Chapter 9
Graph Algorithms

'_\|

| N

Definitions

-an undirected graph ¢ = (V,E) is afinite set V of vertices
together with a set E of edges

-an edge is a pair (v,w), where v and w are vertices

-this definition allows
-self-loops, or edges that connect vertices to themselves

-parallel edges, or multiple edges that connect the same
pair of vertices

-a graph without self-loops is a simple graph
-a graph with parallel edges is sometimes called a multigraph

| LM|

Definitions

-a path in a graph is a sequence of vertices connected by
edges
-a simple path is a path with no repeated vertices, except
possibly the first and last

-a cycle is a path of at least one edge whose first and last
vertices are the same

-a simple cycle is a cycle with no repeated edges of
vertices other than the first and last

-the length of a path is the number of edges in the path

U-I|
°|

8/3/2022

Introduction

-graph theory
-useful in practice
-represent many real-life problems
-can be slow if not careful with data structures
(‘ \. [k
\, / \
\

\
/

/;

Definitions

-two vertices are adjacent if there is an edge between them
-the edge is said to be incident to the two vertices

-if there are no parallel edges, the degree of a vertex is the
number of edges incident to it
-self-loops add only 1 to the degree

-a subgraph of a graph G is a subset of G's edges together
with the incident vertices

| 'h|

Definitions

-a graph is connected if every vertex is connected to every
other vertex by a path through the graph

-a connected component G’ of a graph G is a maximal
connected subgraph of G: if G" is a subset of F and F is a
connected subgraph of G, then F = G’

-a graph that is not connected consists of a set of connected
components

-a graph without cycles is called acyclic

Definitions

-atree is a connected, acyclic undirected graph

-a forest is a disjoint set of trees

-a spanning tree of a connected graph is a subgraph that is a
tree and also contains all of the graph's vertices

-a spanning forest of a graph is the union of spanning trees
of its connected components

\‘|
..|

Definitions

-in a directed graph or digraph the pairs (v, w) indicating
edges are ordered: the edge (v, w) goes from v (the tail) to
w (the head)

-since edges have a direction, we use the notation v — w to
denote an edge from v to w

-edges in digraphs are frequently called arcs

-the indegree of a vertex w is the number of arcs v —» w (i.e.,
the number of arcs coming into w), while the outdegree of w
is the number of arcs w - v (i.e., the number of arcs exiting
w)

-we will call w a source if its indegree is 0

-an aborescence is a directed graph with a distinguished
vertex u (the root) such that for every other vertex v there is
a unique directed path from u to v

Example

-airport connections

http://allthingsgraphed.com/2014/08/09/us-airlines-graph/

s i |
11

8/3/2022

Definitions

-if |[V] is the number of vertices and |E| is the number of
edges, then, in a graph without self-loops and parallel
edges, there are |V| (|V| — 1)/2 possible edges

-a graph is complete if there is an edge between every pair
of vertices

-the density of a graph refers to the proportion of possible
pairs of vertices that are connected

-a sparse graph is one for which |E| < |[V|([V] — 1)/2

-a dense graph is a graph that is not sparse

-a bipartite graph is one whose vertices can be divided into
two sets so that every vertex in one set is connected to at
least one vertex in the other set

Definitions

-in a directed graph, two vertices v and w are strongly
connected if there is a directed path from v to w and a
directed path from w to v

-a digraph is strongly connected if all its vertices are strongly
connected

-if a digraph is not strongly connected but the underlying
undirected graph is connected, then the digraph is called
weakly connected

-a weighted graph has weights or costs associated with each
edge
-weighted graphs can be directed or undirected
-a road map with mileage is the prototypical example

-two concerns: memory and speed

-we’ll consider directed graphs, though undirected graphs are
similar

~the following graph has 7 vertices and 12 edges

Graph Representation

-adjacency matrix

-2D matrix where an elementis 1 if (u,v) € Aand 0
otherwise

13
Graph Representation

-adjacency list
-for each vertex, keep a list of adjacent vertices

{/ |\\ ’/—z\] T T lr= T
V//%J&\x J//»A\\y E R ERE R R
P — _ i g
(F s {s) [Hen-B-sH
\/\ / \ / R
- - L]
:‘\,“/H—t i’/‘ 7 | 4e

15
Topological Sort

-a directed acyclic graph (DAG) is a digraph with no directed
cycles

-a DAG always has at least one vertex

-topological sort

-an ordering of the vertices in a directed graph such that if
there is a path from v to w, then v appears before w in the
ordering

-not possible if graph has a cycle

8/3/2022

Graph Representation

-adjacency matrix
-alternatively, could use costs oo or —oo for non-edges
-not efficient if the graph is sparse (number of edges small)
-matrix 0(|V]?)
-e.g., street map with 3,000 streets results in intersection
matrix with 9,000,000 elements
-adjacency list
-standard way to represent graphs
-undirected graph edges appear twice in list

-more efficient if the graph is sparse (number of edges
small)

-matrix O(|E| + |V|)

-adjacency list alternative
-for each vertex, keep a vector of adjacent vertices

N 7o 2
(11— 2) 2.4
/,.\ /\,\/ R yE—
(% s 'O
- \7\ — 4 6%3
— - 5|47
(W 7
S\

6 | fempty)

7‘(\

16
Topological Sort

-example directed acyclic graph

18

Topological Sort

-topological sort

-determine the indegree for everyv € V
-place all source vertices in a queue

-while there remainsav € V
~find a source vertex
—-append the source vertex to the topological sort
-delete the source and its adjacent arcs from G
-update the indegrees of the remaining vertices in G
-place any new source vertices in the queue

-when no vertices remain, we have our ordering, or, if we are
missing vertices from the output list, the graph has no
topological sort

Topological Sort

-instead, we can keep

void Graph::topsort()

all the vertices with Queue<vertex>
indegree 0 in a list and i chin
choose from there q.makeEmpty()
for each Vertex v
—0(|E|+|V|) 11(v.indegree == 0)

q.enqueue(v);

while(!q.isEmpty())
{

Vertex v = g.dequeue();

v.topNum = ++counter; Assign next number

for each Vertex w adjacent to v
11(--w.indegree == 0)
q.enqueve(w);

1f(counter != NUM_VERTICES)
throw CycleFoundException(};

Shortest-Path Algorithms

N
=

-shortest-path problems
-input is a weighted graph with a cost on each edge
-weighted path length: ¥¥" ¢; 141

-single-source shortest-path problem
-given as input a weighted graph, ¢ = (V,E) and a
distinguished vertex s, find the shortest weighted path from
s to every other vertex in G

8/3/2022

Topological Sort

void Graph::topsort()
{
for(int counter = 0; counter < NUN_VERTICES; counter++)

Vertex v = findNewVertex0fIndegreeZero();
11(v == NOT_A_VERTEX)
throw CycleFoundException| |3
v.topNum = counter;
for each Vertex w adjacent to v
w.indegree--;

-since finding vertex with 0 indegree must look at all vertices,
and this is performed |V| times, 0(|V|?)

-use a table to keep track of the source vertices

Indegree Before Dequeue #

N £
Vot 4"
- - Vertex 1 2 3 4 5 6 7
. - —_ 0o o o o 0 o o

v 1 0 0
N
N v 2 1 1 o 0 0
. V4 3 2 1 0 o o o
(vp o v. 1 1 0 y

22
Shortest-Path Algorithms

-example
-shortest weighted path from v; to v has cost of 6
-no path from vg to vy

24

Shortest-Path Algorithms

-negative edges can cause problems

-path from v to v, has cost of 1, but a shorter path exists by
following the negative loop, which has cost -5
-shortest paths thus undefined

25
Shortest-Path Algorithms

—four problems
-unweighted shortest-path
-weighted shortest-path with no negative edges
-weighted shortest-path with negative edges
-weighted shortest-path in acyclic graphs

N
~

Unweighted Shortest Paths

-example
-start with v

:\ k 7»/;- Q ,:_/I

8/3/2022

Shortest-Path Algorithms

-many examples where we want to find shortest paths
-if vertices represent computers and edges connections, the
cost represents communication costs, delay costs, or
combination of costs
-if vertices represent airports and edges costs to travel
between them, shortest path is cheapest route
-we find paths from one vertex to all others since no algorithm
exists that finds shortest path from one vertex to one other
faster

Unweighted Shortest Paths

-unweighted shortest-path
-find shortest paths from s to all other vertices
-only concerned with number of edges in path
-we will not actually record the path elements

N
| ..|

Unweighted Shortest Paths

-example
-mark 0 length to v;

NN

N L’H \‘

(v
(v

>

30

Unweighted Shortest Paths

-example
-mark 1 length for v; and vg

\\|I

SR
N N

31
Unweighted Shortest Paths

-example
~final path assignments

33
Unweighted Shortest Paths

void Graph::unweighted(Vertex s)
{
for each Vertex v

v.dist = INFINITY;
v.known = false;

s.dist = 0;

for(int currDist = O; currDist < NUM_VERTICES; currDistes)
for each Vertex v
11(tv.known 8K v.dist == currDist)

v.known = true;
for each Vertex w adjacent to v
11(w.dist == INFINITY)
{
w.dist = currDist + 1;
w.path = v;

8/3/2022

Unweighted Shortest Paths

-example
-mark 2 length for v, and v,

/ b \
pYaYe

./

w

2

Unweighted Shortest Paths

-searching an unweighted shortest-path uses a breadth-first
search

-processes vertices in layers, according to distance
-begins with initializing path lengths

own d,p,

?

2222 od

-a vertex will be marked known when the shortest path to it
is found

w

4

Unweighted Shortest Paths

-with this algorithm
-path can be printed
-running time: 0(|V|?)
-bad case
o

OO0

h.

-can reduce time by keeping vertices that are unknown
separate from those known

-new running time: O(|E| + |V)

w

6

Unweighted Shortest Paths

Void Graph::unweighted(Vertex s)
{

Queue<Vertex> q;

for each Vertex v
v.dist = INFINITY;

s.dist = 0;
q.enqueue(s);

while(!q.isEmpty())
Vertex v = q.dequeue();

for each Vertex w adjacent to v
if(w.dist == INFINITY)
{
w.dist = v.dist + 15
w.path = v;
q.enqueue(w);

Dijkstra’s Algorithm

-weighted shortest-path — Dijkstra’s algorithm

-more difficult, but ideas from unweighted algorithm can be
used

-keep information as before for each vertex
-known
-set distance d,, = d,, + ¢, if d, = oo using only known
vertices
-p, the last vertex to cause a change to d,,
-greedy algorithm
-does what appears to be best thing at each stage

-e.g., counting money: count quarters first, then dimes,
nickels, pennies

-gives change with least number of coins

Dijkstra’s Algorithm

w
| L.|

-pseudocode (cont.)

foreach vertex v {
dist [v] = +oc

known[v] = false
I
dist[s] =0
while (there is a vertex w with known|w] — false) {
v = argmin ({ distfw] | known[w] == false })
known[v] = true
foreach (w adjacent to v) {
if (known|w] = false) { // edge relaxation

dist [w] = min(dist[w], dist[v] + weight(v — w))
from [w] = v

8/3/2022

Unweighted Shortest Paths

Initial State v3 Dequeued ¥, Dequeucd vs Dequened

R EE R

Dijkstra’s Algorithm

-pseudocode
-assumption: no negative weights
-origin s is given
Initialization: S « {s} and D « V — {s}.
Set dist[s] + 0 and dist[v] + oc for all other v.

While there remains a v € D:

@ Select a vertex v €) which has the shortest path length from s to
v using only vertices in S (e.g., known vertices).

@ S« Sufvland D« D — {v}.

Dijkstra’s Algorithm

-example: start at v,

EIE R

Dijkstra’s Algorithm

-example

v known dp v known d p v knewn de p

v T o v T o o0 T o o

v F 2 v F R v T B
F ° 0 v F 3w B r 3o
F 4 T 1 ¥ Vi T 1 v
F o ¥ F ER F 3w
F 20 F oy F 9y
F 20 J ¥ F 300 F 5 0w
V1 Uy V2

L
43
Dijkstra’s Algorithm

-example — stages shown on the graph

45
Dijkstra’s Algorithm: Correctness

Proposition. Dijkstra's algorithm solves the single-origin shortest-paths
problem in a weight digraph with nonnegative weights.

Proof. If v is reachable from s, then every edge v —w is relaxed
exactly once, when v is relaxed, resulting in

dist[w] < dist[v] + weight[v — w].
This inequality holds until the algorithm terminates, since

@ dist[w] can only decrease, because relaxations can only decrease a
dist[] value, and

@ dist[v] never changes, because edge weights are nonnegative and
we choose the lowest dist[] value at each step, so no later
relaxation can reduce dist[v].

Thus, after all vertices reachable from s have been added to the
shortest paths tree, the shortest paths optimality conditions hold.
I |
47

8/3/2022

Dijkstra’s Algorithm

-example

. /
knows dep. v known dyp v known d, o p,
v T o0 T o 0 v, T oo
v T 2w T X wow T -
3 T 30w T 3 v v T I v
Vs T [T 1 1 " T 1w
Vs T 3w T 3 vy T I v
w F B w Fooe v T 6 v
vy F 5w T 5 ¥ T 5wy
Vs, U3 vy Ve

44
Dijkstra’s Algorithm

-example — stages shown on the graph (cont.)

46
Dijkstra’s Algorithm

-complexity
-sequentially scanning vertices to find minimum d,, takes
0(|V]), which results in 0(|V|?) overall
-at most one update per edge, for a total of O(|E| + |V|?) =
ovi®
-if graph is dense, with |E| = 6(|V|?), algorithm is close to
optimal
-if graph is sparse, with |[E| = 6(]V]), algorithm is too slow
-distances could be kept in a priority queue that reduces
running time to O(|E| + |V |1g|V])

s — -
48

Dijkstra’s Algorithm

-implementation
-information for each vertex

* PSEUDOCODE sketch of the Vertex structure.

* In real C++, path would be of type Vertex *,

* and many of the code fragments that we describe

* require either a dereferencing * or use the

* -> operator instead of the . operator.

* Needless to say, this obscures the basic algorithmic ideas.
struct Vertex

{

List ady; / Adjacency 1ist
bool known;

DistType dist; DistType is probably int

Vertex path; // Probably Vertex *, as mentioned above

Other data and member functions as needed

Dijkstra’s Algorithm

-implementation (cont.)

while(there is an unknown distance vertex)

void Graph::dijkstra(Vertex s)

for each Vertex v Vertex v = smallest unknown distance vertex;

v.gist = INFINITY; v.known = true;

v.known = false;
for each Vertex w adjacent to v

1£(tw.known)
s.dist = 0 {
DistType cvw = cost of edge from v to w;
11(v.dist + cvw < w.dist)
{

/ Update w

decrease(w.dist to v.dist + cvw);

w.path = v;

Graphs with Negative Edges

-possible solution: add a delta value to all weights such that
none are negative
-calculate shortest path on new graph
-apply path to original graph
-does not work: longer paths become weightier
-combination of algorithms for weighted graphs and
unweighted graphs can work
-drastic increase in running time: O(|E| - |V|)

wn
=

8/3/2022

Dijkstra’s Algorithm

-implementation (cont.)
-path can be printed recursively

* Print shortest path ta v after dijkstra has run.
* Assume that the path exists.

void Graph::printPath(Vertex v)

11 v.path 1= NOT_A_VERTEX)
{
printPath(v.path);
cout << * to *;
}

cout << vy

0

vl

Graphs with Negative Edges

-try to apply Dijkstra’s algorithm to graph with negative edges
Label each node with best known distance from origin a. Relax the
edges adjacent to a. Select b, the closest node to S, and add it to S.
Relax the outgoing edges adjacent to b. Select ¢, the closest node to S,
and add it to S. We've now assimilated all nodes into S, so we're done.

b
1
-2
c
1 2
/
0
a

All-Pairs Shortest Paths

u

2

-given a weighted digraph, find the shortest paths between all
vertices in the graph
-one approach: apply Dijkstra's algorithm repeatedly
-results in 0(|V|®)
-another approach: apply Floyd-Warshall algorithm
-uses dynamic programming
-also results in 0(|V|?)

u-I|

4

Minimum Spanning Tree

—-assumptions
-graph is connected
-edge weights are not necessarily Euclidean distances
-edge weights need not be all the same
-edge weights may be zero or negative

-minimum spanning tree (MST)
-also called minimum-weight spanning tree of a weighted
graph
-spanning tree whose weight (the sum of the weights of the
edges in the tree) is the smallest among all spanning trees

Minimum Spanning Tree

-two algorithms to find the minimum spanning tree
-Prim’s Algorithm
-R. C. Prim, Shortest Connection Networks and Some
Generalizations, Bell System Technical Journal (1957)

-Kruskal’s Algorithm
-J. B. Kruskal, Jr., On the Shortest Spanning Subtree of a
Graph and the Traveling Salesman Problem, Proc. of the
American Mathematical Society (1956)

(]
~

Minimum Spanning Tree

-Prim’s algorithm: example

a

TN
/\/
\/\

8/3/2022

Minimum Spanning Tree

example

56
Minimum Spanning Tree

60

-Prim’s algorithm
-grows tree in successive stages

Initialization: S « {s} and D « V — {s}.
While there remains a v € D:

@ Find an edge with minimum weight (u, v) such that u € 5 and
ve D.

@ S+ Sufv}and D« D— {v}.

10

Minimum Spanning Tree

-Prim’s algorithm: example 2 (cont.)

61
Minimum Spanning Tree

-Prim’s algorithm
-runs on undirected graphs
-running time: 0(|V|?) without heaps, which is optimal for
dense graphs
-running time: O(|E|1g|V|) using binary heaps, which is good
for sparse graphs

-Kruskal’s algorithm: example

a

/\/

\/
AN

8/3/2022

Minimum Spanning Tree

-Prim’s algorithm: example 2 (cont.)

V1, Uy, Vp & V3, V7, Vg & Vs © Ly

A
\/\/ :

known dy po v known d p, v ko d p v kwen dop

Am T T
22gggez

- -

62
Minimum Spanning Tree

-Kruskal’s algorithm
-continually select the edges in order of smallest weight

-accept the edge if it does not cause a cycle with already
accepted edges

66

11

Minimum Spanning Tree

-Kruskal’s algorithm: example 2 (cont.)

67
NP-Complete Problems

-What problems can we solve algorithmically? which problems
are easy? which problems are hard?

-Eulerian circuit: Given a vertex s, start at s and find a cycle
that visits every edge exactly once

-easy: solvable in O(|E| + |V|) using depth-first search

—-Hamiltonian circuit: Given a vertex s, start at s and find a
cycle that visits each remaining vertex exactly once
~really, really hard!

(o2}
O

NP-Complete Problems

-halting problem
-suppose we had such an algorithm terminates(p,x)
-create a new program:

program evil (z) {
1: if terminates(z,z) goto 1

}

-program evil() terminates if and only if the program z
does not terminate when given its own code as input

-no such algorithm can exist

8/3/2022

Minimum Spanning Tree

-Kruskal’s algorithm
-time complexity: O(|E| 1g|E|) with proper choice and use of
data structures
-in the worst case, |E| = 6(|V|?), so the worst-case time
complexity is O(|E| 1g|V])

NP-Complete Problems

-halting problem
-in 1936, A. Church and A. Turing independently proved the
non-solvability of the halting problem:
-is there an algorithm terminates(p,x) that takes an
arbitrary program p and input x and returns True if p
terminates when given input x and False otherwise?

~difficult: try to run it on itself

\‘|

0

NP-Complete Problems

-decision problem
-has a yes or no answer

-undecidable if it is impossible to construct a single
algorithm that will solve all instances of the problem

-the halting problem is undecidable

~

2

12

NP-Complete Problems

-the class P

-set of problems for which there exists a polynomial time
algorithm for their solution

-the runtime is bounded by a polynomial function of the size
of the problem

-the class NP

-set of decision problems for which the certification of a
candidate solution as being correct can be performed in
polynomial time

-non-deterministic polynomial time

NP-Complete Problems

-reductions
-problem A reduces to problem B if the solvability of B
implies the solvability of A
-if Alis reducible to B, then B is at least as hard to solve
as A
-in the context of algorithms, reducibility means an
algorithm that solves B can be converted into an
algorithm to solve A
-example: if we can sort a set of numbers, we can find
the median, so finding the median reduces to sorting

NP-Complete Problems

~
ul

-reductions
-decision version of traveling salesperson problem (TSP):
-given a complete weighted graph and an integer K,
does there exist a simple cycle that visits all vertices
(tour) with total weight < K?
—clearly, this is in NP
-Hamiltonian circuit: given a graph G = (V,E), find a
simple cycle that visits all the vertices
-construct a new graph G’ with the same vertices as ¢
but which is complete; if an edge in G is in G, give it
weight 1; otherwise, give it weight 2
—construction requires O(|E| + |V]) work
—apply TSP to see if there exists a tour with total
weight |V|

8/3/2022

NP-Complete Problems

-the class NP
-for problems in NP, certifying a solution may not be difficult,
but finding a solution may be very difficult
-example: Hamiltonian circuit

-given a graph G, is there a simple cycle in G that
includes every vertex?

-given a candidate solution, we can check whether itis a
simple cycle in time o |V|, simply by traversing the path
-however, finding a Hamiltonian circuit is hard!

~

4

NP-Complete Problems

-reductions
-problem A can be polynomially reduced to B if we can
solve problem A using an algorithm for problem B such
that the cost of solving A is

cost of solving B + a polynomial function of the problem size

-example: once we have sorted an array a[] of N
numbers, we can find the median in constant time by
computing N/2 and accessing a[N /2]

\‘|

6

NP-Complete Problems

-reductions

78

13

NP-Complete Problems

-NP-complete

-a problem A is NP-complete if it is in NP and all other
problems in NP can be reduced to A in polynomial time

-Boolean satisfiablity (SAT): given a set of N boolean
variables and M logical statements built from the
variables using and and not, can you choose values for
the variables so that all the statements are true?

(xq AND !x, AND x3),(!x; AND x7),(x1 AND x3), ...

-SAT is NP-complete

NP-Complete Problems

-NP-complete problems
-traveling salesperson
-bin packing
-knapsack
-graph coloring
-longest-path

Bin Packing

| ..|
[uite

We are given n items of lengths /4, ..., £, where 0 < ¢; < 1 for all i.

The items must be packed in bins of length 1, and they must be placed
end-to-end. Once placed in a bin, items cannot be moved.

How do we pack them in a way that uses the fewest number of bins?
This is an NP-hard problem!

Input: 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8.

Optimal packing:
B: 02,08
By: 07,03
Bs: 0.4,01,05

Online: item must be put in a bin before the next item is considered.

Offline: all the items are available for consideration at one time.

8/3/2022

NP-Complete Problems

-NP-complete

-if we restrict attention to sets of boolean statements
involving 3 variables, the problem is known as 3-SAT

-3-SAT is NP-complete

-s0, if you can solve 3-SAT in polynomial time, you can
solve all problems in NP in polynomial time

-meanwhile, 2-SAT is solvable in linear time!

0o

0

NP-Complete Problems

-NP-hard problems

-a problem A is NP-hard if there exists a polynomial-time
reduction from an NP-complete problem to A

-an NP-hard problem is at |least as hard as an NP-
complete problem

-optimization versions of NP-complete problems are
typically NP-hard
-optimization version of TSP: given a weighted graph,

find a minimum cost Hamiltonian circuit

-if we can solve TSP, we can solve Hamiltonian circuit

..|

2

Bin Packing
Theorem. No algorithm for online bin packing can always give an
optimal solution.

Proof. Let = > 0 be small (say, ¢ = 1/64), and consider an input
sequence of m items of length é — ¢ followed by m items of length
1

3+e&.

2

Clearly, the optimal packing requires m bins.

Suppose online algorithm A yields this optimal solution. Since it is
online, A must place each of the first /i items in a separate bin.

Now give A an input sequence of just m items of length 1 — ¢ A will
behave as before, placing each in a separate bin, thus using m bins.

However, the optimal packing in this case requires only [m/2] bins.

oo

4

14

Bin Packing

Since an online algorithm never knows when the input might end, any
performance guarantee for the algorithm must hold whenever an item is
binned.

Theorem. There are inputs that cause any online bin packing
algorithm to use at least 11 the optimal number of bins

Proof. Suppose not. Then there is an online algorithm A that always
uses less than —: the optimal number of bins.

Let m be even. Apply A to an input sequence of 1 items of length

i — ¢ followed by m items of length i +e.

Consider the situation after A has processed item m (the last of the
smaller items). Suppose A has used b bins at this point.

Bin Packing

Thus we have two inequalities that hold:

2b
—

m

2m —b
<

after the first m items,

after the last m items.

SISO

m

From the first inequality we obtain b/m < " while from the second we
obtain b/m > 5, which is a contradiction. = |

Bin Packing

(o]
| \‘

Theorem

Let m be the optimal number of bins required to pack a list of items.
Then next fit never uses more than 2m bins. There exist sequences for
which next fit uses 2m — 2 bins.

This is an example of an approximation result.

Next fit is an approximation algorithm; it is not guaranteed to produce
optimal solutions, but there exists a bound on how poorly it can do,
even though we do not know the optimal solution.

8/3/2022

Bin Packing

We know that the optimal number of bins for the first m items is m/2,

so our performance assumption means b < %% or 2b/m < A:

Now consider the situation when A is finished packing all 2m items. All
the bins used after bin b can only contain one item since the inputs are
the longer items.

The first b bins can have at most 2 items each, and the remaining bins
have one item each, so packing all 2m items requires at least 2m — b
bins.

Since the optimal packing requires m bins, the performance assumption
means 2m — b < ;',m, or (2m —b)/m < -§

0o

6

Bin Packing

The next fit heuristic: when binning an item, check to see if it fits in
the bin with the last item binned. If it does, place the new item there;
otherwise, start a new bin.

Input: 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8.

B,:0.2,0.5
B,: 0.4
B3:0.7,0.1
B;: 0.3
Bs: 0.8

..|

8

Bin Packing
Proof: Suppose next fit uses b bins. Let L; be the total length of items
in bin j; then

Ly + Ly + -+ + Ly = total length of items < m.

Consider any adjacent bins B; and Bj;. The combined lengths of the
items in these two bins must be larger than 1; otherwise all of these
items would have been placed in B;:

Lj+Ljyy > 1.
For simplicity, assume b is even. Then
m > (Ly+ L)+ (Ls+ Ly)+-+++ (Ly—1 + Lp—2)
1 2 b/2

b
> l+1+-+1=7,
—— D

b/2 times

so b < 2m.

Yo}

0

15

Bin Packing

For the second part of the theorem, suppose 7, the number of items, is
divisible by 4, and choose

= 1/2 ifiis odd,

"7 2/n ifiiseven.
The optimal packing requires n/4 bins containing 2 items of length 1/2

and one bin containing the n/2 items of length 2/n.

Next fit, on the other hand, uses /2 bins, with each bin containing
one long and one short item. al

I |
91
Theoen . |

Theorem
Let m be the optimal number of bins required to pack a list of items.
Then first fit never uses more than i—;’;m + % bins. There exist
sequences for which next fit uses :—(’—)(m — 1) bins.

Consider a sequence of 6N items of size
size 1‘ + ¢, followed by 6N items of size

followed by 6N items of

[,

First fit will require 10N bins. However, if we apply next fit, we obtain
a packing that requires only 6N bins.

R ———
93
Bin Packing

In offline bin packing, we can first sort the items, longest to shortest,
and then pack them according to first fit or best fit.
The corresponding heuristics are called first fit decreasing and best fit

decreasing (more properly they should be first fit nonincreasing and
best fit nonincreasing).

First fit decreasing for: 0.8, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1.
By: 0.8,0.2

B,:0.7,0.3

By:0.5,0.4,0.1

In this case we get the optimal solution.

e — - |
95

8/3/2022

Bin Packing

The first fit heuristic: when binning an item, scan over all the bins in
order and place the new item in the first bin that has room for it. If no
such bin exists, open a new one.

Input: 0.2,05,04,0.7,0.1, 0.3, 08.
B,:0.2,0.5,0.1
B,:0.4,0.3

B;: 0.7
B,:0.8

u|

2

Bin Packing

The best fit heuristic: when binning an item, scan over all the bins in
order and place the new item in the tightest spot.

Input: 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8.
B:0.2,0.5,0.1
B,:0.4

B;:0.7,0.3
B,: 08

In general, the worst-case behavior is the same as first fit.

L.|

4

Bin Packing

Theorem

Let m be the optimal number of bins required to pack a list of items.
Then first fit decreasing never uses more than %m - 3 bins. There

exist sequences for which first fit decreasing uses %m - % bins.

L.|

6

16

