Chapter 10
Algorithm Design Techniques




Dynamic Programming

-dynamic programming
-very general approach to finding an optimal path through
the state space of feasible states

-state space may be represented as a directed graph with
feasible states as nodes and feasible decisions as arcs

—forms the decision network




Dynamic Programming

-we apply dynamic programming to a problem when

-the problem can be divided into stages with a decision
made at each stage

-each stage has a number of possible states associated
with it

-the decision made at each stage describes how the state
at the current stage leads to the state at the next stage

-given the current state, the optimal choice for the
remaining stages does not depend on previous decisions
or their associated states




Dynamic Programming

-formulating dynamic programming recursions

The dynamic programming recursion (for minimization) is

ft(2) = min{cost during stage t + fi+1(new state at stage ¢t + 1)}.

To derive the recursion we need to identify:

o the set of feasible decisions for the given state and stage;

@ how the cost during the current stage ¢ depends on ¢, the current
state, and the decision chosen at stage ¢; and

e how the state at stage ¢ + 1 depends on t, the state at stage ¢,
and the decision chosen at stage t.




Dynamic Programming

-the knapsack problem
We have a knapsack that can hold a weight of at most W.

We can choose from T different types of articles to pack.
Each article of type ¢ has (integer) weight w; and (integer) value of v;.

We wish to load a knapsack to maximize the total value of the articles
included, subject to the capacity constraint.

Let

x+ = number of articles of type ¢ included.
An integer programming formulation is

maximize Ny U
subject to Yo swpry < W
x; > 0 integer for all t.




Dynamic Programming

-the knapsack problem (cont.)

The only resource here is weight.

Let fi(d) be the maximum value of items t,t + 1,...,T if their
combined weight 1s < d.

The dynamic programming recursion is

fr+1(d) = 0;
fi(d) = max { vixs + frr1(d —wexe) | wexe < d }.

ItEE_|_
The optimal solution we seek corresponds to fi(W).

We start by computing f1 for all possible states and work our way back

to f1(W).




Dynamic Programming

-the knapsack problem (cont.)

To illustrate this approach, suppose

item type weight value
1 4 11

2 3 7
3 12

and that W = 10.

Observe that we can work forwards from t = 1 and d = 10 to eliminate
some states from consideration.




Dynamic Programming

-the knapsack problem (cont.)

The preceding figure makes clear that we need only compute

f3(0), f3(1), f3(2), f3(3), f3(4), f3(6), f3(7), f3(10)

and

f2(2), f2(6), f2(10),
and, of course, f1(10).




Dynamic Programming

-the knapsack problem (cont.)

If our weight allowance d is 0 when we must decide how many of ltem
3 to pack, then all we can do i1s choose 0 of the Item 3, for a net value
of 0:

f3(0) = 0.
Similarly,
f3(1) = f3(2) = f3(3) = f3(4) = 0.

because Item 3 weighs 5 pounds.
On the other hand,
f3(5) = f3(6) = f3(7) = f3(8) = f3(9) = 12,

since In these cases we have 5-9 pounds of capacity available to us, so
we can fit one of the 5 |b Item 3 into the knapsack.

Finally,

since in this case we can space for 2 of ltem 3.




Dynamic Programming

-the knapsack problem (cont.)

In the next stage we compute

f2(2), f2(6), f2(10).
We have

fa(d) = max { Txo + f3(d — 3z2) | 322 < d }.

xo €L+

If d = 2 our only option is to choose none of ltem 2, so

f2(2) = max { Toa + f3(2 —3x2) | 322 <2} = 0+ f3(2) = 0.

To EZ_|_




Dynamic Programming

-the knapsack problem (cont.)

On the other hand,

f2(6) = max { Tz + f3(6 —3z2) | 323 <6}

$2€Z+

(04 f3(6) = 12 z2=0
T+BE8) = T @y=1

| 14+ f3(0) = 14 zp=2 €3

max { Tz + f3(10 — 3z3) | 329 <10}
xo €Ly

[ 0+ f3(10) 24 zo=0 &1
7+ f3(7) 19 z9=1
14 + f3(4) 14 29 =2

| 21+ f3(1) 21 23—3




Dynamic Programming

-the knapsack problem (cont.)
Finally,

f1(10) max { 1121 + f2(10 — 4x1) | 421 <10}
T1 €Ly

(04 f2(10) = 24 z=0

11+ f2(6) = 25 z1=1 &4
| 224 £2(2) 22 ;=2

The optimal strategy is

@ one of ltem 1,
Q@ two of ltem 2,
© zero of ltem 3.




Dynamic Programming

-an alternative approach

The following bottom-up approach leads to a simpler solution
algorithm:

@ first determine how to fill a smaller knapsack optimally, then

@ use this knowledge to fill a larger knapsack optimally.

Let V' (w) denote the maximum value of a w-Ib knapsack.

To fill a w-Ib knapsack optimally, we must begin by packing an item. If
we begin with an item of type t then the best value we can achieve is

vy + the best we can do with a (w — w;)-Ib knapsack.

This leads to the recurrence

V(0) =0
V(w):mtax {4+ V(w—w) | vy <w}, w>0.




Dynamic Programming

-an alternative approach (cont.)
To illustrate this approach, suppose

item type weight value
1 4 11
2 3 7
3 5 12

and that W = 10.

Clearly,
V(0)=V(1)=V(2) =0,

since no item weighs 2 pounds or less, and
V(3)="17

since only an item of type 2 will fit in the 3-Ib knapsack.




Dynamic Programming

-an alternative approach (cont.)

Now follow the recursion to fill out the values of V:

11 type 1 €1
7 type 2

11 typel
7 type 2

12 type 3 &1

11 typel
14 type 2 €7
12 type 3

18 type 1 €7

18 type 2 21
12 type 3




Dynamic Programming

-an alternative approach (cont.)

22 type 1 271
max < = 19 type?2
19 type 3

23 type 1 2
21 type 2
23 type 3 21

25 type 1 €7
V(10) max < = 25 type?2 2]
= 24 type3

Starting with a 10 Ib knapsack, one optimal selection is given by

© a type 1 item, leaving 10 - 4 = 6 |b;
@ a type 2 item, leaving 6 - 3 = 3 Ib;
@ a type 2 item, leaving 3-3 = 0 Ib.




Dynamic Programming

-computational complexity

This DP approach requires we compute V(0),...,V (W), and each
V(w) requires we look at (at most) 7" sums.

Thus, O(WT') operations are required.
However, the knapsack problem is NV P-hard!

This DP solution of knapsack is a pseudo-polynomial time
algorithm—the run-time is polynomial in the numeric value of the input
W, not the number of bits in W (length of the input).

Suppose it takes m > 1 bits to represent W. This means
om—1 < W < 92m _ 1, so the DP approach is actually exponential in m.




Multiplication

-how fast can we multiply?

If we multiply two n-digit numbers in the obvious way, the time
2

required is proportional to n”.
123

X 456

738

+ 7150

+ 49200

56088

Can we do better?




Multiplication

-standard multiplication
Given two 2n-bit numbers u = (u2,,—1 - - - ujup)2 and
v = (v2,—1 -+ - V1V0)2, We can write
u=2"U; + U
v=2"V1+ W,
where Uy = (ug,,_1 - - - U1, )2 consists of the n most significant bits of

u, while Uy = (u,,_1 - - - ujug)2 are the n least significant bits, and
similarly for V1, Vj.

The obvious way of multiplication is

uv = (22" 4+ 2 UL Vi + 2(Uh Vo + UpVh) + (2™ + 1) Up WA

Multiplications by powers of 2 are O(n) left shifts and + is also O(n).

Recursion for runtime 7T

T(2n) =4T(n)+cn = T(n) = O(n?).




Multiplication

-multiplication by divide and conquer

A faster approach (A. A. Karatsuba (1962)):
wv = (22" 4+ 2"\ULV; 4 27(Uy — Up) (Vi — Vo) + (2" + 1)U Va.
This Is true since

(Uy — Up)(V1 = W) = U1V — U1 Wy — UV + UpVp.




Multiplication

-recursion for the complexity

Let T'(2n) be the time needed to compute the product of two 2n-bit
numbers via

wv = (22" 4 2"V, 4 27Uy — Up) (Vi — Vo) + (2" + 1)U Va.

How many multiplications are on the right?

There are only 3 multiplications, since the multiplications by powers of
2 are just shifts. The cost of the shifts are o< n

There are also a bunch of additions, but this work 1s also o n.
This leads to the recursion

T(2n) =3T(n) + cn
T1)=/C.




Multiplication

—-solution via reduction

Suppose 2n = 2™. From the recursion

T(2n) = 3T (n) + cn
T1)=<¢

we obtain the following:

T(n) =3T(n/2) + c(n/2),

T(2n) =3(3T(n/2) + ¢(n/2)) + cn
=9T(n/2) 4+ 3¢(n/2)) + cn




Multiplication

-solution via reduction (cont.)

Again applying the recursion, we obtain

T(n/2) =3T(n/4) + c(n/4),

T(2n) = 27T (n/4) + 9¢(n/4) + 3¢(n/2) + cn.

Now a pattern has emerged: we conjecture that after k steps of this
process,

T(2n) = 3*T(27%2n) +




Multiplication

—-complexity

If we repeat this k = m times, so 2% = 2™ = 2n, we obtain

T(2n) = 3™T(1 HZI( )

om0/ m
=3"c +cn = (3/2) = 3™ 4+ 2cn((3/2)™ —

The dominant term is 3¢/, and

3m Slgn _ (2]g3)lgn _ (2]gn)]g3 _ nlg3 _ ?’11'5850"'

so the divide-and-conquer algorithm is ©(n!-9%%).




Matrix Multiplication

Suppose A and B are n x n matrices.
How fast can we compute AB?

Standard matrix multiplication:

C=0// C<— A«B
oy i =1 0.0 1
o i—1 %8 n {
for k— 1 to n {
}C(i,j)+:A(i,k)*B(i,k)
}
}

This is ©(n?).




Matrix Multiplication

-block matrix multiplication

Suppose n = 2™ for some m. Write A and B in terms of n/2 x n/2

( C11 Ch2 ) _ ( Al A ) ( B11 Bis )
Co1 Ca Agr Ao Bo1  Bas

blocks:

Standard matrix multiplication:

Cn = A11Bi1 + A2 B2
Cro = A11B12 + A12B2
C91 = A91B11 + A2 By
Caoo = Ag1 By + A2 B9

8 n/2 x n/2 matrix products and 4 n/2 x n/2 matrix additions.




Matrix Multiplication

-Strassen’s fast matrix multiplication (1969)

(A11 + A22)(B11 + By)
(A91 + A22)B11

A1 (B2 — B22)
Ago(—B11 + Bo)

(A11 + A12)Bao

(—A11 + A21)(B11 + B22)
(A12 — A22)(B21 + B22)




Matrix Multiplication

-Strassen’s fast matrix multiplication (1969) (cont.)

C11 |+ 1V -V + VI
C12 [+ V
Ca1 [+ 1V
(99 [ + 11 — Il + VI

7 n/2 x n/2 matrix products and 18 n/2 x n/2 matrix additions.




Matrix Multiplication

- Strassen’s trick

Strassen trades an O((n/2)%) matrix product for 14 O((n/2)?) matrix
additions.

Now apply the algorithm recursively to compute the n/2 x n/2 matrix
products.

If T'(n) 1s the time it takes to compute an n x n matrix product using
Strassen, then

T(n)=17T(n/2)+ 18n>.

This recurrence leads to

T(n) = 0(n'°& ") ~ O(n*%1) (4.7 n>31).

This is better than the O(n?) complexity of standard matrix
multiplication!




Matrix Multiplication

-Strassen’s — practical concerns

This discussion assumes A and B are square but there exist variants for
rectangular matrices.

We can compute and use the terms |-VIl one at a time, so we need not
store all of them.

Some extra storage is needed because of the recursion.

At some point in the recursion standard matrix multiplication becomes
more efficient so we switch.




Matrix Multiplication

-Strassen’s algorithm for matrix inversion

Strassen's algorithm for inversion has a complexity bounded by
5.64 nloezT,

Let

Al A 1 ( Cn1 Ci2 )
( A9 A9 ) ’ Co1 O




Matrix Multiplication

-Strassen’s algorithm for matrix inversion (cont.)
Then

| = A}

| = Aoyl

Il =145
[V = Ayl

V=IV—- Ay
VI=Vv~!
Chr2 = Il - VI
Co1 = VIl
VII =l - Cyy
Ci1 =1- VI
(99 = —VI.




Matrix Multiplication

- state of the art

Winograd (1972): Variant of Strassen with 7 matrix-matrix products
and 15 matrix-matrix additions = ©(n'°%27) with better constant.

Pan (1978): ©(n%>7?).
Coppersmith and Winograd (1990): ©(n?379).

Le Gall's variant of Coppersmith and Winograd (2014):
O (n?37)—best known.

Cohn, Kleinberg, Szegedy, Umans (2005): Conjectures based on group
theory which, if true, implies ©(n?"=) for any £ > 0.

Clearly ©(n?) is a lower bound on matrix multiplication—it takes n?

operations just to write down the answer.

Conjecture: Matrix multiplication can be performed in ©(n?*=) for any
e > 0.




