Chapter 12 Advanced Data Structures

Red-Black Trees

- add the attribute of \underline{color} (red or black) to links/nodes
- -red-black trees used in
- -C++ Standard Template Library (STL)
- -Java to implement maps (or dictionaries, as in Python)

1

Red-Black Trees

- -a red-black tree is a <u>BST</u> with the following properties:
 - every node is either red or black
 the root is <u>black</u>
 - -if a node is red, its children must be black
 - -every path from the root to a null link contains the same number of black nodes
 - -perfect black balance
 - -the height of an N-node red-black BST is at most 2 $\lg(N+1),$ so

-search, insertion, and deletion are $\lg N$ operations

Red-Black Trees

- -building a red-black tree
 - -in order to maintain perfect black balance, any new node added to the tree must be \underline{red}
 - -if the parent of the new node is <u>black</u>, all is well
 - -if the parent of the new node is <u>red</u>, this violates the condition that red nodes have only black children
 - -fix with <u>rotations</u> similar to those for AVL and splay trees -can be used to maintain the red-black structure at any point in the tree, not just at insertion of a new node

4

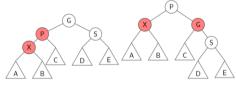
2

Red-Black Trees

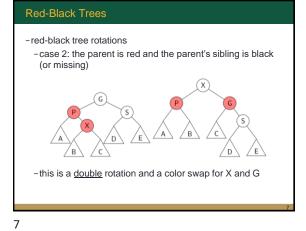
- -top-down insertion: color flips
 - to preserve perfect black balance, a newly inserted node must be red
 - in top-down insertion, we change the tree as we move down the tree to the point of <u>insertion</u>
 - -the changes we make ensure that when we insert the new node, the parent is <u>black</u>
 - -if we encounter a node X with two red children, we make X red and its children black
 - -if X is the root, we change the color back to black
 - -a color flip can cause a red-black violation (a red child with a red parent) only if X's parent P is red

Red-Black Trees

- -red-black tree rotations
 - -case 1: the <u>parent</u> is red and the parent's sibling is black (or missing)



-this is a single rotation and a color swap for P and G



Red-Black Trees

-red-black tree rotations

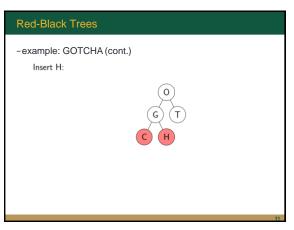
 -the parent is red and the parent's sibling is red
 -this can't happen since it would mean that the parent and its sibling are both red

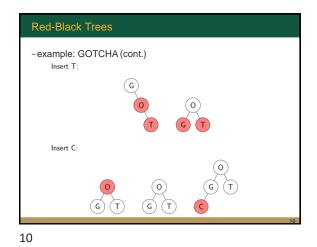
-we changed all such pairs to black on the way down

8

Red-Black Trees - example: GOTCHA Insert G: Insert O: G G G G O

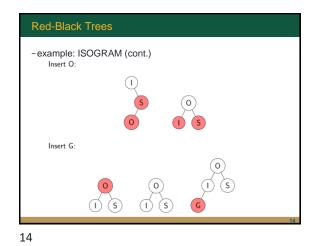
9

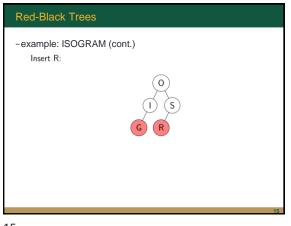


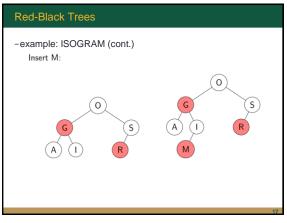


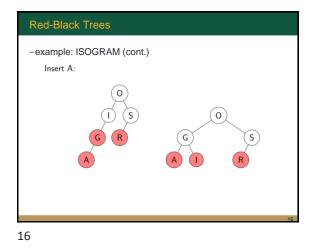
Performance of the standard BST (rightmost) for GOTCHA is slightly shorter

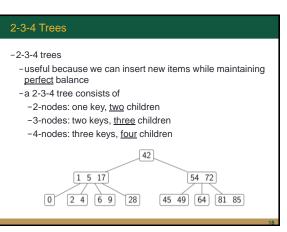
Red-Black Trees	
-example: ISOGRAM	
Insert I:	
Insert S:	
	\bigcirc
	S
	13
13	

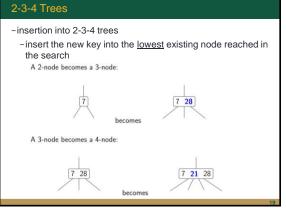












node and break up the remainder into two 2-nodes

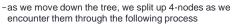
-what about a 4-node?

-top-down insertion

2-3-4 Trees
-what about a 4-node?
-top-down insertion (cont.)
-insertion, if done here, now reduces to the case of a 2node or 3-node 7 11
28
21
21
21
21

2-3-4 Trees • example: insert 42, 9, 39, 11, 27, 13, 33, 16, 28 • the first three insertions are straightforward 42 9 42 9 39 42 • when inserting 11, we encounter a 4-node, which we <u>split</u> 39 9 42 9 11 42• 39 is first promoted as a new root node • perfect balance is maintained in 2-3-4 trees by growing at the <u>root</u>

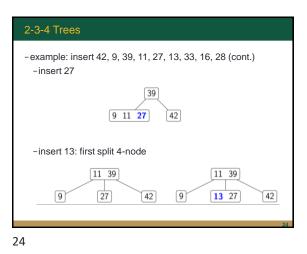
-top-down insertion

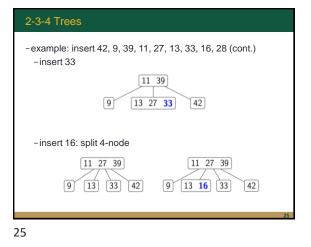


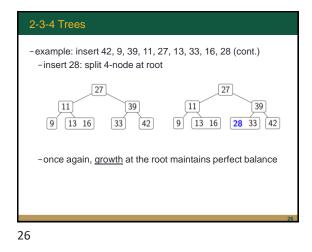
-as we move down the tree, whenever we encounter a

4-node, we move the \underline{middle} element up into the parent

- -move the middle key up to the parent
- -split the remaining keys into 2-nodes
- -this action <u>guarantees</u> that the parent of any 4-node we encounter is a 2-node or 3-node
 - -therefore, the tree will always have room to accept the middle element of the 4-node







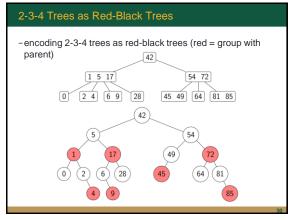
2-3-4 Trees

- -complexity of 2-3-4 tree operations
 - -the height of an *N*-node 2-3-4 tree is between $\log_4 N = \frac{1}{2} \lg N$ and $\lg N$
 - searching and inserting are both lg N operations
 - -rather than splitting 4-nodes on the way down, we could also perform <u>bottom-up</u> insertion, starting at the insertion node and moving upwards
 - -deletion involves \underline{fusing} nodes (and is also $\lg N$)

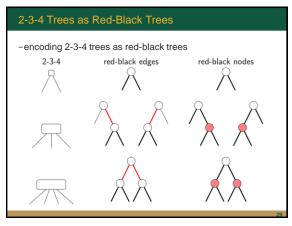
2-3-4 Trees as Red-Black Trees

- red-black trees are a way of realizing 2-3-4 trees as binary search trees
 - –allows us to re-use an implementation of a BST, and simplifies $\underline{deletion}$
 - -add the attribute of color (red or black) to links/nodes

28



30



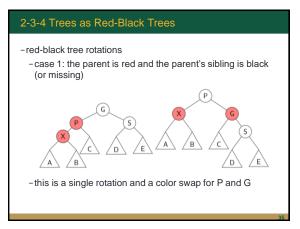
2-3-4 Trees as Red-Black Trees

- -a red-black tree is a BST with the following properties: -every node is either red or black
 - -the root is black
 - -if a node is red, its children must be black
 - -every path from the root to a null link contains the same number of black nodes
- in the encoding of 2-3-4 trees from red-black trees, the <u>black</u> links in the red-black tree correspond to the links in the 2-3-4 tree, while the <u>red</u> links denote a split of a 2-node or 3-node
- -condition 4 corresponds to the perfect balance of 2-3-4 trees
- -the height of an *N*-node red-black BST is at most $2 \log(N + 1)$, so search, insertion, and deletion are $\log N$ operations
- 31

2-3-4 Trees as Red-Black Trees

- -top-down insertion: color flips
 - we will follow a top-down insertion scheme as we did with 2-3-4 trees
 - as we move down the tree to insert a node, if we encounter a node X with two red children, we make X red and its children black
 - -if X is the root, we change the color back to black
 - -a color flip can cause a red-black violation (a red child with a red parent) only if X's parent P is red

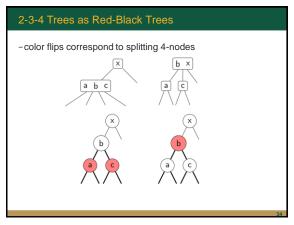
33

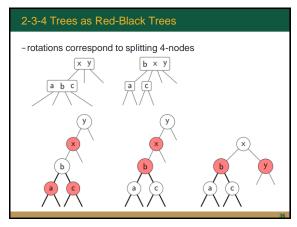


2-3-4 Trees as Red-Black Trees

- -building a red-black tree
 - -in order to maintain perfect black balance, any new node added to the tree must be red
 - -if the parent of the new node is black, all is well
 - if the parent of the new node is red, this violates the condition that red nodes have only black children
 - -fix with rotations similar to those for AVL and splay trees
 - -can be used to maintain the red-black structure at any point in the tree, not just at insertion of a new node

32

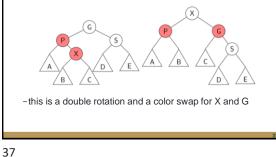


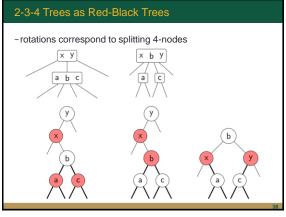


2-3-4 Trees as Red-Black Trees

-red-black tree rotations

 - case 2: the parent is red and the parent's sibling is black (or missing)





38

2-3-4 Trees as Red-Black Trees

-red-black tree rotations

- -the parent is red and the parent's sibling is red
 - -this can't happen since it would mean that the parent and its sibling are part of a $\underline{\text{4-node}}$
 - -we split all the 4-nodes we encountered on the way down

