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Chapter 12

Advanced Data Structures

Red-Black Trees
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−add the attribute of color (red or black) to links/nodes

−red-black trees used in

−C++ Standard Template Library (STL)

−Java to implement maps (or dictionaries, as in Python)

Red-Black Trees
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−a red-black tree is a BST with the following properties:

−every node is either red or black

− the root is black

− if a node is red, its children must be black

−every path from the root to a null link contains the same 

number of black nodes

−perfect black balance

− the height of an 𝑁-node red-black BST is at most 2 lg(𝑁 +
1), so

−search, insertion, and deletion are lg 𝑁 operations

Red-Black Trees
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−building a red-black tree

− in order to maintain perfect black balance, any new node 

added to the tree must be red

− if the parent of the new node is black, all is well

− if the parent of the new node is red, this violates the 

condition that red nodes have only black children

−fix with rotations similar to those for AVL and splay trees

−can be used to maintain the red-black structure at any 

point in the tree, not just at insertion of a new node

Red-Black Trees
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− top-down insertion: color flips

− to preserve perfect black balance, a newly inserted node 

must be red

− in top-down insertion, we change the tree as we move 

down the tree to the point of insertion

−the changes we make ensure that when we insert the 

new node, the parent is black

− if we encounter a node X with two red children, we 

make X red and its children black

−if X is the root, we change the color back to black

−a color flip can cause a red-black violation (a red child 

with a red parent) only if X’s parent P is red

Red-Black Trees
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−red-black tree rotations

−case 1: the parent is red and the parent’s sibling is black 

(or missing)

− this is a single rotation and a color swap for P and G
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Red-Black Trees
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−red-black tree rotations

−case 2: the parent is red and the parent’s sibling is black 

(or missing)

− this is a double rotation and a color swap for X and G

Red-Black Trees
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−red-black tree rotations

− the parent is red and the parent’s sibling is red

−this can’t happen since it would mean that the parent 

and its sibling are both red

−we changed all such pairs to black on the way down

Red-Black Trees
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−example: GOTCHA

Red-Black Trees
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−example: GOTCHA (cont.)

Red-Black Trees
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−example: GOTCHA (cont.)

Red-Black Trees
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−example: GOTCHA (cont.)

− the standard BST (rightmost) for GOTCHA is slightly 
shorter
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Red-Black Trees
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−example: ISOGRAM

Red-Black Trees
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−example: ISOGRAM (cont.)

Red-Black Trees
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−example: ISOGRAM (cont.)

Red-Black Trees
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−example: ISOGRAM (cont.)

Red-Black Trees
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−example: ISOGRAM (cont.) −2-3-4 trees

−useful because we can insert new items while maintaining 

perfect balance

−a 2-3-4 tree consists of 

−2-nodes: one key, two children

−3-nodes: two keys, three children

−4-nodes: three keys, four children

2-3-4 Trees
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2-3-4 Trees
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− insertion into 2-3-4 trees

− insert the new key into the lowest existing node reached in 

the search

2-3-4 Trees
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−what about a 4-node?

− top-down insertion

−as we move down the tree, whenever we encounter a  

4-node, we move the middle element up into the parent 

node and break up the remainder into two 2-nodes

2-3-4 Trees
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−what about a 4-node?

− top-down insertion (cont.)

−insertion, if done here, now reduces to the case of a 2-

node or 3-node

2-3-4 Trees
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− top-down insertion

−as we move down the tree, we split up 4-nodes as we 

encounter them through the following process

−move the middle key up to the parent

−split the remaining keys into 2-nodes

− this action guarantees that the parent of any 4-node we 

encounter is a 2-node or 3-node

−therefore, the tree will always have room to accept the 

middle element of the 4-node

2-3-4 Trees
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−example: insert 42, 9, 39, 11, 27, 13, 33, 16, 28

− the first three insertions are straightforward

−when inserting 11, we encounter a 4-node, which we split

−39 is first promoted as a new root node

−perfect balance is maintained in 2-3-4 trees by growing at 

the root

2-3-4 Trees

24

−example: insert 42, 9, 39, 11, 27, 13, 33, 16, 28 (cont.)

− insert 27

− insert 13: first split 4-node
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2-3-4 Trees
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−example: insert 42, 9, 39, 11, 27, 13, 33, 16, 28 (cont.)

− insert 33

− insert 16: split 4-node

2-3-4 Trees
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−example: insert 42, 9, 39, 11, 27, 13, 33, 16, 28 (cont.)

− insert 28: split 4-node at root

−once again, growth at the root maintains perfect balance

2-3-4 Trees
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−complexity of 2-3-4 tree operations

− the height of an 𝑁-node 2-3-4 tree is between log4 𝑁 =
1

2
lg 𝑁 and lg 𝑁

−searching and inserting are both lg 𝑁 operations

−rather than splitting 4-nodes on the way down, we could 

also perform bottom-up insertion, starting at the insertion 

node and moving upwards

−deletion involves fusing nodes (and is also lg 𝑁)

2-3-4 Trees as Red-Black Trees

28

−red-black trees are a way of realizing 2-3-4 trees as binary 

search trees

−allows us to re-use an implementation of a BST, and 

simplifies deletion

−add the attribute of color (red or black) to links/nodes

2-3-4 Trees as Red-Black Trees

29

−encoding 2-3-4 trees as red-black trees

2-3-4 Trees as Red-Black Trees

30

−encoding 2-3-4 trees as red-black trees (red = group with 

parent)
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2-3-4 Trees as Red-Black Trees

31

−a red-black tree is a BST with the following properties:

−every node is either red or black

− the root is black

− if a node is red, its children must be black

−every path from the root to a null link contains the same 

number of black nodes

− in the encoding of 2-3-4 trees from red-black trees, the black 

links in the red-black tree correspond to the links in the 2-3-4 

tree, while the red links denote a split of a 2-node or 3-node

−condition 4 corresponds to the perfect balance of 2-3-4 trees

− the height of an 𝑁-node red-black BST is at most 2 lg(𝑁 + 1), 

so search, insertion, and deletion are lg 𝑁 operations

2-3-4 Trees as Red-Black Trees

32

−building a red-black tree

− in order to maintain perfect black balance, any new node 

added to the tree must be red

− if the parent of the new node is black, all is well

− if the parent of the new node is red, this violates the 

condition that red nodes have only black children

−fix with rotations similar to those for AVL and splay trees

−can be used to maintain the red-black structure at any 

point in the tree, not just at insertion of a new node

2-3-4 Trees as Red-Black Trees

33

− top-down insertion: color flips

−we will follow a top-down insertion scheme as we did with 

2-3-4 trees

−as we move down the tree to insert a node, if we 

encounter a node X with two red children, we make X red 

and its children black

− if X is the root, we change the color back to black

−a color flip can cause a red-black violation (a red child with 

a red parent) only if X’s parent P is red

2-3-4 Trees as Red-Black Trees

34

−color flips correspond to splitting 4-nodes

2-3-4 Trees as Red-Black Trees

35

−red-black tree rotations

−case 1: the parent is red and the parent’s sibling is black 

(or missing)

− this is a single rotation and a color swap for P and G

2-3-4 Trees as Red-Black Trees

36

−rotations correspond to splitting 4-nodes
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2-3-4 Trees as Red-Black Trees

37

−red-black tree rotations

−case 2: the parent is red and the parent’s sibling is black 

(or missing)

− this is a double rotation and a color swap for X and G

2-3-4 Trees as Red-Black Trees

38

−rotations correspond to splitting 4-nodes

2-3-4 Trees as Red-Black Trees

39

−red-black tree rotations

− the parent is red and the parent’s sibling is red

−this can’t happen since it would mean that the parent 

and its sibling are part of a 4-node

−we split all the 4-nodes we encountered on the way 

down

2-3-4 Trees as Red-Black Trees

40

−example: GOTCHA

2-3-4 Trees as Red-Black Trees

41

−example: GOTCHA (cont.)

2-3-4 Trees as Red-Black Trees

42

−example: GOTCHA (cont.)
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2-3-4 Trees as Red-Black Trees

43

−example: GOTCHA (cont.)

− the standard BST (rightmost) for GOTCHA is slightly 
shorter

2-3-4 Trees as Red-Black Trees

44

−example: ISOGRAM

2-3-4 Trees as Red-Black Trees

45

−example: ISOGRAM

2-3-4 Trees as Red-Black Trees
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−example: ISOGRAM

2-3-4 Trees as Red-Black Trees

47

−example: ISOGRAM

2-3-4 Trees as Red-Black Trees

48

−example: ISOGRAM
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