
6/6/2024

1

Chapter 12

Advanced Data Structures

Red-Black Trees

2

−add the attribute of color (red or black) to links/nodes

−red-black trees used in

−C++ Standard Template Library (STL)

−Java to implement maps (or dictionaries, as in Python)

Red-Black Trees

3

−a red-black tree is a BST with the following properties:

−every node is either red or black

− the root is black

− if a node is red, its children must be black

−every path from the root to a null link contains the same

number of black nodes

−perfect black balance

− the height of an 𝑁-node red-black BST is at most 2 lg(𝑁 +
1), so

−search, insertion, and deletion are lg 𝑁 operations

Red-Black Trees

4

−building a red-black tree

− in order to maintain perfect black balance, any new node

added to the tree must be red

− if the parent of the new node is black, all is well

− if the parent of the new node is red, this violates the

condition that red nodes have only black children

−fix with rotations similar to those for AVL and splay trees

−can be used to maintain the red-black structure at any

point in the tree, not just at insertion of a new node

Red-Black Trees

5

− top-down insertion: color flips

− to preserve perfect black balance, a newly inserted node

must be red

− in top-down insertion, we change the tree as we move

down the tree to the point of insertion

−the changes we make ensure that when we insert the

new node, the parent is black

− if we encounter a node X with two red children, we

make X red and its children black

−if X is the root, we change the color back to black

−a color flip can cause a red-black violation (a red child

with a red parent) only if X’s parent P is red

Red-Black Trees

6

−red-black tree rotations

−case 1: the parent is red and the parent’s sibling is black

(or missing)

− this is a single rotation and a color swap for P and G

1 2

3 4

5 6

6/6/2024

2

Red-Black Trees

7

−red-black tree rotations

−case 2: the parent is red and the parent’s sibling is black

(or missing)

− this is a double rotation and a color swap for X and G

Red-Black Trees

8

−red-black tree rotations

− the parent is red and the parent’s sibling is red

−this can’t happen since it would mean that the parent

and its sibling are both red

−we changed all such pairs to black on the way down

Red-Black Trees

9

−example: GOTCHA

Red-Black Trees

10

−example: GOTCHA (cont.)

Red-Black Trees

11

−example: GOTCHA (cont.)

Red-Black Trees

12

−example: GOTCHA (cont.)

− the standard BST (rightmost) for GOTCHA is slightly
shorter

7 8

9 10

11 12

6/6/2024

3

Red-Black Trees

13

−example: ISOGRAM

Red-Black Trees

14

−example: ISOGRAM (cont.)

Red-Black Trees

15

−example: ISOGRAM (cont.)

Red-Black Trees

16

−example: ISOGRAM (cont.)

Red-Black Trees

17

−example: ISOGRAM (cont.) −2-3-4 trees

−useful because we can insert new items while maintaining

perfect balance

−a 2-3-4 tree consists of

−2-nodes: one key, two children

−3-nodes: two keys, three children

−4-nodes: three keys, four children

2-3-4 Trees

18

13 14

15 16

17 18

6/6/2024

4

2-3-4 Trees

19

− insertion into 2-3-4 trees

− insert the new key into the lowest existing node reached in

the search

2-3-4 Trees

20

−what about a 4-node?

− top-down insertion

−as we move down the tree, whenever we encounter a

4-node, we move the middle element up into the parent

node and break up the remainder into two 2-nodes

2-3-4 Trees

21

−what about a 4-node?

− top-down insertion (cont.)

−insertion, if done here, now reduces to the case of a 2-

node or 3-node

2-3-4 Trees

22

− top-down insertion

−as we move down the tree, we split up 4-nodes as we

encounter them through the following process

−move the middle key up to the parent

−split the remaining keys into 2-nodes

− this action guarantees that the parent of any 4-node we

encounter is a 2-node or 3-node

−therefore, the tree will always have room to accept the

middle element of the 4-node

2-3-4 Trees

23

−example: insert 42, 9, 39, 11, 27, 13, 33, 16, 28

− the first three insertions are straightforward

−when inserting 11, we encounter a 4-node, which we split

−39 is first promoted as a new root node

−perfect balance is maintained in 2-3-4 trees by growing at

the root

2-3-4 Trees

24

−example: insert 42, 9, 39, 11, 27, 13, 33, 16, 28 (cont.)

− insert 27

− insert 13: first split 4-node

19 20

21 22

23 24

6/6/2024

5

2-3-4 Trees

25

−example: insert 42, 9, 39, 11, 27, 13, 33, 16, 28 (cont.)

− insert 33

− insert 16: split 4-node

2-3-4 Trees

26

−example: insert 42, 9, 39, 11, 27, 13, 33, 16, 28 (cont.)

− insert 28: split 4-node at root

−once again, growth at the root maintains perfect balance

2-3-4 Trees

27

−complexity of 2-3-4 tree operations

− the height of an 𝑁-node 2-3-4 tree is between log4 𝑁 =
1

2
lg 𝑁 and lg 𝑁

−searching and inserting are both lg 𝑁 operations

−rather than splitting 4-nodes on the way down, we could

also perform bottom-up insertion, starting at the insertion

node and moving upwards

−deletion involves fusing nodes (and is also lg 𝑁)

2-3-4 Trees as Red-Black Trees

28

−red-black trees are a way of realizing 2-3-4 trees as binary

search trees

−allows us to re-use an implementation of a BST, and

simplifies deletion

−add the attribute of color (red or black) to links/nodes

2-3-4 Trees as Red-Black Trees

29

−encoding 2-3-4 trees as red-black trees

2-3-4 Trees as Red-Black Trees

30

−encoding 2-3-4 trees as red-black trees (red = group with

parent)

25 26

27 28

29 30

6/6/2024

6

2-3-4 Trees as Red-Black Trees

31

−a red-black tree is a BST with the following properties:

−every node is either red or black

− the root is black

− if a node is red, its children must be black

−every path from the root to a null link contains the same

number of black nodes

− in the encoding of 2-3-4 trees from red-black trees, the black

links in the red-black tree correspond to the links in the 2-3-4

tree, while the red links denote a split of a 2-node or 3-node

−condition 4 corresponds to the perfect balance of 2-3-4 trees

− the height of an 𝑁-node red-black BST is at most 2 lg(𝑁 + 1),

so search, insertion, and deletion are lg 𝑁 operations

2-3-4 Trees as Red-Black Trees

32

−building a red-black tree

− in order to maintain perfect black balance, any new node

added to the tree must be red

− if the parent of the new node is black, all is well

− if the parent of the new node is red, this violates the

condition that red nodes have only black children

−fix with rotations similar to those for AVL and splay trees

−can be used to maintain the red-black structure at any

point in the tree, not just at insertion of a new node

2-3-4 Trees as Red-Black Trees

33

− top-down insertion: color flips

−we will follow a top-down insertion scheme as we did with

2-3-4 trees

−as we move down the tree to insert a node, if we

encounter a node X with two red children, we make X red

and its children black

− if X is the root, we change the color back to black

−a color flip can cause a red-black violation (a red child with

a red parent) only if X’s parent P is red

2-3-4 Trees as Red-Black Trees

34

−color flips correspond to splitting 4-nodes

2-3-4 Trees as Red-Black Trees

35

−red-black tree rotations

−case 1: the parent is red and the parent’s sibling is black

(or missing)

− this is a single rotation and a color swap for P and G

2-3-4 Trees as Red-Black Trees

36

−rotations correspond to splitting 4-nodes

31 32

33 34

35 36

6/6/2024

7

2-3-4 Trees as Red-Black Trees

37

−red-black tree rotations

−case 2: the parent is red and the parent’s sibling is black

(or missing)

− this is a double rotation and a color swap for X and G

2-3-4 Trees as Red-Black Trees

38

−rotations correspond to splitting 4-nodes

2-3-4 Trees as Red-Black Trees

39

−red-black tree rotations

− the parent is red and the parent’s sibling is red

−this can’t happen since it would mean that the parent

and its sibling are part of a 4-node

−we split all the 4-nodes we encountered on the way

down

2-3-4 Trees as Red-Black Trees

40

−example: GOTCHA

2-3-4 Trees as Red-Black Trees

41

−example: GOTCHA (cont.)

2-3-4 Trees as Red-Black Trees

42

−example: GOTCHA (cont.)

37 38

39 40

41 42

6/6/2024

8

2-3-4 Trees as Red-Black Trees

43

−example: GOTCHA (cont.)

− the standard BST (rightmost) for GOTCHA is slightly
shorter

2-3-4 Trees as Red-Black Trees

44

−example: ISOGRAM

2-3-4 Trees as Red-Black Trees

45

−example: ISOGRAM

2-3-4 Trees as Red-Black Trees

46

−example: ISOGRAM

2-3-4 Trees as Red-Black Trees

47

−example: ISOGRAM

2-3-4 Trees as Red-Black Trees

48

−example: ISOGRAM

43 44

45 46

47 48

	Slide 1: Chapter 12 Advanced Data Structures
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

