
Chapter 8

The Disjoint Sets Class



Introduction
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−equivalence problem

−can be solved fairly simply

−simple data structure

−each function requires only a few lines of code

−two operations: union and find

−can be implemented with simple array

−outline

−equivalence relations and the dynamic equivalence 
problem

−data structure and smart union algorithms

−path compression

−analysis

−application



Equivalence Relations
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−a relation 𝑅 on a set 𝑆 is a subset of 𝑆 × 𝑆

− i.e., the set of ordered pairs (𝑝, 𝑞) with 𝑝, 𝑞 ∈ 𝑆

−𝑝 is related to 𝑞, denoted 𝑝𝑅𝑞, if (𝑝, 𝑞) ∈ 𝑅

−an equivalence relation is a relation 𝑅 with these properties:

−Reflexive: 𝑝𝑅𝑝 or 𝑝 is related to 𝑝

−Symmetric: if 𝑝𝑅𝑞, then 𝑞𝑅𝑝

−Transitive: if 𝑝𝑅𝑞, and 𝑞𝑅𝑟, then 𝑝𝑅𝑟

−given an equivalence relation 𝑅, the equivalence class of 

𝑝 is 𝑞 𝑝𝑅𝑞} (the set of 𝑞 related to 𝑝)



Example
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− two nodes are equivalent if they are connected by a path



Dynamic Equivalence Problem
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−an equivalence relation on a set partitions the set into disjoint 

equivalence classes

−𝑝 ~ 𝑞 if 𝑝 and 𝑞 are in the same equivalence class

− the difficulty is that the equivalence classes are probably 

defined indirectly

− in the preceding example, two nodes are in the same 

equivalence class if and only if they are connected by a path 

−however, the entire graph was specified by a small number 

of pairwise connections:

0~4, 4~8, 8~9, 1~2, 2~6, 9~13, 11~15, 14~15, 

12~13, 7~11, 5~6, 6~10

−how can we decide if 0 ~ 1?



Dynamic Equivalence Problem
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− in the general version of the dynamic equivalence problem, we 
begin with a collection of disjoint sets 𝑆1, …, 𝑆𝑁, each with a single 
distinct element

− two operations exist on these sets:

− find(p), which returns the id of the equivalence class containing p

− union(p,q), which merges the equivalence classes of p and q, 
with the root of p being the new parent of the root of q

− in the case of building up the connected components of the graph 
example, given a connection 𝑝 ~ 𝑞 we would call union(p,q) which 
in turn would need to call find(p) and find(q)

− these operations are dynamic:

− the sets may change because of the union operation, and 

− find must return an answer before the entire equivalence classes 
have been constructed



Union-Find
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− in a computer network, we know that certain pairs of 

computers are connected

−how do we use that information to determine whether we 

can get traffic from one arbitrary computer to another?

− in a social network, we know that certain people are 

friends; how do we use that information to determine 

whether we are a friend of a friend of a friend? 



Union-Find
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−denote the items by 0, 1, 2,… ,𝑁 − 1

−given pairs of items 𝑝, 𝑞 , 0 ≤ 𝑝, 𝑞 ≤ 𝑁 − 1, which is 

interpreted as meaning 𝑝 ~ 𝑞

− in keeping with the graph example, we will refer to the items 

as vertices and say that 𝑝 and 𝑞 are connected if 𝑝 ~ 𝑞

−we will also refer to the equivalence classes as connected 

components, or just components



Union-Find: Graph Abstraction
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−previous example



Union-Find
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−we need a data structure that will represent known 

connections and allow us to answer the following:

−given arbitrary vertices 𝑝 and 𝑞, can we tell if they are 

connected?

−can we determine the number of components?

−Union-find API:

UF(N) initialize N vertices with 0 to N-1

union(p, q) add connection between p and q

find(p) return the component id (0 to N-1) for p

connected(p, q) true if p and q are in the same component

num_components() return the number of components



Union-Find
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−basic data structure

−we will use a vertex-indexed array id[ ] to represent the 

components

− the value id[p] is the component that p belongs to

− initially, we do not know that any vertices are connected, so 

we initialize id[p] = p for all p (i.e., each vertex is initially in 

its own component)



Union-Find
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− invariants

− in the analysis of algorithms, an invariant is a condition that 

is guaranteed to be true at specified points in the algorithm

−we can use invariants and their preservation by an 

algorithm to prove that the algorithm is correct



Quick-Find
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−quick-find maintains the invariant that p and q are connected if

id[p] = id[q]

− this is called quick-find because the function find() is trivial:

function find(p)

return id[p]

end

− there is just a single array reference, so a call to find() is a 

constant time operation

i 0   1   2   3   4   5   6   7   8   9

id[i]    0   1   9   9   9   6   6   7   8   9



Quick-Find
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function union(p,q) {

p_id = find(p)

q_id = find(q)

// if p and q are already in the same component, we’re done!

if (q_id == p_id) return

// otherwise, re-label q’s components as being in p’s component

for i = 0 to N-1 {

if (id[i] == q_id)   id[i] = p_id

}

}

−worst-case, the number of operations is ∝ 𝑁

i 0   1   2   3   4   5   6   7   8   9
id[i]    0   1   6   6   6   6   6   7   8   6          union(6,3)



Quick-Find
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− it should be clear that quick-find union() preserves the 

invariant

− if there is only a single component, then we will need at least 

N-1 calls to union()

− in this situation each call to union() requires work ∝ 𝑁

− this means that in this case, the work is at least ∝ 𝑁(
)

𝑁 −
1 ~ 𝑁2

−quick-find can be a quadratic-time algorithm!



Quick-Union
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−quick-union avoids the quadratic behavior of quick-find

− in quick-union, given a vertex p, the value id[p] is the name of 

another vertex that is in the same component

−we call such a connection a link

− to determine which component p lies in, we start at p

− follow the link from p to id[p]

− follow the link from there to (id[id[p]]), and so on, until we 

come to a vertex that has a link to itself

−we call such a vertex a root

−we use the roots as the identifiers of the components

− recall that initially, id[p] = p, so all vertices start off as roots



Quick-Union: find()
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function find(p) {

// follow the links to a root

if (p != id[p]) {

return find(id[p])

}

else {

// return the root as the component identifier

return p

}

}

− the operation of find() will ensure that we eventually arrive at 

a root



Quick-Union: find()
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Read: the root of 7 will become the parent of the root of 0

find(7) = id[7] = id[2] or  id[id[7]] 

find(0) = id[0] = id[4] = id[1] = id[8]  or  id[id[id[id[0]]]]

7 0



Quick-Union: union()
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function union(p, q) {

i = find(p)

j = find(q)

if (i == j) return;

id [j] = i

end



Quick-Union

20

Example

9     0



Quick-Union
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1     7 

9     8

union(3,8)?



Quick-Union: Complexity
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the main computational cost of quick-union is the cost of find():

function find(p) {

// follow the links to a root

if (p != id[p]) {

return find(id[p])

}

else {

// return the root as the component identifier

return p

}

}

− the cost of a call to find() depends on how many links we 
must follow to find a root, which, in turn, depends on union()



Quick-Union: Complexity

23

− the number of accesses of id[] used by the call find(p) in 

quick-union is ∝ to the depth of p in its tree

− the number of accesses used by union() and connected() is ∝
the cost of find()

−so, how tall can the trees be in the worst case?



Quick-Union: Worst-Case Complexity
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−suppose there is only a single component, and the 

connections are specified as follows:

(1,0), (2,1), . . . , (N-1,N-2)

− in the worst case, the height is ∝ N, so applying union() to all 

N nodes is quadratic! 



Weighted Quick-Union: union-by-size
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−weighted quick-union is more clever: in union(), it connects 

the smaller tree to the larger to avoid growth in the height of 

the trees

− the depth of any node in a forest built by weighted quick-

union for N vertices is at most lg N.



Weighted Quick-Union: union-by-size
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−proof: we will prove that the height of every tree with 𝑘 nodes 

in the forest is at most lg 𝑘

− if 𝑘 = 1, such a tree has height 0.

−now assume that the height of a tree of size 𝑖 is at most lg 𝑖
for all 𝑖 < 𝑘

−when we combine a tree of size 𝑖 with a tree of size 𝑗, with 

𝑖 ≤ 𝑗, and 𝑖 + 𝑗 = 𝑘, we increase the depth of each node in 

the smaller tree by 1

−however, they are now in a tree of size 𝑖 + 𝑗 = 𝑘, and

1 + lg 𝑖 = lg 2 + lg 𝑖 = lg(2 ∗ 𝑖) ≤ lg 𝑖 + 𝑗 = lg 𝑘

as threatened



Path Compression
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− ideally, we would like every node in a tree to link to its root, so 

find() would be 𝑂(1) time

−we can almost achieve this using path compression – we set 

the entries in id[] that we visit along the way to finding the 

root to point directly to the root



find() with Path Compression
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function find(p) {

if (p == id[p])  return p; // stop at the root…

// otherwise link visited nodes to the root

id[p] = find (id(p))

return id[p] 

}

the call find(14) visits 14, 12, 8, and 0 (on next slide):

find(14): return find(id[14]) = find(12)

find(12): return find(id[12]) = find(8)

find(8): return find(id[8]) = find(0)
find(0): return find(id[0]) = 0

find(8): id[8] = 0

find(12): id[12] = 0

find(14): id[14] = 0



Path Compression
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−example

− red components visited by find(14)



Path Compression
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−example: effect of path compression

− the call find(14) links every element on the path from 14 to 0 

directly to 0



Path Compression
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−complexity

−by itself, weighted quick-union (union by size) yields trees 

with worst-case height lg 𝑁

−by itself, quick-union with path compression yields trees 

with worst-case height lg 𝑁

− if used together, union by size + path compression does 

better: the worst-case complexity of a sequence of 𝑀 calls 

to find() (where 𝑀 ≥ 𝑁) is almost, but not quite Θ 𝑀

−proved by Robert Tarjan in 1975

−more exactly, it is Θ 𝑀 𝛼(𝑁) , where 𝛼 𝑁 is a very slow

growing function of a type known as an inverse Ackerman 

function



Inverse Ackerman Function
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−our 𝛼 is one version of the inverse Ackerman function:

− the iterated logarithm:

− this is a very slowly growing function of N!

− for any practical value of 𝑁, 𝛼 𝑁 ≤ 5

− termed lg*, lg**, etc.



Union-Find Application
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−generation of mazes

−can view as 80x50 set of cells where top right is connected to 

bottom left, and cells are separated from neighbors by walls



Union-Find Application
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−algorithm

−start with walls everywhere except entrance and exit

−choose wall randomly

−knock it down if cells not already connected

−repeat until start and end cell connected

−actually better to continue to knock down walls until 

every cell is reachable from every other cell (false 

leads)



Union-Find Application
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−example

−5x5 maze

−use union-find data structure to show connected cells

− initially, walls are everywhere, so each cell is its own 

equivalence class



Union-Find Application
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−example (cont.)

− later stage in algorithm, after some walls have been 

deleted

− randomly pick cells 8 and 13

−no wall removed since they are already connected



Union-Find Application
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−example (cont.)

− randomly pick cells 18 and 13

−two calls to find show they are not connected

−knock down wall

−sets containing 18 and 13 combined with union



Union-Find Application
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−example (cont.)

−eventually, all cells are connected and we are done

−could have stopped earlier once 0 and 24 connected



Union-Find Application
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−analysis

− running time dominated by union-find costs

−size 𝑁 is number of cells

−number of finds ∝ number of cells

−number of removed walls is one less than number of cells

−only twice as many walls as cells

− for 𝑁 cells, there are two finds per randomly targeted wall, 

or between 2𝑁 and 4𝑁 find operations

− total running time: 𝑂(𝑁log∗𝑁)


