂𝒋 = tmp

}

Insertion Sort
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− to avoid the full swap, we can use the following code:

for (p = 1; p < N; p++) {

   tmp = 𝒂𝒑

   for (j = p; (j > 0) && (tmp < 𝒂𝒋−𝟏); j--) {

      𝒂𝒋 = 𝒂𝒋−𝟏

   }

   𝒂𝒋 = tmp

}

Insertion Sort
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−example

Insertion Sort
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−example

  position  0 1 2 3 4 5

  initial sequence 42 6 1 54 0 7

  p = 1   6 42 1 54 0 7

  p = 2   6 1 42 54 0 7

    1 6 42 54 0 7

  p = 3   1 6 42 54 0 7

  p = 4   1 6 42 0 54 7

   1 6 0 42 54 7

   1 0 6 42 54 7

   0 1 6 42 54 7

  p = 5   0 1 6 42 7 54

   0 1 6 7 42 54 

Insertion Sort

12

−analysis

−best case: the keys are already sorted – 𝑛 − 1 

comparisons, no swaps

−worst case: the keys are in reverse sorted order

−expected (average) case: ?

7 8
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Insertion Sort

13

−analysis

−given 𝑎0, … , 𝑎𝑛−1 that we wish to sort in ascending order, an 
inversion is any pair that is out of order relative to one 
another: 𝑎𝑖, 𝑎𝑗  for which 𝑖 < 𝑗 but 𝑎𝑖 > 𝑎𝑗

− the list    

 42, 6, 9, 54, 0

 contains the following inversions:

42, 6 , 42, 9 , 42, 0 , 6, 0 , 9, 0 , (54, 0)

−swapping an adjacent pair of elements that are out of order 
removes exactly one inversion

−thus, any sort that operates by swapping adjacent terms 
requires as many swaps as there are inversions

Insertion Sort
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−number of inversions

−a list can have between 0 and 𝑁(𝑁 − 1)/2 inversions, the 

latter of which occurs when 𝑎0 > 𝑎1 > ⋯ > 𝑎𝑁−1

− thus, counting inversions also says the worst-case behavior 

of insertion is quadratic

−what do inversions tell us about the expected behavior?

− let 𝑃 be the probability space of all permutations of 𝑁 

distinct elements with equal probability

−Theorem: The expected number of inversions in a list 

taken from 𝑃 is 𝑁(𝑁 − 1)/4

−thus, the expected complexity of insertion sort is 

quadratic

Insertion Sort
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−proof

−observe that any pair in a list that is an inversion is in the 

correct order in the reverse of that list

 

− this means that if we look at a list and its reverse and count 

the total number of inversions, then the combined number 

of inversions is 𝑁(𝑁 − 1)/2

list inversions reverse lists inversions

1, 2, 3, 4 0 4, 3, 2, 1 6

2, 1, 3, 4 1 4, 3, 1, 2 5

3, 2, 1, 4 3 4, 1, 2, 3 3

Insertion Sort
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−proof (cont.)

−since there are 𝑁!/2 distinct pairs of lists and their 

reverses, there is a total of

 
𝑁! 

2

𝑁(𝑁−1)

2
= 𝑁!

𝑁(𝑁−1)

4

inversions among the 𝑁! possible lists of 𝑁 distinct objects

− this means that the expected number of inversions in any 

given list is 𝑁(𝑁 − 1)/4

Insertion Sort
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− in summary

− for randomly ordered arrays of length 𝑁 with distinct keys, 

insertion sort uses 

−~𝑁2/4 comparisons and ~𝑁2/4 swaps on average

−~𝑁2/2 comparisons and ~𝑁2/2 swaps in the worst case

−𝑁 − 1 comparisons and 0 swaps in the best case

Selection Sort

18

−selection sort

− find the smallest item and exchange it with the first entry 

− find the next smallest item and exchange it with the second 

entry

− find the next smallest item and exchange it with the third 

entry

…

13 14
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Selection Sort
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−algorithm

for (p = 0; p < N; p++) {

   m = p

   for (j = p+1; j < N; j++) {

      if (𝒂𝒋 < 𝒂𝒎) {

         m = j

      }

   }

   swap 𝒂𝒎 and 𝒂𝒑

}

Selection Sort

20

−example

  position   0 1 2 3 4 

  initial sequence  6 42 9 54 0 

  after p = 0   0 42 9 54 6 

  after p = 1   0 6 9 54 42 

  after p = 2   0 6 9 54 42 

  after p = 3   0 6 9 42 54 

  

Selection Sort
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−complexity

−𝑁2/2 comparisons and 𝑁 swaps to sort an array of 

length 𝑁

− the amount of work is independent of the input

−selection sort is no faster on sorted input than on random 

input

−selection sort involves a smaller number of swaps than 

any of the other sorting algorithms we will consider

Selection Sort
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−proof

− there is one swap per iteration of the outermost loop, which 

is executed 𝑁 times 

− there is one comparison made in each iteration of the 

innermost loop, which is executed

෍

𝑖=0

𝑁−1

෍

𝑗=𝑖+1

𝑁−1

1 = ෍

𝑖=0

𝑁−1

𝑁 − 1 − 𝑖 + 1 + 1 = ෍

𝑖=0

𝑁−1

(𝑁 − 𝑖 + 1)

= 𝑁2 −
𝑁 − 1 𝑁

2
+ 𝑁 =

𝑁2

2
+

3𝑁

2
~

𝑁2

2

Bubble Sort
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−bubble sort

−read the items from left to right

− if two adjacent items are out of order, swap them

−repeat until sorted

−a sweep with no swaps means we are done

Bubble Sort

24

−algorithm

not_done = true

while (not_done) {

   not_done = false

   for (i = 0 to N - 2) {

      if (𝒂𝒊 > 𝒂𝒊+𝟏) {

         swap 𝒂𝒊 and 𝒂𝒋

         not_done = true

      }

   }

}

19 20

21 22

23 24
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Bubble Sort
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−example

  initial sequence  42 6 9 54 0 

  while-loop   6 42 9 54 0 

    6 9 42 54 0 

    6 9 42 0 54 

  while-loop   6 9 0 42 54 

  while-loop   6 0 9 42 54

  while-loop   0 6 9 42 54

Bubble Sort

26

−complexity

− if the data are already sorted, we make only one sweep 

through the list

−otherwise, the complexity depends on the number of times 

we execute the while-loop

−since bubble sort swaps adjacent items, it will have 

quadratic worst-case and expected-case complexity

Shellsort

27

−Shellsort

−Donald L. Shell (1959), A high-speed sorting procedure, 
Communications of the ACM 2 (7): 3032.

−swapping only adjacent items dooms us to quadratic worst-
case behavior, so swap non-adjacent items!

−Shellsort starts with an increment sequence

ℎ𝑡 > ℎ𝑡−1 > ⋯ > ℎ2 > ℎ1 = 1

− it uses insertion sort to sort

−every ℎ𝑡-th term starting at 𝑎0, then 𝑎0, … , then 𝑎ℎ𝑡−1

−every ℎ𝑡−1-th term starting at 𝑎0, then 𝑎0, … , then 𝑎ℎ𝑡−1−1

−etc.

−every term (ℎ1 = 1) starting at 𝑎0, after which the array is 
sorted

Shellsort

28

−Shellsort

−suppose we use the increment sequence 15, 7, 5, 3, 1, and 

have finished the 15-sort and 7-sort

− then we know that

𝑎0 ≤ 𝑎15 ≤ 𝑎30 ≤ ⋯
𝑎0 ≤ 𝑎7 ≤ 𝑎14 ≤ ⋯

−we also know that 

𝑎15 ≤ 𝑎22 ≤ 𝑎29 ≤ 𝑎36 ≤ ⋯

−putting these together, we see that

𝑎0 ≤ 𝑎7 ≤ 𝑎22 ≤ 𝑎29 ≤ 𝑎36

Shellsort

29

−Shellsort

−after we have performed the sort using increment ℎ𝑘, the 

array is ℎ𝑘-sorted: all elements that are ℎ𝑘 terms apart are 

in the correct order: 

𝑎𝑖 ≤ 𝑎𝑖+ℎ𝑘

− the key to Shellsort's efficiency is the following fact: an ℎ𝑘-

sorted array remains ℎ𝑘-sorted after sorting with increment 

ℎ𝑘−1

Shellsort

30

−examples

                        http://interactivepython.org/KKOkZ/courselib/static/pythonds/SortSearch/TheShellSort.html

0        1       2       3       4        5       6       7       8        9      10      11      12

25 26

27 28

29 30
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Shellsort
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−complexity

−a good increment sequence ℎ𝑡, ℎ𝑡−1, … , ℎ1 = 1 has the 
property that for any element 𝑎𝑝, when it is time for the ℎ𝑘-

sort, there are only a few elements to the left of 𝑝 that are 
larger than 𝑎𝑝

−Shell's original increment sequence has 𝑁2 worst-case 

behavior: 

   ℎ𝑡 =
𝑁

2
, ℎ𝑘 =

ℎ𝑘+1

2

Shellsort

32

−complexity (cont.)

− the sequences

2𝑘 − 1 = 1, 3, 7, 15, 31, … , (T. H. Hibbard, 1963)

3𝑘−1

2
= 1, 4, 13, 40, 121 (V. R. Pratt, 1971)

   yield 𝑂 𝑁 Τ3 2  worst-case complexity

−other sequences yield 𝑂 𝑁 Τ4 3  worst-case complexity 

Heapsort

33

−priority queues can be used to sort in 𝑂(𝑁 lg 𝑁)

−strategy

−build binary heap of 𝑁 elements – 𝑂(𝑁) time

−perform 𝑁 deleteMin operations – 𝑂(𝑁 lg 𝑁)

−elements (smallest first) stored in second array, then copied 

back into original array – 𝑂(𝑁) time

−requires extra array, which doubles memory requirement

Heapsort

34

−can avoid extra array by storing element in original array

−heap leaves an open space as each smallest element is 

deleted

−store element in newly opened space, which is no longer 

used by the heap

−results in list of decreasing order in array

− to achieve increasing order, change ordering of heap to 

max heap

−when complete, array contains elements in ascending 

order

Heapsort

35

−max heap after buildHeap phase

Heapsort

36

−max heap after first deleteMax

31 32

33 34

35 36
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Heapsort

37

−analysis

−building binary heap of 𝑁 elements – < 2𝑁 comparisons

− total deleteMax operations – 2𝑁 lg 𝑁 − 𝑂(𝑁) if 𝑁 ≥ 2

−heapsort in worst case – 2𝑁 lg 𝑁 − 𝑂(𝑁)

−average case extremely complex to compute – 2𝑁 lg 𝑁 −
𝑂 𝑁 lg lg 𝑁

− improved to 2𝑁 lg 𝑁 − 𝑂(𝑁) or simply  𝑂(𝑁 lg 𝑁)

−heapsort useful if we want to sort the largest 𝑘 or smallest 𝑘 

elements and 𝑘 ≪ 𝑁

Mergesort

38

−mergesort is a divide-and-conquer algorithm

− in Vol. III of The Art of Computer Programming, Knuth 

attributes the algorithm to John von Neumann (1945)

− the idea of mergesort is simple: 

−divide the array in two

−sort each half

−merge the two subarrays using mergesort

−merging simple since subarrays sorted

−mergesort can be implemented recursively and non-

recursively

−runs in 𝑂(𝑁 lg 𝑁), worst case

Mergesort

39

−merging algorithm takes two arrays, 𝐴 and 𝐵, and output 

array 𝐶

−also uses three counters: 𝐴𝑐𝑡𝑟, 𝐵𝑐𝑡𝑟, 𝐶𝑐𝑡𝑟

− initialized to beginning of respective arrays

−smaller of 𝐴[𝐴𝑐𝑡𝑟] and 𝐵[𝐵𝑐𝑡𝑟] copied to 𝐶[𝐶𝑐𝑡𝑟]

−when either input array exhausted, the remainder of the 

other list is copied to 𝐶

Mergesort

40

−example

Mergesort

41

−example (cont.)

Mergesort

42

−example (cont.)

−another way to visualize

37 38

39 40

41 42
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Mergesort

43

− time to merge two lists is linear – at most 𝑁 − 1 comparisons

−every comparison adds an element to 𝐶

−mergesort easy to characterize

− if 𝑁 = 1, only one element to sort

−otherwise, recursively mergesort first half and second half

−merge these two halves

−problem is divided into smaller problems and solved 

recursively, and conquered by patching the solutions 

together

Mergesort

44

−analysis

−running time represented by recurrence relation

−assume 𝑁 is a power of 2 so that list is always divided 

evenly

− for 𝑁 = 1, time to mergesort is constant

−otherwise, time to mergesort 𝑁 numbers is time to perform 

two recursive mergesort of size 𝑁/2, plus the time to 

merge, which is linear

𝑇 1 = 1

𝑇 𝑁 = 2𝑇
𝑁

2
+ 𝑁

Mergesort

45

−analysis (cont.)

−standard recurrence relation

−can be solved in at least two ways

−telescoping – divide the recurrence through by 𝑁

−substitution

Mergesort

46

−solving mergesort recurrence relation using telescoping

Mergesort

47

−solving mergesort recurrence relation using telescoping 

(cont.)

Mergesort

48

−solving mergesort recurrence relation using substitution 

(cont.)

43 44

45 46

47 48
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Mergesort

49

Mergesort

50

−proof by induction

Prove: 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑐1𝑛 𝑇 1 = 𝑐0 is equivalent to

     𝑇 𝑛 = 𝑐0𝑛 + 𝑐1𝑛 lg 𝑛

    let 𝑛 = 2𝑘

   Base: 𝑘 = 0 (or 𝑛 = 1)

 rr: 𝑇 1 = 𝑐0 by definition

 cf: 𝑇 1 = 𝑐0 · 1 + 𝑐1 · 1 · lg 1

    = 𝑐0 + 𝑐1 · 1 · 0

    = 𝑐0  ✓

   I.H.: Assume: 𝑇 2𝑘 : 2𝑇
2𝑘

2
+ 𝑐12𝑘 =  𝑐02𝑘 + 𝑐12𝑘 lg 2𝑘  

       for some 𝑘 ≥ 1

Mergesort

51

−proof by induction (cont.)

I.S.: Show: 2𝑇
2𝑘+1

2
+ 𝑐12𝑘+1 =  𝑐02𝑘+1 + 𝑐12𝑘+1 lg 2𝑘+1 

     2𝑇
2𝑘+1

2
+ 𝑐12𝑘+1 =  2𝑇 2𝑘 + 𝑐12𝑘+1

    =  2 𝑐02𝑘 + 𝑐12𝑘 lg 2𝑘 + 𝑐12𝑘+1  by I.H.

    = 𝑐02𝑘+1 + 𝑐12𝑘+1 lg 2𝑘 + 𝑐12𝑘+1

    = 𝑐02𝑘+1 + 𝑐12𝑘+1 lg 2𝑘 + 1

    = 𝑐02𝑘+1 + 𝑐12𝑘+1 lg 2𝑘 + lg 2

    = 𝑐02𝑘+1 + 𝑐12𝑘+1 lg 2𝑘+1  ✓

   By induction, we have therefore shown the original statement

 to be true.

Quicksort

52

−historically, quicksort has been fastest known generic sorting 

algorithm

−average running time 𝑂(𝑁 lg 𝑁)

−worst case running time 𝑂(𝑁2), but can be made highly 

unlikely

−can be combined with heapsort to achieve 𝑂(𝑁 lg 𝑁) average 

and worst case time

Quicksort

53

−quicksort is a divide-and-conquer algorithm

−basic idea 

−arbitrarily select a single item

− form three groups:

−those smaller than the item

−those equal to the item

−those larger than the item

−recursively sort the first and third groups

−concatenate the three groups

Quicksort

54

49 50

51 52

53 54
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Quicksort

55

− implementation performance good on most inputs

− if list contains many duplicates, performance is very good

−some issues

−making extra lists recursively consumes memory

−not much better than mergesort

− loop bodies too heavy

−can avoid equal category in loop

Quicksort

56

−classic quicksort algorithm to sort an array 𝑆

− if there are either 0 or 1 elements in 𝑆, then return

−choose an element 𝑣 in 𝑆 to serve as the pivot

−partition 𝑆 − 𝑣   into two disjoint subsets 𝑆1 and 𝑆2 with the 

properties that

  𝑥 ≤ 𝑣 if 𝑥 ∈ 𝑆1 and

  𝑥 ≥ 𝑣 if 𝑥 ∈ 𝑆2

−apply quicksort recursively to 𝑆1 and 𝑆2

−note the ambiguity for elements equal to the pivot

− ideally, half of the duplicates would go into each sublist

Quicksort

57

−example

−pivot chosen randomly

Quicksort

58

−many methods for selecting pivot and partitioning elements

−performance very sensitive to even slight variances in 

these choices

−comparison with mergesort

− like mergesort, recursively solves two subproblems and 

requires linear additional work

−unlike mergesort, subproblems may not be of equal size 

(bad)

Quicksort

59

−quicksort vs. mergesort

−mergesort: partitioning is trivial; the work is in the merge

−quicksort: the work is in the partitioning; the merge is trival

−mergesort: requires an auxiliary array to be efficient (in-

place variants exist that are less efficient, or which sacrifice 

an important property called stability)

−quicksort: faster since partitioning step can be performed 

efficiently in place (with a modest amount (lg 𝑁) space 

needed to handle the recursion)

− in both sorts, more efficient to switch to insertion sort once 

the arrays are sufficiently small to avoid the cost of the 

overhead of recursion on small arrays

Quicksort

60

−example

−pivots in red

55 56

57 58

59 60
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Quicksort

61

−choosing the pivot

−popular, but bad, method: choose the first element in the 

list

−OK if input is random

−not OK if input is presorted or in reverse order

−happens consistently in recursive calls

−results in quadratic time for presorted data for doing 

nothing!

−occurs often

−alternative: choose larger of first two elements

−could pick the pivot randomly

−safe, but random number generation expensive

Quicksort

62

−choosing the pivot (cont.)

−median-of-three partitioning

−best choice would be median of sublist, but takes too 

long to calculate

−good estimate by picking three elements randomly and 

using middle element as pivot

−randomness not really helpful

−select first, middle, and last elements

−eliminates bad case for sorted input

−reduces number of comparisons by about 15%

−example: 8, 1, 4, 9, 6, 3, 5, 2, 7, 0

−from 8, 0, and (𝑙𝑒𝑓𝑡 + 𝑟𝑖𝑔ℎ𝑡)/2 , or 6, select 6

Quicksort

63

−partitioning strategy

− first, get pivot out of the way by swapping with last element

− two counters, 𝑖 and 𝑗

−𝑖 starts at first element

−𝑗 starts at next-to-last element

−move all the smaller elements to left and all larger elements 

to right

Quicksort

64

−partitioning strategy (cont.)

−while 𝑖 is to the left of 𝑗

−move 𝑖 right, skipping over elements smaller than pivot

−move 𝑗 left, skipping over elements larger than pivot

−when 𝑖 and 𝑗 stop, 𝑖 is at a larger element and 𝑗 is at a 

smaller element – swap them

−example

Quicksort

65

−partitioning strategy (cont.)

−example (cont.)

−after 𝑖 and 𝑗 cross, swap location 𝑖 with pivot

Quicksort

66

−partitioning strategy (cont.)

−at this point, all positions 𝑝 <  𝑖 contain smaller elements 

than pivot, and all positions 𝑝 > 𝑖 contain larger elements

−how to handle equal elements

−should 𝑖 stop when element equal to pivot? what about 𝑗?

−𝑖 and 𝑗 should behave similarly to avoid all elements 

equal to pivot collecting in one sublist

−best to have 𝑖 and 𝑗 stop and perform an unnecessary 

swap to avoid uneven sublists (and quadratic run time!)

− for small arrays, and as sublists get small (< 20 elements), 

use insertion sort

−fast and avoids degenerate median-of-three cases

61 62

63 64

65 66
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Quicksort

67

− implementation

−driver

−pass array and range (left and right) to be sorted

Quicksort

68

− implementation (cont.)

−median-of-three pivot selection

−sort a[left], a[right], and a[center] in place

−smallest of three ends up in first location

− largest in last location

−pivot in a[right – 1]

−𝑖 can be initialized to left + 1

−𝑗 can be initialized to right – 2

−since a[left] smaller than pivot, it will act as a sentinel 

and stop 𝑗 from going past the beginning of the array

−storing pivot at a[right – 1] will act as a sentinel for 𝑖

Quicksort

69

− implementation (cont.)

−median-of-three

Quicksort

70

− implementation (cont.)

−main quicksort

Quicksort

71

− implementation (cont.)

−main quicksort (cont.)

Quicksort

72

− implementation (cont.)

−main quicksort (cont.)

−16: i and j start at one off

−22: swap can be written inline

−19-20: small inner loop very fast

67 68

69 70

71 72
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Quicksort

73

−analysis

−quicksort is interesting because its worst-case behavior 

and its expected behavior are very different

− let 𝑇(𝑛) be the run-time needed to sort 𝑛 items

−𝑇(0)  =  𝑇(1)  =  1

−pivot selection is constant time

−cost of the partition is 𝑐𝑛

− if 𝑆1 has 𝑖 elements, then 𝑆2 has 𝑛 −  𝑖 −  1 elements, 

and

𝑇(𝑛) = 𝑇(𝑖) + 𝑇(𝑛 − 𝑖 − 1) + 𝑐𝑛

Quicksort

74

−worst-case analysis

− the worst-case occurs when 𝑖 =  0 or 𝑖 =  𝑛    i.e., when 

the pivot is the smallest or largest element every time 

quicksort() is called

− in this case, without loss of generality we may assume that 

𝑖 =  0, so

𝑇 𝑛 = 𝑇 0 + 𝑇 𝑛 − 1 + 𝑐𝑛 ~ 𝑇 𝑛 − 1 + 𝑐𝑛, 𝑛 > 1

− thus

𝑇(𝑛 − 1) = 𝑇(𝑛 − 2) + 𝑐(𝑛 − 1)
𝑇(𝑛 − 2) = 𝑇(𝑛 − 3) + 𝑐(𝑛 − 2)
𝑇(𝑛 − 3) = 𝑇(𝑛 − 4) + 𝑐(𝑛 − 3)

…
𝑇(3)  =  𝑇(2) +  𝑐(3)
𝑇(2)  =  𝑇(1) +  𝑐(2)

Quicksort

75

−worst-case analysis (cont.)

−combining these yields

𝑇 𝑛 = 𝑐𝑛 + 𝑐 𝑛 − 1 + 𝑐 𝑛 − 2 + … + 𝑐 × 3 + 𝑐 × 2 + 𝑇 1

−or

𝑇 𝑛 =  𝑇 1 +  𝑐 ෍

𝑘=2

𝑛

𝑘 ~𝑐
𝑛2

2

−quadratic!

− is it likely that at every recursive call to quicksort() we 
will choose the smallest element as the pivot?

−yes, if the data are already sorted

Quicksort

76

−best-case analysis

− in the best case, the pivot is always the median of the data 

being operated on

𝑇(𝑛)  =  𝑇(𝑛/2)  +  𝑇(𝑛/2) +  𝑐𝑛 =  2𝑇(𝑛/2) +  𝑐𝑛

−we know from the analysis of mergesort that the solution is

𝑇(𝑛)  =  ϴ(𝑛 lg 𝑛)

Quicksort

77

−average-case analysis

−assumption: any partition size is equally likely

− for instance, suppose 𝑛 =  7; since we remove the pivot, 

the possible sizes of the partitions are

− in this case the expected value of 𝑇(𝑖)  +  𝑇(𝑛 −  𝑖 −  1) is

Quicksort

78

73 74

75 76

77 78
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Quicksort

79

2𝑐

𝑛 + 1

Quicksort

80

Lower Bound for Pairwise Sorting

81

−no algorithm based on pairwise comparisons can guarantee 

sorting 𝑛 items with fewer than lg 𝑛!  ~ 𝑛 lg 𝑛 comparisons

− to show this, we first abstract the behavior of such 

algorithms using a decision tree

−a decision tree is a binary tree in which each node 

represents a set of possible orderings 

− the root consists of the 𝑛! possible orderings of the items to 

be sorted

− the edges represent the results of comparisons, and a 

node comprises the orderings consistent with the 

comparisons made on the path from the root to the node

−each leaf consists of a single sorted ordering

Lower Bound for Pairwise Sorting

82

Lower Bound for Pairwise Sorting

83

−a decision tree to sort 𝑛 items must have 𝑛! leaves

− this requires a tree of depth lg 𝑛!  ~ 𝑛 lg 𝑛 by Stirling’s 

approximation

− thus, the best case for sorting with pairwise comparisons is 

Ω(𝑛 lg 𝑛)

Quickselect

84

− thus far, the best performance to select the 𝑘𝑡ℎ smallest 

element is 𝑂(𝑁 lg 𝑁) using a priority queue (heap)

−quicksort can be modified to solve the selection problem

−quickselect

79 80

81 82

83 84
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Quickselect

85

− quickselect algorithm

− given a set 𝑆, let 𝑆  be its cardinality

− quickselect (𝑆, 𝑘)
− if there is 1 element in 𝑆, return 𝑘 =  1
−choose an element  in 𝑆 to serve as the pivot

−partition 𝑆 − {𝑣} into two disjoint subsets 𝑆1 and 𝑆2 with the 
properties that

  𝑥 ≤ 𝑣 if 𝑥 ∈ 𝑆1 and

  𝑥 ≥ 𝑣 if 𝑥 ∈ 𝑆2

−now the search proceeds on 𝑆1 and 𝑆2

−if 𝑘 ≤ 𝑆1 , then the 𝑘𝑡ℎ smallest element must be in 𝑆1, so 
quickselect(𝑆1,𝑘)

−if 𝑘 = 1 + 𝑆1 , then the pivot is the 𝑘𝑡ℎ smallest, so return 𝑣
−otherwise, the 𝑘𝑡ℎ smallest element must be in 𝑆2, and it is 

the (𝑘 − 𝑆1 − 1)-th element of 𝑆2, so return quickselect(𝑆2, 
𝑘 − 𝑆1 − 1)

Quickselect

86

−example: find the median of 7 items (𝑘 = 4)

−red denotes pivots, while grey denotes the partition that is 

ignored

−call quickselect (𝑆, 4); partition, then call quickselect (𝑆1,4); 

once again, partition; at this point, 𝑆1 = 3, so the pivot is 

the 4th element, and thus the answer

Quickselect

87

−example: find the median of 7 items (𝑘 = 4)

−call quickselect (𝑆, 4); partition; since 𝑆1 = 2, we want the 

𝑘 − 𝑆1 − 1 = 4 − 1 − 1 = 1𝑠𝑡 smallest element of 𝑆2 , so 

call quickselect (𝑆2,1); partition; since we are inside the call 

quickselect (𝑆2,1), we want the 1st smallest element, so we 

call quickselect (𝑆1,1), which immediately exits, returning 

10

Quickselect

88

− quickselect complexity

− at each recursive step quickselect ignores one partition – will this 

make it faster than quicksort?

− in the worst case, quickselect behaves like quicksort, and has 𝑛2 

complexity

− this occurs if the one partition is empty at each partitioning, 

and we have to look at all the terms in the other partition.

− best case behavior is linear

−occurs if each partition is equal

−since quickselect ignores one partition at each step, its 

runtime 𝑇(𝑛) satisfies the recurrence 

𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑐𝑛

− this leads to 𝑇(𝑛) being linear

Quickselect

89

− quickselect complexity (cont.)

− expected behavior

−suppose we choose our pivot 𝑣 randomly from the terms we 
are searching

−suppose 𝑣 lies between the 25th and 75th percentiles of the 
terms (i.e., 𝑣 is larger than 1/4 and smaller than 1/4 of the 
terms)

− this means that neither partition can contain more than 3/4 of 
the terms, so the partitions can't be too imbalanced; call such 
a pivot “good”

−on average, how many 𝑣 do we need to choose before we get 
a good one?

−a randomly chosen 𝑣 is good with probability ½ - a good 
pivot lies in the middle of 50% of the terms 

−choosing a good pivot is like tossing a coin and seeing 
heads 

Quickselect

90

−quickselect complexity (cont.)

−expected behavior (cont.)

−the expected number of tosses to see a heads is two

−to see this, let 𝐸 be the expected number of tosses 

before seeing a heads

−toss the coin; if it's heads, we're done; if it's tails (which 

occurs with probability 1/2) we have to toss it again, so

  𝐸 = 1 +
1

2
𝐸,   whence 𝐸 = 2

−thus, on average, quickselect will take two partitions to 

reduce the array to at most 3/4 of the original size

85 86

87 88

89 90
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Quickselect

91

−quickselect complexity (cont.)

−expected behavior (cont.)

− in terms of 𝑇(𝑛),

−expected value of 𝑇(𝑛)  ≤  𝑇(3𝑛/4) + expected time to 

reduce the array 

−since each partitioning step requires 𝑐𝑛 work, and we 

expect to need 2 of them to reduce the array size to  ≤
3𝑛/4, we have

𝑇(𝑛)  ≤  𝑇(3𝑛/4) +  𝑐𝑛

Quickselect

92

−quickselect complexity (cont.)

−expected behavior (cont.)

−consider the more general recurrence

  𝑇(𝑛)  ≤  𝑇(α𝑛)  +  𝑐𝑛,  where α < 1

−at the 𝑘𝑡ℎ level of the recursion, starting with 𝑘 =  1, 

there is a single problem of size at most α𝑘𝑛

−the amount of work done at each level is thus at most 

𝑐α𝑘𝑛

−the recursion continues until

α𝑚𝑛 ≤ 1

−so 𝑚 log α + log 𝑛 ≤ 0, or

𝑚 ≤ −
log 𝑛

log α

Quickselect

93

−quickselect complexity (cont.)

−expected behavior (cont.)

−thus, the total amount of work is bounded above by 

𝑐𝑛 + 𝑐α𝑛 + 𝑐α2𝑛 + ⋯ + 𝑐α 𝑚 𝑛 = 𝑐𝑛
1 − α 𝑚+1

1 − α
≤ 𝑐𝑛

1

1 − α
= 𝑂(𝑛)

−thus, the best case and expected case behavior of 

quickselect with a randomly chosen pivot is 𝑂(𝑛)

Introsort

94

− from D. R. Musser, Introspective sorting and selection 

algorithms, Software: Practice and Experience 27 (8) 983-

993, 1997

− introsort is a hybrid of quicksort and heapsort

− introsort starts with quicksort, but switches to heapsort 

whenever the number of levels of recursion exceed a 

specified threshold (e.g., 2 lg 𝑛 ).

− if it switches to heapsort, the subarrays that remain to be 

sorted will likely be much smaller than the original array

− this approach gives an 𝑛 lg 𝑛 guaranteed complexity, while 

making the most of the efficiency of quicksort

Stability

95

−a sorting algorithm is stable if it preserves the relative order 

of equal keys

−stable sorts:

− insertion sort

−mergesort

−unstable sorts:

−selection sort

−Shell sort

−quicksort

−heapsort

Stability

96

91 92

93 94

95 96
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C++ Standard Library Sorts

97

−sort(): introsort, guaranteed to be 𝑛 lg 𝑛 

−stable_sort(): mergesort, guaranteed to be stable and

−𝑛 lg 𝑛 time, if a ϴ(𝑛)-sized auxiliary array can be allocated

−𝑛 lg2 𝑛 time for an in-place sort, otherwise

−partial_sort(): sort the 𝑘 largest (or smallest) items 

String / Radix Sort

98

−we can use the special structure of character strings to 
devise sorting algorithms

−here, a character should be understood in a general sense, 
as an element of an alphabet, which is a collection of 𝑀 items 
(presumably all requiring the same number of bits for their 
representation)

− the alphabet is also assumed to have an ordering, so we may 
sort characters

−as a special case, we can think of treating base-𝑏 numbers 
as a string of digits from the range 0 to 𝑏𝑝 − 1 (𝑝-digit base-𝑏 
numbers)

−since the base of a number system is sometimes called the 
radix, the sorting algorithms we will discuss are frequently 
called radix sorts

String Sorting: LSD

99

− in least-significant digit (LSD) first sorting, we sort using the 

digits (characters) from least- to most-significant:

String Sorting: LSD

100

−algorithm:
for d from least- to most-significant digit {

   sort using counting sort on the least-significant digit

}

−observations:

−since counting sort is stable, LSD sorting is stable

−the stability of counting sort is essential to making LSD 
sorting work

−algorithm assumes all the strings have the same length 𝑝 

− time complexity: there are 𝑝 passes in the outmost loop; in 
each loop iteration, we apply counting sort to 𝑁 digits in the 
range 0 to 𝑏 − 1, requiring 𝑁 + 𝑏;  total work: ϴ(𝑝 𝑁 + 𝑏 )

−space complexity: 𝑁 + 𝑏 – same as counting sort

String Sorting: LSD

101

−why not go left-to-right?

− the same idea, but starting with the most significant digit, 

doesn't work:

−why does right-to-left digit sorting work but left-to-right does 

not?

String Sorting: LSD

102

− in the old days, we used Hollerith cards:

−early versions of Fortran and COBOL had limits of 72 

characters per line 

− this left columns 73-80 free for the card sequence number

− that way, if you dropped your deck of cards, you could go to...

97 98

99 100

101 102
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String Sorting: LSD

103

−… the card sorter

IBM Model 082 card sorter

String Sorting: LSD

104

− these machines used LSD:

−pile the disordered cards in the input hopper and sort by the 

last digit in the sequence number

−now take the sorted decks and stack them in order

−place the combined deck back in the input hopper and sort 

by the next-to-last digit in the sequence number

−repeat steps 2 and 3 until sorted

Sorting Algorithms Summary

105

−Shell sort is subquadratic with a suitable increment sequence

−Shell's original increment sequence is, in fact, quadratic in 

the worst case

103 104

105
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