Chapter 9
Graph Algorithms

Introduction
- graph theory
- useful in practice
- represent many real-life problems
- can be ______ if not careful with data structures

Definitions
- an undirected graph $G = (V, E)$ is a finite set V of _________ together with a set E of _________
- an edge is a pair (v, w), where v and w are vertices

- this definition allows
 - _________, or edges that connect vertices to themselves
 - parallel edges, or multiple edges that connect the same pair of vertices

- a graph without self-loops is a simple graph
- a graph with parallel edges is sometimes called a multigraph

Definitions
- two vertices are adjacent if there is an _____ between them
 - the edge is said to be incident to the two vertices

- if there are no parallel edges, the degree of a vertex is the number of edges ____________ to it
 - self-loops add only ____ to the degree

- a subgraph of a graph G is a subset of G's edges together with the incident vertices
Definitions

- A **path** in a graph is a sequence of vertices connected by edges.
- A **simple path** is a path with no repeated vertices, except possibly the first and last.
- A **cycle** is a path of at least one edge whose first and last vertices are the same.
- A **simple cycle** is a cycle with no repeated edges of vertices other than the first and last.
- The **length** of a path is the number of edges in the path.

- A graph is **connected** if every vertex is connected to every other vertex by a path through the graph.
- A **connected component** G' of a graph G is a maximal connected subgraph of G: if G' is a subset of F and F is a connected subgraph of G, then $F = G'$.
- A graph that is not connected consists of a set of connected *components*.
- A graph without cycles is called **acyclic**.

- A **tree** is a connected, acyclic graph.
- A **forest** is a set of trees.
- A **spanning tree** of a connected graph is a subgraph that is a tree and also contains all of the graph's vertices.
- A **spanning forest** of a graph is the union of spanning trees of its connected components.

Formulas

- If $|V|$ is the number of vertices and $|E|$ is the number of edges, then, in a graph without self-loops and parallel edges, there are $|V| (|V| - 1)/2$ possible edges.
- A graph is **complete** if there is an edge between every pair of vertices.
- The **density** of a graph refers to the proportion of possible pairs of vertices that are connected.
- A **sparse** graph is one for which $|E| \ll |V| (|V| - 1)/2$.
- A **dense** graph is a graph that is not sparse.
- A **bipartite** graph is one whose vertices can be divided into two sets so that every vertex in one set is connected to at least one vertex in the other set.
Definitions

- in a directed graph or digraph the pairs \((v, w)\) indicating edges are __________: the edge \((v, w)\) goes from \(v\) (the tail) to \(w\) (the head)
- since edges have a direction, we use the notation \(v \rightarrow w\) to denote an edge from \(v\) to \(w\)
- edges in digraphs are frequently called arcs
- the __________ of a vertex \(w\) is the number of arcs \(v \rightarrow w\) (i.e., the number of arcs coming into \(w\)), while the outdegree of \(w\) is the number of arcs \(w \rightarrow v\) (i.e., the number of arcs exiting \(w\))
- we will call \(w\) a source if its indegree is ____
- an aborescence is a directed graph with a distinguished vertex \(u\) (the root) such that for every other vertex \(v\) there is a unique directed path from \(u\) to \(v\)

Definitions

- in a directed graph, two vertices \(v\) and \(w\) are __________ connected if there is a directed path from \(v\) to \(w\) and a directed path from \(w\) to \(v\)
- a digraph is strongly connected if all its vertices are strongly connected
- if a digraph is not strongly connected but the underlying undirected graph is connected, then the digraph is called weakly connected
- a weighted graph has weights or costs associated with each __________
 - weighted graphs can be directed or undirected
 - a road map with mileage is the prototypical example

Example

- airport connections

Graph Representation

- two concerns: __________ and __________
 - we’ll consider directed graphs, though undirected graphs are similar
 - the following graph has 7 vertices and 12 edges

http://allthingsgraphed.com/2014/08/09/us-airlines-graph/
Graph Representation

- **adjacency matrix**
 - 2D matrix where an element is 1 if \((u, v) \in A\) and 0 otherwise

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[2]</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[3]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>[4]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[5]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[6]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[7]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **adjacency list**
 - for each vertex, keep a list of adjacent vertices

Graph Representation

- alternatively, could use costs \(\infty\) or \(-\infty\) for _____________
 - not efficient if the graph is _______ (number of edges small)
 - matrix \(O(|V|^2)\)
 - e.g., street map with 3,000 streets results in intersection matrix with 9,000,000 elements

- **adjacency list**
 - standard way to represent graphs
 - undirected graph edges appear ________ in list
 - more efficient if the graph is sparse (number of edges small)
 - matrix \(O(|E| + |V|)\)

Graph Representation

- **adjacency list alternative**
 - for each vertex, keep a ________ of adjacent vertices

Graph Representation

- 2, 4, 3
- 4
- 6
- (empty)
Topological Sort

- a directed acyclic graph (DAG) is a digraph with no directed cycles
 - a DAG always has at least one __________

- topological sort
 - an ordering of the vertices in a directed graph such that if there is a path from v to w, then v appears _________ w in the ordering
 - not possible if graph has a __________

- example directed acyclic graph

void Graph::topSort()
{
 for (int counter = 0, counter < NUM_VERTICES, counter++)
 {
 Vertex v = findNewVertexOfIndegreeZero();
 if (v == NOT_A_VERTEX)
 throw CycleFoundException();
 v.topNum = counter;
 for each Vertex w adjacent to v
 w.indegree--;
 }
}

- since finding vertex with 0 indegree must look at _______ vertices, and this is performed |V| times, O(|V|^2)
Topological Sort

- instead, we can keep all the vertices with indegree 0 in a ______ and choose from there
- $O(|E| + |V|)$

```java
void Graph::topsort()
{
    Queue<Vertex> q;
    int counter = 0;
    q.makeEmpty();
    for each Vertex v
    {
        if( v.indegree == 0 )
            q.enqueue( v );
    }
    while( !q.isEmpty() )
    {
        Vertex v = q.dequeue();
        v.topNum = ++counter; // Assign next number
        for each Vertex w adjacent to v
        {
            if( w.indegree == 0 )
                q.enqueue( w );
        }
        if( counter != NUM_VERTICES )
            throw CycleFoundException();
    }
}
```

Topological Sort

- adjacency list alternative
- for each ______, keep a vector of adjacent vertices

<table>
<thead>
<tr>
<th>Indegree Before Queue</th>
<th>Indegree After Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>0</td>
</tr>
<tr>
<td>v_2</td>
<td>1</td>
</tr>
<tr>
<td>v_3</td>
<td>2</td>
</tr>
<tr>
<td>v_4</td>
<td>3</td>
</tr>
<tr>
<td>v_5</td>
<td>1</td>
</tr>
<tr>
<td>v_6</td>
<td>3</td>
</tr>
<tr>
<td>v_7</td>
<td>2</td>
</tr>
</tbody>
</table>

Shortest-Path Algorithms

- shortest-path problems
 - input is a weighted graph with a ______ on each edge
 - weighted path length: $\sum_{i=1}^{N-1} c_{i,i+1}$

- single-source shortest-path problem
 - given as input a weighted graph, $G = (V,E)$ and a __________ vertex s, find the shortest weighted path from s to every other vertex in G

Shortest-Path Algorithms

- example
 - shortest weighted path from v_1 to v_6 has cost of ______
 - no path from v_6 to v_1
Shortest-Path Algorithms

- ___________ edges can cause problems
 - path from v_5 to v_4 has cost of 1, but a shorter path exists by following the negative loop, which has cost -5
 - shortest paths thus ________________

- many examples where we want to find shortest paths
 - if vertices represent computers and edges connections, the cost represents _______________ costs, delay costs, or combination of costs
 - if vertices represent airports and edges costs to travel between them, shortest path is _______________ route
 - we find paths from one vertex to _______ others since no algorithm exists that finds shortest path from one vertex to one other faster

Shortest-Path Algorithms

- four problems
 - unweighted shortest-path
 - weighted shortest-path with no negative edges
 - weighted shortest-path with negative edges
 - weighted shortest-path in acyclic graphs

Unweighted Shortest Paths

- unweighted shortest-path
 - find shortest paths from s to all other vertices
 - only concerned with number of _______ in path
 - we will not actually record the path ________________
- example
 - start with v_3

- example
 - mark 0 length to v_3

- example
 - mark 1 length for v_1 and v_6

- example
 - mark 2 length for v_2 and v_4
Unweighted Shortest Paths

- example
 - final path assignments

Unweighted Shortest Paths

- searching an unweighted shortest-path uses a __________ search
 - processes vertices in layers, according to __________
 - begins with initializing path lengths

\[
\begin{array}{c|c|c|c}
\text{v} & \text{knew} & d_v & p_v \\
\hline
v_1 & F & \infty & 0 \\
v_6 & F & \infty & 0 \\
v_3 & F & 0 & 0 \\
v_4 & F & \infty & 0 \\
v_5 & F & \infty & 0 \\
v_7 & F & \infty & 0 \\
\end{array}
\]

- a vertex will be marked _________ when the shortest path to it is found

Unweighted Shortest Paths

- with this algorithm
 - path can be printed
 - running time: \(O(|V|^2)\)
 - bad case

Unweighted Shortest Paths

- can reduce time by keeping vertices that are unknown ______________ from those known
 - new running time: \(O(|E| + |V|)\)

```cpp
void Graph::unweighted( Vertex v )
{
    for each Vertex w
    [
        w.dist = INFINITY;
        w.known = false;
    ]
    s.dist = 0;
    for( int currDist = 0; currDist < NUM_VERTICES; currDist++ )
        for each Vertex w
            if( w.known & w.dist == currDist )
                w.known = true;
                for each Vertex w adjacent to v
                    if( w.dist == INFINITY )
                        [ w.dist = currDist + 1; w.path = v; ]
```
Unweighted Shortest Paths

```cpp
void Graph::unweighted( Vertex s )
{
    Queue<Vertex> q;
    for each Vertex v
    v.dist = INFINITY;
    s.dist = 0;
    q.enqueue( s );
    while( !q.isEmpty() )
    {
        Vertex v = q.dequeue( );
        for each Vertex w adjacent to v
        if( w.dist == INFINITY )
        {
            w.dist = v.dist + 1;
            w.path = v;
            q.enqueue( w );
        }
    }
}
```

Dijkstra’s Algorithm

- Weighted shortest-path – Dijkstra’s algorithm
- More difficult, but ideas from __________ algorithm can be used
- Keep information as before for each vertex
 - Known
 - Set __________ \(d_w = d_v + c_{v,w} \) if \(d_w = \infty \) using only known vertices
 - \(p_v \), the last vertex to cause a change to \(d_v \)
- __________ algorithm
 - Does what appears to be best thing at each stage
 - E.g., counting money: count quarters first, then dimes, nickels, pennies
 - Gives change with least number of coins

Dijkstra’s Algorithm

- Pseudocode
 - Assumption: no __________ weights
 - Origin \(s \) is given

Initialization: \(S \leftarrow \{ s \} \) and \(D \leftarrow V - \{ s \} \).

Set \(\text{dist}[s] \leftarrow 0 \) and \(\text{dist}[v] \leftarrow \infty \) for all other \(v \).

While there remains a \(v \in D \):

1. Select a vertex \(v \in D \) which has the shortest path length from \(s \) to \(v \) using only vertices in \(S \) (e.g., known vertices).
2. \(S \leftarrow S \cup \{ v \} \) and \(D \leftarrow D - \{ v \} \).
Dijkstra's Algorithm

- pseudocode (cont.)

\[
\text{foreach vertex } v \{ \\
\quad \text{dist}[v] = \infty \\
\quad \text{known}[v] = \text{false} \\
\}\]
\[
\text{dist}[s] = 0 \\
\text{while (there is a vertex } w \text{ with } \text{known}[w] = \text{false}) \{ \\
\quad v = \text{argmin}\{\text{dist}[w] | \text{known}[w] = \text{false}\} \\
\quad \text{known}[v] = \text{true} \\
\quad \text{foreach (w adjacent to v)} \{ \\
\quad \quad \text{if (known}[w] = \text{false}) \{ // edge relaxation \\
\quad \quad \quad \text{dist}[w] = \min(\text{dist}[w], \text{dist}[v] + \text{weight}(v \rightarrow w)) \\
\quad \quad \quad \text{from}[w] = v \\
\quad \quad \} \\
\quad \} \\
\}\]

Dijkstra's Algorithm

- example: start at v_1

Dijkstra's Algorithm

- example
Dijkstra's Algorithm

- example – stages shown on the graph

- example – stages shown on the graph (cont.)

Dijkstra's Algorithm: Correctness

Proposition. Dijkstra’s algorithm solves the single-origin shortest-paths problem in a weight digraph with nonnegative weights.

Proof. If \(v \) is reachable from \(s \), then every edge \(v \rightarrow w \) is relaxed exactly once, when \(v \) is relaxed, resulting in

\[
\text{dist}[w] \leq \text{dist}[v] + \text{weight}[v \rightarrow w].
\]

This inequality holds until the algorithm terminates, since

- \(\text{dist}[w] \) can only decrease, because relaxations can only decrease a \(\text{dist}[] \) value, and
- \(\text{dist}[v] \) never changes, because edge weights are nonnegative and we choose the lowest \(\text{dist}[] \) value at each step, so no later relaxation can reduce \(\text{dist}[v] \).

Thus, after all vertices reachable from \(s \) have been added to the shortest paths tree, the shortest paths optimality conditions hold.

Dijkstra's Algorithm

- complexity
 - sequentially scanning vertices to find minimum \(d_v \) takes \(O(|V|) \), which results in \(O(|V|^2) \) overall
 - at most one update per edge, for a total of \(O(|E| + |V|^2) = O(|V|^2) \)
 - if graph is dense, with \(|E| = \Theta(|V|^2) \), algorithm is close to
 - ___________
 - if graph is sparse, with \(|E| = \Theta(|V|) \), algorithm is too
 - ___________
 - distances could be kept in a __________ queue that reduces running time to \(O(|E| + |V| \lg|V|) \)
Dijkstra's Algorithm

- implementation
 - information for each vertex

```cpp
/**
 * PSEUDOCODE sketch of the Vertex structure.
 * In real C++, path would be of type Vertex*,
 * and many of the code fragments that we describe
 * require either a dereferencing * or use the
 * -> operator instead of the . operator.
 * Novice to say, this obscures the basic algorithmic ideas.
 */
struct Vertex
{
    List adj; // Adjacency list
    bool known;
    DistType dist; // DistType is probably int
    Vertex parent; // Probably Vertex *, as mentioned above
    // Other data and member functions as needed
};
```

Dijkstra's Algorithm

- implementation (cont.)
 - path can be printed recursively

```cpp
/**
 * Print shortest path to v after dijkstra has run.
 * Assume that the path exists.
 */
void Graph::printPath( Vertex v )
{
    if( v.path != NULL )
    {
        printPath( v.parent );
        cout << v.name;
        cout << v.path;
    }
}
```

Dijkstra's Algorithm

- implementation (cont.)

```cpp
void Graph::dijkstra( Vertex s )
{
    for each Vertex v
    {
        v.dist = INFINITY;
        v.known = false;
    }
    s.dist = 0;
    while( there is an unknown distance vertex )
    {
        Vertex v = smallest unknown distance vertex;
        v.known = true;
        for each Vertex w adjacent to v
        {
            if( !w.known )
            {
                DistType cvw = cost of edge from v to w;
                if( v.dist + cvw < w.dist )
                {
                    // Update w
                    decrease( w.dist to v.dist + cvw );
                    w.path = v;
                }
            }
        }
    }
}
```

Graphs with Negative Edges

- try to apply Dijkstra's algorithm to graph with negative edges

Label each node with best known distance from origin a. Relax the edges adjacent to a. Select b, the closest node to S, and add it to S. Relax the outgoing edges adjacent to b. Select c, the closest node to S, and add it to S. We've now assimilated all nodes into S, so we're done.
Graphs with Negative Edges

- possible solution: _______ a delta value to all weights such that none are negative
- calculate _____________ path on new graph
- apply path to original graph
- does not work: longer paths become weightier
- combination of algorithms for weighted graphs and unweighted graphs can work
- drastic ______________ in running time: \(O(E \cdot |V|) \)

All-Pairs Shortest Paths

- given a weighted digraph, find the shortest paths between _____ vertices in the graph
- one approach: apply Dijkstra’s algorithm _______________
 - results in \(O(|V|^3) \)
- another approach: apply Floyd-Warshall algorithm
 - uses _______________ programming
 - also results in \(O(|V|^3) \)

Minimum Spanning Tree

- assumptions
 - graph is ______________
 - edge weights are not necessarily Euclidean distances
 - edge weights need not be all the same
 - edge weights may be zero or ______________

- minimum spanning tree (MST)
 - also called minimum-weight spanning tree of a weighted graph
 - spanning tree whose weight (the sum of the weights of the edges in the tree) is the _____________ among all spanning trees

example
Minimum Spanning Tree

- two algorithms to find the minimum spanning tree
 - Prim’s Algorithm
 - Kruskal’s Algorithm

Minimum Spanning Tree

- Prim’s algorithm
 - grows tree in successive stages

Initialization: $S \leftarrow \{s\}$ and $D \leftarrow V - \{s\}$.

While there remains a $v \in D$:

1. Find an edge with minimum weight (u,v) such that $u \in S$ and $v \in D$.
2. $S \leftarrow S \cup \{v\}$ and $D \leftarrow D - \{v\}$.

Minimum Spanning Tree

- Prim’s algorithm: example

Minimum Spanning Tree

- Prim’s algorithm: example 2
Minimum Spanning Tree

- Prim’s algorithm: example 2 (cont.)

- Prim’s algorithm
 - runs on _______ graphs
 - running time: $O(|V|^2)$ without heaps, which is optimal for _______ graphs
 - running time: $O(|E| \log |V|)$ using binary heaps, which is good for _______ graphs

- Kruskal’s algorithm
 - continually select the edges in order of _______ weight
 - accept the edge if it does not cause a _______ with already accepted edges
Minimum Spanning Tree

- Kruskal’s algorithm: example

Minimum Spanning Tree

- Kruskal’s algorithm: example 2

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_1, v_4)</td>
<td>1</td>
<td>Accepted</td>
</tr>
<tr>
<td>(v_4, v_7)</td>
<td>1</td>
<td>Accepted</td>
</tr>
<tr>
<td>(v_1, v_2)</td>
<td>2</td>
<td>Accepted</td>
</tr>
<tr>
<td>(v_2, v_4)</td>
<td>2</td>
<td>Accepted</td>
</tr>
<tr>
<td>(v_2, v_3)</td>
<td>3</td>
<td>Rejected</td>
</tr>
<tr>
<td>(v_1, v_5)</td>
<td>4</td>
<td>Rejected</td>
</tr>
<tr>
<td>(v_1, v_7)</td>
<td>4</td>
<td>Accepted</td>
</tr>
<tr>
<td>(v_2, v_6)</td>
<td>5</td>
<td>Rejected</td>
</tr>
<tr>
<td>(v_0, v_7)</td>
<td>6</td>
<td>Accepted</td>
</tr>
</tbody>
</table>

Minimum Spanning Tree

- Kruskal’s algorithm: example 2 (cont.)

- time complexity: $O(|E| \lg |E|)$ with proper choice and use of data structures
 - in the worst case, $|E| = \Theta(|V|^2)$, so the worst-case time complexity is $O(|E| \lg |V|)$
What problems can we solve algorithmically? Which problems are easy? Which problems are hard?

- Eulerian circuit: Given a vertex s, start at s and find a cycle that visits every vertex exactly once.
 - Easy: solvable in $O(|E| + |V|)$ using depth-first search.

- Hamiltonian circuit: Given a vertex s, start at s and find a cycle that visits each remaining vertex exactly once.
 - Really, really hard!

- Halting problem
 - In 1936, A. Church and A. Turing independently proved the non-solvability of the halting problem:
 - Is there an algorithm $\text{terminates}(p,x)$ that takes an arbitrary program p and input x and returns True if p terminates when given input x and False otherwise?
 - Difficult: try to run it on ________________.

Decision problem
- Has a yes or no answer
- Undecidable if it is ________________ to construct a single algorithm that will solve all instances of the problem.
- The halting problem is ________________.
NP-Complete Problems

- the class \(P \)
 - set of problems for which there exists a __________\ time algorithm for their solution
 - the runtime is bounded by a polynomial function of the __________\ of the problem

- the class \(NP \)
 - set of decision problems for which the certification of a candidate __________\ as being correct can be performed in polynomial time
 - non-deterministic polynomial time

NP-Complete Problems

- reductions
 - problem \(A \) __________\ to problem \(B \) if the solvability of \(B \) implies the solvability of \(A \)
 - if \(A \) is reducible to \(B \), then \(B \) is at least as hard to solve as \(A \)
 - in the context of algorithms, reducibility means an algorithm that solves \(B \) can be __________\ into an algorithm to solve \(A \)
 - example: if we can sort a set of numbers, we can find the median, so finding the median reduces to sorting

NP-Complete Problems

- the class \(NP \)
 - for problems in \(NP \), certifying a solution may not be difficult, but __________\ a solution may be very difficult
 - example: Hamiltonian circuit
 - given a graph \(G \), is there a simple cycle in \(G \) that includes every __________\?
 - given a candidate solution, we can check whether it is a simple cycle in time \(\alpha \ |V| \), simply by __________\ the path
 - however, finding a Hamiltonian circuit is hard!

NP-Complete Problems

- reductions
 - problem \(A \) can be __________\ reduced to \(B \) if we can solve problem \(A \) using an algorithm for problem \(B \) such that the cost of solving \(A \) is the cost of solving \(B \) + a polynomial function of the problem size
 - example: once we have sorted an array \(a[] \) of \(N \) numbers, we can find the median in __________\ time by computing \(N/2 \) and accessing \(a[N/2] \)
- reductions
 - decision version of traveling salesperson problem (TSP):
 - given a complete weighted graph and an integer K, does there exist a simple cycle that__________ all vertices (tour) with total weight $\leq K$?
 - clearly, this is in NP
 - Hamiltonian circuit: given a graph $G = (V, E)$, find a simple cycle that visits all the vertices
 - construct a new graph G' with the same vertices as G but which is __________; if an edge in G' is in G, give it weight 1; otherwise, give it weight 2
 - construction requires $O(|E| + |V|)$ work
 - apply ______ to see if there exists a tour with total weight $|V|

- NP-complete
 - a problem A is NP-complete if it is in NP and all other problems in NP can be __________ to A in polynomial time
 - Boolean satisfiablity (SAT): given a set of N boolean variables and M logical statements built from the variables using and and not, can you choose values for the variables so that all the statements are ________?
 $$(x_1 \text{ AND } \neg x_2 \text{ AND } x_3), (\neg x_1 \text{ AND } x_7), (x_1 \text{ AND } x_4), ...$$
 - SAT is NP-complete
 - if we restrict attention to sets of boolean statements involving ______ variables, the problem is known as 3-SAT
 - 3-SAT is NP-complete
 - so, if you can solve 3-SAT in polynomial time, you can solve ______ problems in NP in polynomial time
 - meanwhile, 2-SAT is solvable in ____________ time!
NP-Complete Problems

- NP-complete problems
 - traveling salesperson
 - bin packing
 - knapsack
 - graph coloring
 - longest-path

NP-Complete Problems

- NP-hard problems
 - a problem A is NP-hard if there exists a polynomial-time reduction from an NP-complete problem to A
 - an NP-hard problem is at _______ as hard as an NP-complete problem
 - _______ versions of NP-complete problems are typically NP-hard
 - optimization version of TSP: given a weighted graph, find a _______ cost Hamiltonian circuit
 - if we can solve TSP, we can solve Hamiltonian circuit

Bin Packing

We are given n items of lengths ℓ_1, \ldots, ℓ_n, where $0 < \ell_i \leq 1$ for all i.

The items must be packed in bins of length 1, and they must be placed end-to-end. Once placed in a bin, items cannot be moved.

How do we pack them in a way that uses the fewest number of bins?
This is an NP-hard problem!

Input: 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8.

Optimal packing:
B_1: 0.2, 0.8
B_2: 0.7, 0.3
B_3: 0.4, 0.1, 0.5

Online: item must be put in a bin before the next item is considered.
Offline: all the items are available for consideration at one time.

Theorem. No algorithm for online bin packing can always give an optimal solution.

Proof. Let $\varepsilon > 0$ be small (say, $\varepsilon = 1/64$), and consider an input sequence of m items of length $\frac{1}{2} - \varepsilon$ followed by m items of length $\frac{1}{2} + \varepsilon$.

Clearly, the optimal packing requires m bins.

Suppose online algorithm A yields this optimal solution. Since it is online, A must place each of the first m items in a separate bin.

Now give A an input sequence of just m items of length $\frac{1}{2} - \varepsilon$. A will behave as before, placing each in a separate bin, thus using m bins.

However, the optimal packing in this case requires only $\lceil m/2 \rceil$ bins.

\square
Bin Packing

Since an online algorithm never knows when the input might end, any performance guarantee for the algorithm must hold whenever an item is binned.

Theorem. There are inputs that cause any online bin packing algorithm to use at least $\frac{4}{3}$ the optimal number of bins.

Proof. Suppose not. Then there is an online algorithm A that always uses less than $\frac{4}{3}$ the optimal number of bins.

Let m be even. Apply A to an input sequence of m items of length $\frac{1}{2} - \varepsilon$ followed by m items of length $\frac{1}{2} + \varepsilon$.

Consider the situation after A has processed item m (the last of the smaller items). Suppose A has used b bins at this point.

Thus we have two inequalities that hold:

\[
\begin{align*}
\frac{2b}{m} &< \frac{4}{3} & \text{after the first } m \text{ items,} \\
\frac{2m - b}{m} &< \frac{4}{3} & \text{after the last } m \text{ items.}
\end{align*}
\]

From the first inequality we obtain $b/m < \frac{2}{3}$, while from the second we obtain $b/m > \frac{2}{3}$, which is a contradiction.

Bin Packing

We know that the optimal number of bins for the first m items is $m/2$, so our performance assumption means $b < \frac{4m}{3}$, or $2b/m < \frac{4}{3}$.

Now consider the situation when A is finished packing all $2m$ items. All the bins used after bin b can only contain one item since the inputs are the longer items.

The first b bins can have at most 2 items each, and the remaining bins have one item each, so packing all $2m$ items requires at least $2m - b$ bins.

Since the optimal packing requires m bins, the performance assumption means $2m - b < \frac{4m}{3}$, or $(2m - b)/m < \frac{4}{3}$.

Bin Packing

The next fit heuristic: when binning an item, check to see if it fits in the bin with the last item binned. If it does, place the new item there; otherwise, start a new bin.

Input: 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8.

- B_1: 0.2, 0.5
- B_2: 0.4
- B_3: 0.7, 0.1
- B_4: 0.3
- B_5: 0.8
Bin Packing

Theorem

Let m be the optimal number of bins required to pack a list of items. Then next fit never uses more than $2m$ bins. There exist sequences for which next fit uses $2m - 2$ bins.

This is an example of an approximation result.

Next fit is an approximation algorithm; it is not guaranteed to produce optimal solutions, but there exists a bound on how poorly it can do, even though we do not know the optimal solution.

Bin Packing

Proof: Suppose next fit uses b bins. Let L_j be the total length of items in bin j; then

$$L_1 + L_2 + \cdots + L_b = \text{total length of items} \leq m.$$

Consider any adjacent bins B_j and B_{j+1}. The combined lengths of the items in these two bins must be larger than 1; otherwise all of these items would have been placed in B_j:

$$L_j + L_{j+1} > 1.$$

For simplicity, assume b is even. Then

$$m \geq \frac{L_1 + L_2}{2} + \frac{L_3 + L_4}{2} + \cdots + \frac{L_{b-1} + L_{b-2}}{2}$$

$$> \frac{1 + 1 + \cdots + 1}{b/2} = \frac{b}{2},$$

so $b < 2m$.

Bin Packing

For the second part of the theorem, suppose n, the number of items, is divisible by 4, and choose

$$\ell_i = \begin{cases}
1/2 & \text{if } i \text{ is odd,} \\
2/n & \text{if } i \text{ is even.}
\end{cases}$$

The optimal packing requires $n/4$ bins containing 2 items of length $1/2$ and one bin containing the $n/2$ items of length $2/n$.

Next fit, on the other hand, uses $n/2$ bins, with each bin containing one long and one short item.

Bin Packing

The first fit heuristic: when binning an item, scan over all the bins in order and place the new item in the first bin that has room for it. If no such bin exists, open a new one.

Input: 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8.

B_1: 0.2, 0.5, 0.1
B_2: 0.4, 0.3
B_3: 0.7
B_4: 0.8
Bin Packing

Theorem

Let m be the optimal number of bins required to pack a list of items. Then first fit never uses more than $\frac{17}{10}m + \frac{7}{10}$ bins. There exist sequences for which next fit uses $\frac{17}{10}(m - 1)$ bins.

Consider a sequence of $6N$ items of size $\frac{1}{2} + \varepsilon$, followed by $6N$ items of size $\frac{1}{3} + \varepsilon$, followed by $6N$ items of size $\frac{1}{2} + \varepsilon$.

First fit will require $10N$ bins. However, if we apply next fit, we obtain a packing that requires only $6N$ bins.

Bin Packing

In offline bin packing, we can first sort the items, longest to shortest, and then pack them according to first fit or best fit.

The corresponding heuristics are called first fit decreasing and best fit decreasing (more properly they should be first fit nonincreasing and best fit nonincreasing).

First fit decreasing for: 0.8, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1.

- B_1: 0.8, 0.2
- B_2: 0.7, 0.3
- B_3: 0.5, 0.4, 0.1

In this case we get the optimal solution.

The best fit heuristic: when binning an item, scan over all the bins in order and place the new item in the tightest spot.

Input: 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8.

- B_1: 0.2, 0.5, 0.1
- B_2: 0.4
- B_3: 0.7, 0.3
- B_4: 0.8

In general, the worst-case behavior is the same as first fit.

Theorem

Let m be the optimal number of bins required to pack a list of items. Then first fit decreasing never uses more than $\frac{17}{10}m + \frac{7}{10}$ bins. There exist sequences for which first fit decreasing uses $\frac{17}{10}(m - 1)$ bins.