Chapter 8 The Disjoint Sets Class

-equivalence problem

- -can be solved fairly simply
 - -simple data structure
 - -each function requires only a few lines of code
 - -two operations: union and find
 - -can be implemented with simple array
- -outline
 - -equivalence relations and the dynamic equivalence problem
 - -data structure and smart union algorithms
 - -path compression
 - -analysis
 - -application

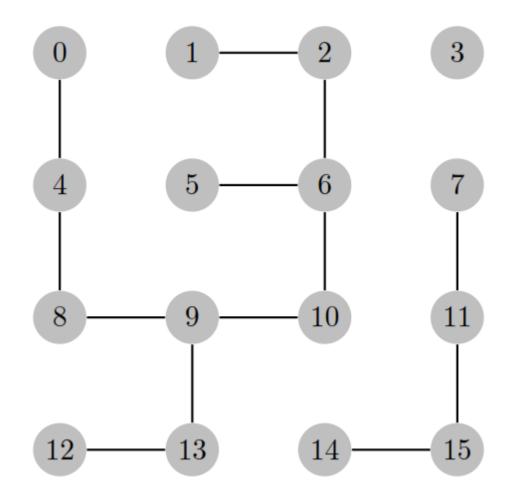
-a relation R on a set S is a subset of $S \times S$

- -i.e., the set of ordered pairs (p,q) with $p,q \in S$
- -p is related to q, denoted pRq, if $(p,q) \in R$

-an equivalence relation is a relation *R* with these properties:

- -<u>Reflexive</u>: pRp or p is related to p
- -<u>Symmetric</u>: if pRq, then qRp
- -<u>Transitive</u>: if pRq, and qRr, then pRr
- -given an equivalence relation R, the equivalence class of p is $\{q \mid pRq\}$ (the set of q related to p)

-two nodes are <u>equivalent</u> if they are connected by a path



Dynamic Equivalence Problem

- -an equivalence relation on a set <u>partitions</u> the set into disjoint equivalence classes
- $-p \sim q$ if p and q are in the <u>same</u> equivalence class
 - -the difficulty is that the equivalence classes are probably defined indirectly
- in the preceding example, two nodes are in the same equivalence class if and only if they are connected by a path
 - -however, the entire graph was specified by a small number of pairwise connections:

-how can we decide if $0 \sim 1$?

Dynamic Equivalence Problem

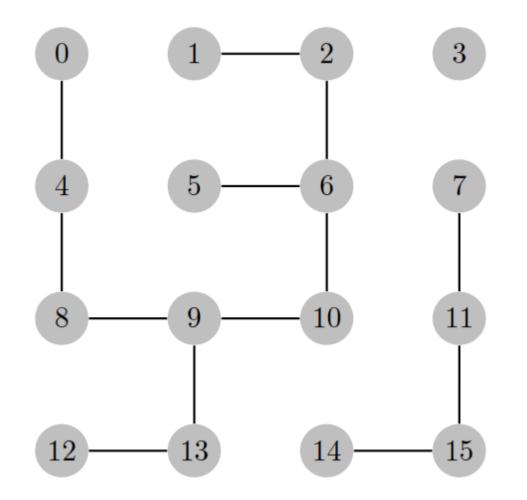
- in the general version of the dynamic equivalence problem, we begin with a collection of <u>disjoint</u> sets S_1, \ldots, S_N , each with a single distinct element
- two <u>operations</u> exist on these sets:
 - find(p), which returns the id of the equivalence class containing p
 - union(p,q), which merges the equivalence classes of p and q, with the root of p being the new parent of the root of q
- in the case of building up the connected components of the graph example, given a connection $p \sim q$ we would call union(p,q) which in turn would need to call find(p) and find(q)
- these operations are <u>dynamic</u>:
 - the sets may change because of the union operation, and
 - find must return an answer before the entire equivalence classes have been constructed

- -in a computer network, we know that certain pairs of computers are connected
 - -how do we use that information to determine whether we can get traffic from one arbitrary computer to another?
 - -in a social network, we know that certain people are <u>friends</u>; how do we use that information to determine whether we are a friend of a friend of a friend?

Union-Find

- -denote the items by $0, 1, 2, \dots, N-1$
- -given pairs of items $(p,q), 0 \le p,q \le N-1$, which is interpreted as meaning $p \sim q$
- -in keeping with the graph example, we will refer to the items as <u>vertices</u> and say that p and q are <u>connected</u> if $p \sim q$
- -we will also refer to the equivalence classes as connected components, or just <u>components</u>

-previous example



- -we need a data structure that will represent known connections and allow us to answer the following:
 - -given arbitrary vertices *p* and *q*, can we tell if they are <u>connected</u>?
 - -can we determine the number of components?

- Union-find API:

UF(N) union(p, q) find(p) connected(p, q) num_components() <u>initialize</u> N vertices with 0 to N-1 add connection between p and q return the component <u>id</u> (0 to N-1) for p true if p and q are in the same component return the number of components

-basic data structure

- -we will use a vertex-indexed array id[] to represent the components
- -the value id[p] is the <u>component</u> that p belongs to
- -initially, we do not know that any vertices are connected, so we initialize id[p] = p for all p (i.e., each vertex is initially in its own component)

Union-Find

-invariants

- in the analysis of algorithms, an invariant is a condition that is guaranteed to be true at specified points in the algorithm
- -we can use invariants and their preservation by an algorithm to prove that the algorithm is correct

-quick-find maintains the invariant that p and q are connected if id[p] = id[q]

-this is called quick-find because the function find() is trivial: function find(p) return id[p] end

-there is just a single <u>array</u> reference, so a call to find() is a constant time operation

Quick-Find

function union(p,q) { p_id = find(p) q_id = find(q)

// if p and q are already in the same component, we're done!
if (q_id == p_id) return

- -it should be clear that quick-find union() preserves the invariant
- -if there is only a single component, then we will need at least N-1 calls to union()
- in this situation each call to union() requires work $\propto N$
- -this means that in this case, the work is at least $\propto N(N 1) \sim N^2$
- -quick-find can be a <u>quadratic-time</u> algorithm!

- -quick-union avoids the quadratic behavior of quick-find
- -in quick-union, given a vertex p, the value id[p] is the name of another vertex that is in the same component
 - -we call such a connection a link
- -to determine which component p lies in, we start at p
 - -follow the link from p to id[p]
 - -follow the link from there to (id[id[p]]), and so on, until we come to a vertex that has a link to <u>itself</u>
 - -we call such a vertex a root
- -we use the roots as the identifiers of the components
- -recall that initially, id[p] = p, so all vertices start off as roots

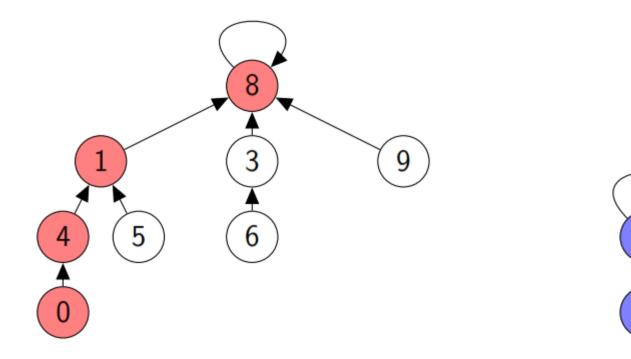
Quick-Union: find()

```
function find(p) {
    // follow the links to a root
    if (p != id[p]) {
        return find(id[p])
    }
    else {
        // return the root as the component identifier
        return p
    }
}
```

-the operation of find() will ensure that we eventually arrive at a root

Quick-Union: find()

Read: the root of 7 will become the parent of the root of 0 find(7) = id[7] = id[2] or id[id[7]]find(0) = id[0] = id[4] = id[1] = id[8] or id[id[id[id[0]]]]



2

Quick-Union: union()

function union(p, q) { i = find(p) j = find(q) if (i == j) return; id [j] = i

end

Quick-Union

Example

р 9			4 4					
1	2	3	4	5	6	7	8	9 0
			4 4					
1	2		4	5	6	7 3	8	9 0

Quick-Union

р 1	q 7	0 9	1 1	2 2	3 7	4 4	5 5	6 6	7 1	8 8	9 9	
1 7 3		2			4		5		6		8	9 0
р 9	<mark>9</mark> 8	0 9	1 1	2 2	3 7	4 4	5 5	6 6	7 1	8 9	9 9	
1 7 		2			4		5		6		0	9 8
3												union(3,8)?

21

the main computational cost of quick-union is the cost of find():

```
function find(p) {
    // follow the links to a root
    if (p != id[p]) {
        return find(id[p])
    }
    else {
        // return the root as the component identifier
        return p
    }
}
```

-the cost of a call to find() depends on how many links we must follow to find a <u>root</u>, which, in turn, depends on union()

- -the number of accesses of id[] used by the call find(p) in quick-union is \propto to the <u>depth</u> of p in its tree
- -the number of accesses used by union() and connected() is ∝
 the cost of find()
- -so, how tall can the trees be in the worst case?

Quick-Union: Worst-Case Complexity

-suppose there is only a single component, and the connections are specified as follows:

-in the <u>worst</u> case, the height is \propto N, so applying union() to all N nodes is quadratic!

Weighted Quick-Union: union-by-size

- weighted quick-union is more clever: in union(), it connects the <u>smaller</u> tree to the larger to avoid <u>growth</u> in the height of the trees
- -the <u>depth</u> of any node in a forest built by weighted quickunion for N vertices is at most Ig N.

Weighted Quick-Union: union-by-size

-proof: we will prove that the height of every tree with k nodes in the forest is at most $\lg k$

-if k = 1, such a tree has height 0.

- -now assume that the height of a tree of size i is at most $\lg i$ for all i < k
- -when we combine a tree of size *i* with a tree of size *j*, with $i \le j$, and i + j = k, we increase the depth of each node in the smaller tree by 1
- -however, they are now in a tree of size i + j = k, and $1 + \lg i = \lg 2 + \lg i = \lg(2 * i) \le \lg(i + j) = \lg k$ as threatened

- -ideally, we would like every node in a tree to link to its <u>root</u>, so find() would be O(1) time
- -we can almost achieve this using path compression we set the entries in id[] that we visit along the way to finding the root to <u>point</u> directly to the root

find() with Path Compression

```
function find(p) {
    if (p id[p]) return p; // etc
```

```
if (p == id[p]) return p; // stop at the root...
```

```
// otherwise link visited nodes to the root
id[p] = find (id(p))
return id[p]
```

```
}
```

the call find(14) visits 14, 12, 8, and 0 (on next slide):

```
find(14): return find(id[14]) = find(12)

find(12): return find(id[12]) = find(8)

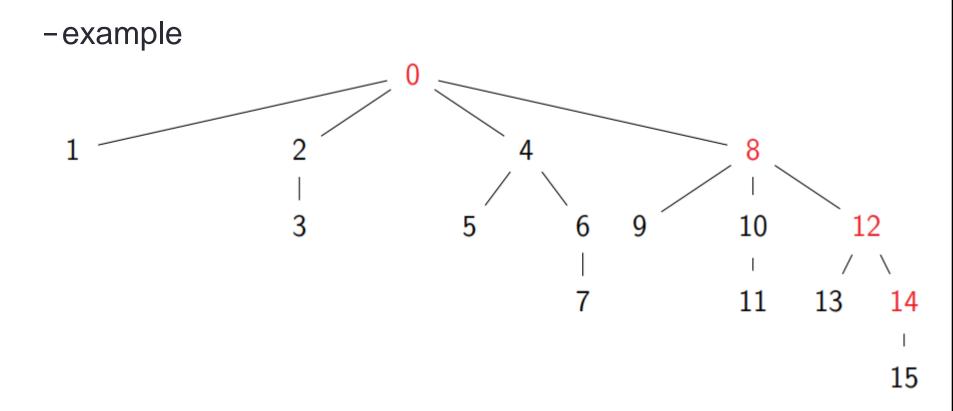
find(8): return find(id[8]) = find(0)

find(0): return find(id[0]) = 0

find(8): id[8] = 0

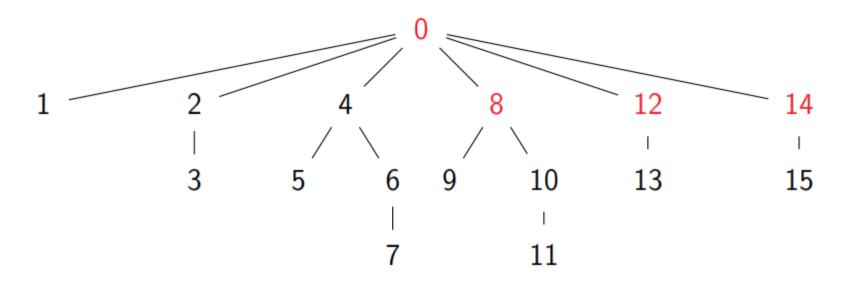
find(12): id[12] = 0

find(14): id[14] = 0
```



-red components visited by find(14)

-example: effect of path compression



-the call find(14) links every element on the path from 14 to 0 directly to 0

- -complexity
 - -by itself, weighted quick-union (union by size) yields trees with worst-case height lg *N*
 - -by itself, quick-union with path compression yields trees with worst-case height lg N
 - if used together, union by size + path compression does <u>better</u>: the worst-case complexity of a sequence of *M* calls to find() (where $M \ge N$) is almost, but not quite $\Theta(M)$

-proved by Robert Tarjan in 1975

-more exactly, it is $\Theta(M \alpha(N))$, where $\alpha(N)$ is a very <u>slow</u> growing function of a type known as an inverse Ackerman function

-our α is one version of the inverse Ackerman function:

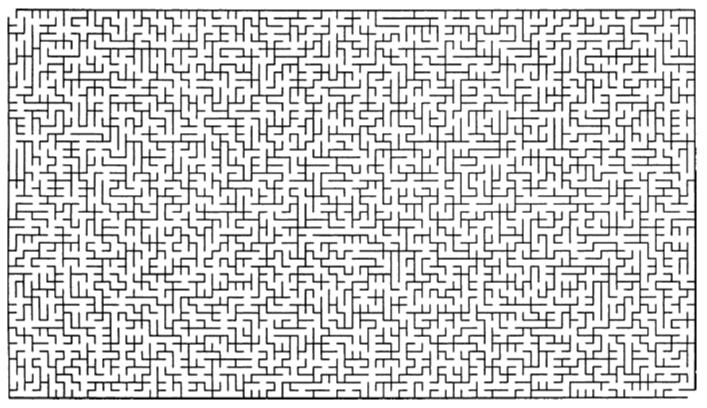
$$\alpha(N) = \min \left\{ i \ge 1 \mid \underbrace{\lg \lg \lg \cdots \lg N}_{i \ge 1} \leq 1 \right\}$$

-the iterated logarithm:

$$\begin{split} &\lg 2 = 1 & & \alpha(2) = 1 \\ &\lg \lg 4 = 1 & & \alpha(4) = 2 \\ &\lg \lg \lg 16 = 1 & & \alpha(16) = 3 \\ &\lg \lg \lg \lg 65536 = 1 & & \alpha(65536) = 4 \\ &\lg \lg \lg \lg \lg \lg 2^{65536} = 1 & & \alpha(2^{65536}) = 5 \end{split}$$

- -this is a very slowly growing function of N!
- -for any practical value of *N*, $\alpha(N) \leq 5$
- -termed lg*, lg**, etc.

-generation of mazes



-can view as 80x50 set of cells where top right is connected to bottom left, and cells are separated from neighbors by <u>walls</u>

-algorithm

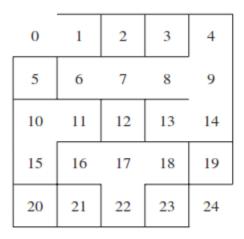
- -start with walls everywhere except entrance and exit
- -choose wall randomly
 - -knock it down if cells not already connected
 - -repeat until start and end cell connected
 - -actually better to continue to knock down walls until every cell is reachable from every other cell (false leads)

- -example
 - -5x5 maze
 - -use union-find data structure to show connected cells
 - -initially, walls are <u>everywhere</u>, so each cell is its own equivalence class

0	1	2	3	4	
5	6	7	8	9	
10	11	12	13	14	
15	16	17	18	19	
20	21	22	23	24	

-example (cont.)

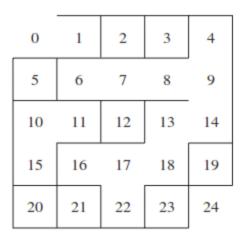
- -later stage in algorithm, after some walls have been deleted
- -<u>randomly</u> pick cells 8 and 13
 - -no wall removed since they are already connected



 $\{0,1\} \ \{2\} \ \{3\} \ \{4,6,7,8,9,13,14\} \ \{5\} \ \{10,11,15\} \ \{12\} \ \{16,17,18,22\} \ \{19\} \ \{20\} \ \{21\} \ \{23\} \ \{24\} \ \{2$

-example (cont.)

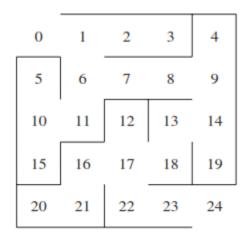
- -randomly pick cells 18 and 13
 - -two calls to find show they are not connected
 - -knock down wall
 - -sets containing 18 and 13 combined with union



 $\{0,1\}\;\{2\}\;\{3\}\;\{4,6,7,8,9,13,14,16,17,18,22\}\;\{5\}\;\{10,11,15\}\;\{12\}\;\{19\}\;\{20\}\;\{21\}\;\{23\}\;\{24\}$

-example (cont.)

- -eventually, all cells are connected and we are done
 - -could have stopped earlier once 0 and 24 connected



 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24\}$

-analysis

- -running time dominated by union-find costs
- -size N is number of <u>cells</u>
- -number of finds \propto number of cells
 - -number of removed walls is one less than number of cells

-only twice as many walls as cells

- -for N cells, there are two finds per randomly targeted wall, or between 2N and 4N find operations
- -total running time: $O(N\log^* N)$