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Chapter 9

Graph Algorithms

Introduction

2

−graph theory

−useful in practice

−represent many real-life problems

−can be slow if not careful with data structures

Definitions

3

−an undirected graph 𝐺 = (𝑉, 𝐸) is a finite set 𝑉 of vertices

together with a set 𝐸 of edges

−an edge is a pair (𝑣,𝑤), where 𝑣 and 𝑤 are vertices

− this definition allows

−self-loops, or edges that connect vertices to themselves

−parallel edges, or multiple edges that connect the same 

pair of vertices

−a graph without self-loops is a simple graph

−a graph with parallel edges is sometimes called a multigraph

Definitions
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− two vertices are adjacent if there is an edge between them

− the edge is said to be incident to the two vertices

− if there are no parallel edges, the degree of a vertex is the 

number of edges incident to it

−self-loops add only 1 to the degree

−a subgraph of a graph 𝐺 is a subset of 𝐺's edges together 

with the incident vertices

Definitions
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−a path in a graph is a sequence of vertices connected by 

edges

−a simple path is a path with no repeated vertices, except 

possibly the first and last

−a cycle is a path of at least one edge whose first and last 

vertices are the same

−a simple cycle is a cycle with no repeated edges of 

vertices other than the first and last

− the length of a path is the number of edges in the path

Definitions

6

−a graph is connected if every vertex is connected to every 

other vertex by a path through the graph

−a connected component 𝐺′ of a graph 𝐺 is a maximal 

connected subgraph of 𝐺: if 𝐺′ is a subset of 𝐹 and 𝐹 is a 

connected subgraph of 𝐺, then 𝐹 = 𝐺′

−a graph that is not connected consists of a set of connected 

components

−a graph without cycles is called acyclic
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Definitions
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−a tree is a connected, acyclic undirected graph

−a forest is a disjoint set of trees

−a spanning tree of a connected graph is a subgraph that is a 

tree and also contains all of the graph's vertices

−a spanning forest of a graph is the union of spanning trees 

of its connected components

Definitions
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− if 𝑉 is the number of vertices and 𝐸 is the number of 

edges, then, in a graph without self-loops and parallel 

edges, there are 𝑉 ( 𝑉 − 1)/2 possible edges

−a graph is complete if there is an edge between every pair

of vertices 

− the density of a graph refers to the proportion of possible 

pairs of vertices that are connected

−a sparse graph is one for which 𝐸 ≪ 𝑉 ( 𝑉 − 1)/2

−a dense graph is a graph that is not sparse

−a bipartite graph is one whose vertices can be divided into 

two sets so that every vertex in one set is connected to at 

least one vertex in the other set

Definitions
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− in a directed graph or digraph the pairs (𝑣, 𝑤) indicating 
edges are ordered: the edge (𝑣, 𝑤) goes from 𝑣 (the tail) to 
𝑤 (the head)

−since edges have a direction, we use the notation 𝑣 → 𝑤 to 
denote an edge from 𝑣 to 𝑤

−edges in digraphs are frequently called arcs

− the indegree of a vertex 𝑤 is the number of arcs 𝑣 → 𝑤 (i.e., 
the number of arcs coming into 𝑤), while the outdegree of 𝑤
is the number of arcs 𝑤 → 𝑣 (i.e., the number of arcs exiting 
𝑤)

−we will call 𝑤 a source if its indegree is 0

−an aborescence is a directed graph with a distinguished 
vertex 𝑢 (the root) such that for every other vertex 𝑣 there is 
a unique directed path from 𝑢 to 𝑣

Definitions

10

− in a directed graph, two vertices 𝑣 and 𝑤 are strongly

connected if there is a directed path from 𝑣 to 𝑤 and a 

directed path from 𝑤 to 𝑣

−a digraph is strongly connected if all its vertices are strongly 

connected

− if a digraph is not strongly connected but the underlying 

undirected graph is connected, then the digraph is called 

weakly connected

−a weighted graph has weights or costs associated with each 

edge

−weighted graphs can be directed or undirected

−a road map with mileage is the prototypical example

Example

11

−airport connections

http://allthingsgraphed.com/2014/08/09/us-airlines-graph/

Graph Representation

12

− two concerns: memory and speed

−we’ll consider directed graphs, though undirected graphs are 

similar

− the following graph has 7 vertices and 12 edges

7 8
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Graph Representation

13

−adjacency matrix

−2D matrix where an element is 1 if (𝑢, 𝑣) ∈ 𝐴 and 0 

otherwise

Graph Representation

14

−adjacency matrix

−alternatively, could use costs ∞ or −∞ for non-edges

−not efficient if the graph is sparse (number of edges small)

−matrix 𝑂( 𝑉 2)

−e.g., street map with 3,000 streets results in intersection 

matrix with 9,000,000 elements

−adjacency list

−standard way to represent graphs

−undirected graph edges appear twice in list

−more efficient if the graph is sparse (number of edges 

small)

−matrix 𝑂( 𝐸 + 𝑉 )

Graph Representation

15

−adjacency list

− for each vertex, keep a list of adjacent vertices

Graph Representation

16

−adjacency list alternative

− for each vertex, keep a vector of adjacent vertices

Topological Sort

17

−a directed acyclic graph (DAG) is a digraph with no directed 

cycles

−a DAG always has at least one vertex

− topological sort 

−an ordering of the vertices in a directed graph such that if 

there is a path from v to w, then v appears before w in the 

ordering

−not possible if graph has a cycle

Topological Sort

18

−example directed acyclic graph
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Topological Sort

19

− topological sort 

−determine the indegree for every 𝑣 ∈ 𝑉

−place all source vertices in a queue

−while there remains a 𝑣 ∈ 𝑉

−find a source vertex

−append the source vertex to the topological sort

−delete the source and its adjacent arcs from 𝐺

−update the indegrees of the remaining vertices in 𝐺

−place any new source vertices in the queue

−when no vertices remain, we have our ordering, or, if we are 

missing vertices from the output list, the graph has no 

topological sort

Topological Sort

20

−since finding vertex with 0 indegree must look at all vertices, 

and this is performed 𝑉 times, 𝑂( 𝑉 2)

Topological Sort

21

− instead, we can keep 

all the vertices with 

indegree 0 in a list and 

choose from there

−𝑂( 𝐸 + 𝑉 )

Topological Sort

22

−use a table to keep track of the source vertices

Shortest-Path Algorithms

23

−shortest-path problems

− input is a weighted graph with a cost on each edge

−weighted path length: σ𝑖=1
𝑁−1 𝑐𝑖,𝑖+1

−single-source shortest-path problem

−given as input a weighted graph, 𝐺 = (𝑉, 𝐸) and a 

distinguished vertex 𝑠, find the shortest weighted path from 

𝑠 to every other vertex in 𝐺

Shortest-Path Algorithms

24

−example

−shortest weighted path from 𝑣1 to 𝑣6 has cost of 6

−no path from 𝑣6 to 𝑣1

19 20
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Shortest-Path Algorithms

25

−negative edges can cause problems

−path from 𝑣5 to 𝑣4 has cost of 1, but a shorter path exists by 

following the negative loop, which has cost -5

−shortest paths thus undefined

Shortest-Path Algorithms

26

−many examples where we want to find shortest paths

− if vertices represent computers and edges connections, the 

cost represents communication costs, delay costs, or 

combination of costs

− if vertices represent airports and edges costs to travel 

between them, shortest path is cheapest route

−we find paths from one vertex to all others since no algorithm 

exists that finds shortest path from one vertex to one other 

faster

Shortest-Path Algorithms

27

− four problems

−unweighted shortest-path

−weighted shortest-path with no negative edges

−weighted shortest-path with negative edges

−weighted shortest-path in acyclic graphs

Unweighted Shortest Paths

28

−unweighted shortest-path

− find shortest paths from 𝑠 to all other vertices

−only concerned with number of edges in path

−we will not actually record the path elements

Unweighted Shortest Paths

29

−example

−start with 𝑣3

Unweighted Shortest Paths

30

−example

−mark 0 length to 𝑣3

25 26

27 28
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Unweighted Shortest Paths

31

−example

−mark 1 length for 𝑣1 and 𝑣6

Unweighted Shortest Paths

32

−example

−mark 2 length for 𝑣2 and 𝑣4

Unweighted Shortest Paths

33

−example

− final path assignments

Unweighted Shortest Paths

34

−searching an unweighted shortest-path uses a breadth-first

search

−processes vertices in layers, according to distance

−begins with initializing path lengths

−a vertex will be marked known when the shortest path to it 

is found

Unweighted Shortest Paths

35

Unweighted Shortest Paths

36

−with this algorithm

−path can be printed

−running time: 𝑂( 𝑉 2)

−bad case

−can reduce time by keeping vertices that are unknown 

separate from those known

−new running time: 𝑂( 𝐸 + 𝑉 )

31 32

33 34
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Unweighted Shortest Paths

37

Unweighted Shortest Paths

38

Dijkstra’s Algorithm

39

−weighted shortest-path – Dijkstra’s algorithm

−more difficult, but ideas from unweighted algorithm can be 
used

−keep information as before for each vertex

−known

−set distance 𝑑𝑤 = 𝑑𝑣 + 𝑐𝑣,𝑤 if 𝑑𝑤 = ∞ using only known 
vertices

−𝑝𝑣 the last vertex to cause a change to 𝑑𝑣
−greedy algorithm

−does what appears to be best thing at each stage

−e.g., counting money: count quarters first, then dimes, 
nickels, pennies

−gives change with least number of coins

Dijkstra’s Algorithm

40

−pseudocode

−assumption: no negative weights

−origin 𝑠 is given

Dijkstra’s Algorithm

41

−pseudocode (cont.)

Dijkstra’s Algorithm

42

−example: start at 𝑣1

37 38

39 40
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Dijkstra’s Algorithm

43

−example

𝑣1 𝑣4 𝑣2

Dijkstra’s Algorithm

44

−example

𝑣5, 𝑣3 𝑣7 𝑣6

Dijkstra’s Algorithm

45

−example – stages shown on the graph

Dijkstra’s Algorithm

46

−example – stages shown on the graph (cont.)

Dijkstra’s Algorithm: Correctness

47

−correctness

Dijkstra’s Algorithm

48

−complexity

−sequentially scanning vertices to find minimum 𝑑𝑣 takes 

𝑂( 𝑉 ), which results in 𝑂( 𝑉 2) overall

−at most one update per edge, for a total of 𝑂 𝐸 + 𝑉 2 =
𝑂( 𝑉 2)

− if graph is dense, with 𝐸 = ϴ 𝑉 2 , algorithm is close to 

optimal

− if graph is sparse, with 𝐸 = ϴ( 𝑉 ), algorithm is too slow

−distances could be kept in a priority queue that reduces 

running time to 𝑂 𝐸 + 𝑉 lg 𝑉

43 44
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Dijkstra’s Algorithm

49

− implementation

− information for each vertex

Dijkstra’s Algorithm

50

− implementation (cont.)

−path can be printed recursively

Dijkstra’s Algorithm

51

− implementation (cont.)

Graphs with Negative Edges

52

− try to apply Dijkstra’s algorithm to graph with negative edges

Graphs with Negative Edges

53

−possible solution: add a delta value to all weights such that 

none are negative

−calculate shortest path on new graph

−apply path to original graph

−does not work: longer paths become weightier

−combination of algorithms for weighted graphs and 

unweighted graphs can work

−drastic increase in running time: 𝑂 𝐸 ∙ 𝑉

All-Pairs Shortest Paths

54

−given a weighted digraph, find the shortest paths between all

vertices in the graph

−one approach: apply Dijkstra's algorithm repeatedly

−results in 𝑂( 𝑉 3)

−another approach: apply Floyd-Warshall algorithm

−uses dynamic programming

−also results in 𝑂( 𝑉 3)

49 50

51 52

53 54
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Minimum Spanning Tree

55

−assumptions

−graph is connected

−edge weights are not necessarily Euclidean distances

−edge weights need not be all the same

−edge weights may be zero or negative

−minimum spanning tree (MST)

−also called minimum-weight spanning tree of a weighted 

graph 

−spanning tree whose weight (the sum of the weights of the 

edges in the tree) is the smallest among all spanning trees

Minimum Spanning Tree

56

example

Minimum Spanning Tree

57

− two algorithms to find the minimum spanning tree

−Prim’s Algorithm

−R. C. Prim, Shortest Connection Networks and Some 

Generalizations, Bell System Technical Journal (1957)

−Kruskal’s Algorithm

−J. B. Kruskal, Jr., On the Shortest Spanning Subtree of a 

Graph and the Traveling Salesman Problem, Proc. of the 

American Mathematical Society (1956)

Minimum Spanning Tree

58

−Prim’s algorithm

−grows tree in successive stages

Minimum Spanning Tree

59

−Prim’s algorithm: example

Minimum Spanning Tree

60

−Prim’s algorithm: example 2

55 56

57 58

59 60
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Minimum Spanning Tree

61

−Prim’s algorithm: example 2 (cont.)

Minimum Spanning Tree

62

−Prim’s algorithm: example 2 (cont.)

−𝑣1, 𝑣4, 𝑣2 & 𝑣3, 𝑣7, 𝑣6 & 𝑣5

Minimum Spanning Tree

63

−Prim’s algorithm

−runs on undirected graphs

−running time: 𝑂( 𝑉 2) without heaps, which is optimal for 

dense graphs

−running time: 𝑂 𝐸 lg 𝑉 using binary heaps, which is good 

for sparse graphs

Minimum Spanning Tree

64

−Kruskal’s algorithm

−continually select the edges in order of smallest weight

−accept the edge if it does not cause a cycle with already 

accepted edges

Minimum Spanning Tree

65

−Kruskal’s algorithm: example

Minimum Spanning Tree

66

−Kruskal’s algorithm: example 2

61 62

63 64

65 66
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Minimum Spanning Tree

67

−Kruskal’s algorithm: example 2 (cont.)

Minimum Spanning Tree

68

−Kruskal’s algorithm

− time complexity: 𝑂 𝐸 lg 𝐸 with proper choice and use of 

data structures

− in the worst case, 𝐸 = ϴ 𝑉 2 , so the worst-case time 

complexity is 𝑂 𝐸 lg 𝑉

NP-Complete Problems

69

−What problems can we solve algorithmically? which problems 

are easy?  which problems are hard?

−Eulerian circuit: Given a vertex s, start at s and find a cycle 

that visits every edge exactly once

−easy: solvable in 𝑂 𝐸 + 𝑉 using depth-first search

−Hamiltonian circuit: Given a vertex s, start at s and find a 

cycle that visits each remaining vertex exactly once

−really, really hard!

NP-Complete Problems

70

−halting problem

− in 1936, A. Church and A. Turing independently proved the 

non-solvability of the halting problem:

− is there an algorithm terminates(p,x) that takes an 

arbitrary program p and input x and returns True if p

terminates when given input x and False otherwise?

−difficult: try to run it on itself

NP-Complete Problems

71

−halting problem

−suppose we had such an algorithm terminates(p,x)

−create a new program:

program evil (z) {

1: if terminates(z,z) goto 1

}

−program evil() terminates if and only if the program z

does not terminate when given its own code as input

−no such algorithm can exist

NP-Complete Problems

72

−decision problem

−has a yes or no answer

−undecidable if it is impossible to construct a single 

algorithm that will solve all instances of the problem

− the halting problem is undecidable

67 68

69 70

71 72
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NP-Complete Problems

73

− the class P

−set of problems for which there exists a polynomial time 

algorithm for their solution 

− the runtime is bounded by a polynomial function of the size

of the problem

− the class NP

−set of decision problems for which the certification of a 

candidate solution as being correct can be performed in 

polynomial time

−non-deterministic polynomial time

NP-Complete Problems

74

− the class NP

− for problems in NP, certifying a solution may not be difficult, 

but finding a solution may be very difficult

−example: Hamiltonian circuit

−given a graph G, is there a simple cycle in G that 

includes every vertex?

−given a candidate solution, we can check whether it is a 

simple cycle in time ∝ 𝑉 , simply by traversing the path

−however, finding a Hamiltonian circuit is hard!

NP-Complete Problems

75

−reductions

−problem A reduces to problem B if the solvability of B

implies the solvability of A

− if A is reducible to B, then B is at least as hard to solve 

as A

− in the context of algorithms, reducibility means an 

algorithm that solves B can be converted into an 

algorithm to solve A

−example: if we can sort a set of numbers, we can find 

the median, so finding the median reduces to sorting

NP-Complete Problems

76

−reductions

−problem A can be polynomially reduced to B if we can 

solve problem A using an algorithm for problem B such 

that the cost of solving A is

cost of solving B + a polynomial function of the problem size

−example: once we have sorted an array 𝑎[] of 𝑁
numbers, we can find the median in constant time by 

computing Τ𝑁 2 and accessing 𝑎 Τ𝑁 2

NP-Complete Problems

77

−reductions

−decision version of traveling salesperson problem (TSP): 

−given a complete weighted graph and an integer 𝐾, 
does there exist a simple cycle that visits all vertices 
(tour) with total weight ≤ 𝐾?

−clearly, this is in NP

−Hamiltonian circuit: given a graph 𝐺 = (𝑉, 𝐸), find a 
simple cycle that visits all the vertices

−construct a new graph 𝐺′ with the same vertices as 𝐺
but which is complete; if an edge in 𝐺′ is in 𝐺, give it 
weight 1; otherwise, give it weight 2

−construction requires 𝑂 𝐸 + 𝑉 work

−apply TSP to see if there exists a tour with total 
weight 𝑉

NP-Complete Problems

78

−reductions

73 74

75 76
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NP-Complete Problems

79

−NP-complete

−a problem A is NP-complete if it is in NP and all other 

problems in NP can be reduced to A in polynomial time

−Boolean satisfiablity (SAT): given a set of N boolean

variables and M logical statements built from the 

variables using and and not, can you choose values for 

the variables so that all the statements are true?

𝑥1 𝐴𝑁𝐷 ! 𝑥2 𝐴𝑁𝐷 𝑥3 , ! 𝑥1 𝐴𝑁𝐷 𝑥7 , 𝑥1 𝐴𝑁𝐷 𝑥42 , …

−SAT is NP-complete

NP-Complete Problems

80

−NP-complete

− if we restrict attention to sets of boolean statements 

involving 3 variables, the problem is known as 3-SAT

−3-SAT is NP-complete

−so, if you can solve 3-SAT in polynomial time, you can 

solve all problems in NP in polynomial time

−meanwhile, 2-SAT is solvable in linear time!

NP-Complete Problems

81

−NP-complete problems

− traveling salesperson

−bin packing

−knapsack

−graph coloring

− longest-path

NP-Complete Problems

82

−NP-hard problems

−a problem A is NP-hard if there exists a polynomial-time 

reduction from an NP-complete problem to A

−an NP-hard problem is at least as hard as an NP-

complete problem

−optimization versions of NP-complete problems are 

typically NP-hard

−optimization version of TSP: given a weighted graph, 

find a minimum cost Hamiltonian circuit

− if we can solve TSP, we can solve Hamiltonian circuit

Bin Packing

83

Bin Packing

84
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Bin Packing

85

Bin Packing

86

Bin Packing

87

Bin Packing

88

𝐵1: 0.2, 0.5

𝐵2: 0.4

𝐵3: 0.7, 0.1

𝐵4: 0.3

𝐵5: 0.8

Bin Packing

89

Bin Packing

90
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87 88
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Bin Packing

91

Bin Packing

92

𝐵1: 0.2, 0.5, 0.1

𝐵2: 0.4, 0.3

𝐵3: 0.7

𝐵4: 0.8

Bin Packing

93

Bin Packing

94

𝐵1: 0.2, 0.5, 0.1

𝐵2: 0.4

𝐵3: 0.7, 0.3

𝐵4: 0.8

Bin Packing

95

𝐵1: 0.8, 0.2

𝐵2: 0.7, 0.3

𝐵3: 0.5, 0.4, 0.1

Bin Packing
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