Chapter 8
The Disjoint Sets Class

'_\|
N|

Equivalence Relations

-arelation R on a set S is a subsetof § x S
-i.e., the set of ordered pairs (p,q) withp,q € S
-p is related to q, denoted pRq, if (p,q) €R

-an equivalence relation is a relation R with these properties:
-Reflexive: pRp or p is related to p
-Symmetric: if pRq, then qRp
-Transitive: if pRq, and gRr, then pRr
-given an equivalence relation R, the equivalence class of
pis {q | pRq} (the set of q related to p)

Dynamic Equivalence Problem

| LM|

-an equivalence relation on a set patrtitions the set into disjoint
equivalence classes

-p ~qif pand q are in the same equivalence class

~the difficulty is that the equivalence classes are probably
defined indirectly

-in the preceding example, two nodes are in the same
equivalence class if and only if they are connected by a path

-however, the entire graph was specified by a small number
of pairwise connections:

0~4, 4~8, 8~9, 1~2, 2~6, 9~13, 11~15, 14~15,
12~13, 7~11, 5~6, 6~10

-how can we decide if 0 ~ 1?

U-I|
°|

4/17/2023

Introduction

-equivalence problem
-can be solved fairly simply
-simple data structure
-each function requires only a few lines of code
-two operations: union and find
-can be implemented with simple array
-outline

-equivalence relations and the dynamic equivalence
problem

-data structure and smart union algorithms
-path compression

-analysis

-application

Example
-two nodes are equivalent if they are connected by a path
0 iy &
4 5 —— 6 7
§ — 9 —— 10 11
12— 13 14 —— 15

| B |
4
Dynamic Equivalence Problem

-in the general version of the dynamic equivalence problem, we
begin with a collection of disjoint sets S, ..., Sy, each with a single
distinct element

-two operations exist on these sets:
-find(p), which returns the id of the equivalence class containing p

-union(p,q), which merges the equivalence classes of p and g,
with the root of p being the new parent of the root of q

-in the case of building up the connected components of the graph
example, given a connection p ~ g we would call union(p,q) which
in turn would need to call find(p) and find(q)

-these operations are dynamic:
-the sets may change because of the union operation, and

-find must return an answer before the entire equivalence classes
have been constructed

Union-Find

-in a computer network, we know that certain pairs of
computers are connected
-how do we use that information to determine whether we
can get traffic from one arbitrary computer to another?
-in a social network, we know that certain people are
friends; how do we use that information to determine
whether we are a friend of a friend of a friend?

\‘|
..|

Union-Find: Graph Abstraction

-previous example

0 —2 8

| |

4 5 —— 6 7

| |

8§ — 9 ——10 11
| |

12 — 13 14 —— 15

S
9

-basic data structure
-we will use a vertex-indexed array id[] to represent the
components
-the value id[p] is the component that p belongs to
-initially, we do not know that any vertices are connected, so
we initialize id[p] = p for all p (i.e., each vertex is initially in
its own component)

4/17/2023

Union-Find

-denote the items by 0,1,2,...,N — 1

-given pairs of items (p,q),0 < p,q < N — 1, which is
interpreted as meaning p ~ q

-in keeping with the graph example, we will refer to the items
as vertices and say that p and q are connected if p ~ g

-we will also refer to the equivalence classes as connected
components, or just components

Union-Find

-we need a data structure that will represent known
connections and allow us to answer the following:

-given arbitrary vertices p and q, can we tell if they are
connected?

-can we determine the number of components?

-Union-find API:
UF(N) initialize N vertices with 0 to N-1
union(p, q) add connection between p and q
find(p) return the component id (0 to N-1) for p

connected(p, q) true if p and q are in the same component
num_components() return the number of components

Union-Find

[EnN
| .|

-invariants
-in the analysis of algorithms, an invariant is a condition that
is guaranteed to be true at specified points in the algorithm
-Wwe can use invariants and their preservation by an
algorithm to prove that the algorithm is correct

Quick-Find

-quick-find maintains the invariant that p and q are connected if
id[p] = id[q]

~this is called quick-find because the function find() is trivial:
function find(p)
return id[p]
end

-there is just a single array reference, so a call to find() is a

constant time operation
i 0123456789
idi] 019 996673829

Quick-Find

-it should be clear that quick-find union() preserves the
invariant

-if there is only a single component, then we will need at least
N-1 calls to union()

-in this situation each call to union() requires work o« N

-this means that in this case, the work is at least « N(N —
1) ~N?

-quick-find can be a guadratic-time algorithm!

[EEN
(e)]

Quick-Union: find()

function find(p) {

/I follow the links to a root

if (p !=id[p]) {
return find(id[p])

}

else {
/I return the root as the component identifier
return p

}

-the operation of find() will ensure that we eventually arrive at
a root

4/17/2023

Quick-Find

function union(p,q) {
p_id = find(p)
q_id = find(q)

/'if p and q are already in the same component, we're done!
if (q_id == p_id) return

I otherwise, re-label q's components as being in p’s component
fori=0toN-1{
if (id[i] == q_id) id[i] = p_id
}
}
-worst-case, the number of operations is «< N
i 012345672829

idi] 0166666786 union(6,3)

Quick-Union

-quick-union avoids the quadratic behavior of quick-find

-in quick-union, given a vertex p, the value id[p] is the name of
another vertex that is in the same component

-we call such a connection a link
-to determine which component p lies in, we start at p
-follow the link from p to id[p]

~follow the link from there to (id[id[p]]), and so on, until we
come to a vertex that has a link to itself

-we call such a vertex a root
-we use the roots as the identifiers of the components
-recall that initially, id[p] = p, so all vertices start off as roots

Quick-Union: find()

p a0 1 2 3 456
1 3

78 9
7 04 8 2 8 1 2 8§ 8
Read: the root of 7 will become the parent of the root of 0
find(7) = id[7] = id[2] or id[id[7]]

find(0) = id[0] = id[4] = id[1] = id[8] or id[id[id[id[O]]]]

18

Quick-Union: union()

function union(p, q) {
i = find(p)
j = find(q)

if (i ==}) return;
id[j]=i
end

19
Quick-Union
p g 0123 45¢672839
1 79 127 456 189
1 2 4 5 6 8 9
| |
7 0
|
3
q 01 23 45672879
9 89 1 27 456 199
1 2 4 5 6 9
I VRN
7 0 8
|
3

4/17/2023

Example
p g 0123 456 789
9 09 1 2 3 45 6 7 89

1 2 3 4 5 6 7 8 9

0
p q 0123456789
739127 456789
12 4 5 6 7 8 9
| |
3 0

e —
20
Quick-Union: Complexity

the main computational cost of quick-union is the cost of find():

function find(p) {

/I follow the links to a root

if (p 1=id[p]) {
return find(id[p])

}

else {
I return the root as the component identifier
return p

}

-the cost of a call to find() depends on how many links we
must follow to find a root, which, in turn, depends on union()

Quick-Union: Worst-Case Complexity

-the number of accesses of id[] used by the call find(p) in
quick-union is o to the depth of p in its tree

-the number of accesses used by union() and connected() is «
the cost of find()

-s0, how tall can the trees be in the worst case?

-suppose there is only a single component, and the
connections are specified as follows:

(1,0), (2,1), . .., (N-1,N-2)

1 2 3
I I |
0 1 2
I |
0 1

|

0

-in the worst case, the height is « N, so applying union() to all
N nodes is quadratic!

- ol
24

4/17/2023

Weighted Quick-Union: union-by-size

-weighted quick-union is more clever: in union(), it connects
the smaller tree to the larger to avoid growth in the height of
the trees

-the depth of any node in a forest built by weighted quick-
union for N vertices is at most Ig N.

Path Compression

-ideally, we would like every node in a tree to link to its root, so
find() would be 0(1) time

-we can almost achieve this using path compression — we set
the entries in id[] that we visit along the way to finding the
root to point directly to the root

-red components visited by find(14)

Weighted Quick-Union: union-by-size

-proof: we will prove that the height of every tree with k nodes
in the forestis at most Igk

-if k = 1, such a tree has height 0.

-now assume that the height of a tree of size i is at most g i
foralli < k

-when we combine a tree of size i with a tree of size j, with
i <j,andi+j =k, weincrease the depth of each node in
the smaller tree by 1

-however, they are now in a tree of size i + j = k, and
1+1gi=1g2+1gi=lg(2+i) <lgli+)) =lgk
as threatened

find() with Path Compression

function find(p) {
if (p == id[p]) return p; // stop at the root...

/I otherwise link visited nodes to the root
id[p] = find (id(p))
return id[p]

}

the call find(14) visits 14, 12, 8, and 0 (on next slide):

find(14): return find(id[14]) = find(12)
find(12): return find(id[12]) = find(8)
find(8): return find(id[8]) = find(0)
find(0): return find(id[0]) = O
find(8): id[8] = O
find(12): id[12] = 0
find(14): id[14] = 0

-the call find(14) links every element on the path from 14 to 0
directly to 0

s —
30

Path Compression

-complexity

-by itself, weighted quick-union (union by size) yields trees
with worst-case height Ig N

-by itself, quick-union with path compression yields trees
with worst-case height Ilg N

-if used together, union by size + path compression does
better: the worst-case complexity of a sequence of M calls
to find() (where M > N) is almost, but not quite (M)
-proved by Robert Tarjan in 1975

-more exactly, itis (M a(N)), where a(N) is a very slow
growing function of a type known as an inverse Ackerman
function

-generation of mazes
e '“hf*" e __r.r_[ﬁx“, e LLHW

éﬂggg% %
=
%}E'Ei R R gfiﬁﬂ

-can view as 80x50 set of cells where top right is connected to
bottom left, and cells are separated from neighbors by walls

33
Union-Find Application

-example
-5x5 maze
-use union-find data structure to show connected cells

~initially, walls are everywhere, so each cell is its own
equivalence class

4/17/2023

Inverse Ackerman Function

-our a is one version of the inverse Ackerman function:
i times
R . R r— e, ;
a(N)=min{ i>1 | lglglg---lgN <1

-the iterated logarithm:
lg2=1
lglgd =1
lglglg16 =1 =
lglglglg 65536 = 1 5536) = 4
lolglglglg 255596 — o (265536) _ 5
-this is a very slowly growing function of N!
-for any practical value of N, a(N) <5
-termed Ig*, Ig**, etc.

Union-Find Application

-algorithm
-start with walls everywhere except entrance and exit
-choose wall randomly
-knock it down if cells not already connected
-repeat until start and end cell connected

—actually better to continue to knock down walls until
every cell is reachable from every other cell (false
leads)

-example (cont.)

-later stage in algorithm, after some walls have been
deleted

-randomly pick cells 8 and 13
-no wall removed since they are already connected

10,11 (2] (3) 14,6, 7.8, 9, 13, 14) 5] (10, 11, 15] {12] {16, 17, 15, 22} {19] (20} {21) (23] {24)

Union-Find Application

-example (cont.)
-randomly pick cells 18 and 13
—two calls to find show they are not connected
-knock down wall
-sets containing 18 and 13 combined with union

10,11 12) (3] [4,6.7.8,9, 13, 14, 16, 17, 18, 22] (5] (10, 11,15} {12) {19} {2

- gl
37
Union-Find Application

-analysis
-running time dominated by union-find costs
-size N is number of cells
-number of finds &« number of cells
-number of removed walls is one less than number of cells
-only twice as many walls as cells

~for N cells, there are two finds per randomly targeted wall,
or between 2N and 4N find operations

-total running time: O(Nlog*N)

S — - |
39

4/17/2023

Union-Find Application

-example (cont.)
-eventually, all cells are connected and we are done
-could have stopped earlier once 0 and 24 connected

10,1,2,3,4,5.6,7.8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,21, 22,23, 24}

38

