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−C++

−widely-used general-purpose programming language

−compiled

−procedural and object-oriented support

−strong library support

−created by Bjarne Stroustrup starting in 1979

−based on C

−first called “C with Classes”

−also with inheritance, inlining, default function 

arguments, and strong type checking

−many C programs compile with C++ compiler

−major releases in 1983, 1989, 1998, 2011 (C++11)
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−previous program could also be written as follows



Structure of a C++ Program
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− two styles of comments



Structure of a C++ Program
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−namespace



Identifiers

7

−similar to rules for Python identifiers

−case-sensitive

−keywords



Types
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− fundamental types



Variables
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−must be declared



Initializing Variables
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−different ways to initialize variables at declaration



Variables
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−automatic type deduction

−with initialization

−without initialization

−used in cases where type cannot be obtained easily for 

generality



Strings
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Literals
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− integers

− floats

−chars



Literals
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−escape sequences



Constants
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− typed constants



Constants
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−#define constants



Increment/Decrement
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−prefix/postfix



Operators
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− if a=2, b=3, c=6

−AND/OR

−other operators work similarly to Python



Ternary Operator
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−condition ? result1 : result2



Bitwise Operators
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Type Casting

21

−both OK



Operator Precedence
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Input/Output
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Input/Output
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if Statements
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−compound if



Iteration
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−while statement



Iteration
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−do-while statement



Iteration
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− for loop



Iteration
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− range-based for loop



break Statement
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−break



continue Statement
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−continue



switch Statement
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Functions
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− return value from main



Functions
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−pass by value vs. pass by reference



Functions
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− inline functions



Functions
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−default values for parameters



Functions
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− function prototypes



Functions
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− recursion



Scope
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−global vs. local variables

−general rule: DO NOT USE



Scope
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−name can only represent one entity



Scope
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−block scope



Arrays
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−contiguous memory locations



Initializing Arrays
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−elements not automatically initialized, but can be explicitly

initialized



Initializing Arrays
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− if { } are present, values are initialized to default values



Initializing Arrays
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− initialized arrays without size are automatically sized to 

accommodate values

−can be initialized without =

−no error if range exceeded

−example uses of arrays



Arrays
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Multidimensional Arrays
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−arrays of arrays



Multidimensional Arrays
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−can be any dimension, but space increases exponentially

−allocates a char for each second in the last century

−consumes 3GB of memory

−could have been implemented as a single-dimension array



Multidimensional Arrays
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Arrays as Parameters
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Character Arrays
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−sets aside space, but not initialized



Character Arrays
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−can initialize with individual elements or string literals

−not valid

−OK



Strings and Character Arrays
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Strings and Character Arrays
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−can be transformed one to another



Pointers
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−pointer – the address of something

−exact memory locations unknown at compile time

−use & to get the address of a variable



Pointers
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−use * to get the value at a pointer (address)



Pointers
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−& and * are complementary

−with following assignments

−all of the following are true



Declaring Pointers
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−all are the same size in memory

−different



Pointers
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Pointers
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Pointers and Arrays
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−array name with no index is a pointer to the first element

−arrays can always be converted to pointers

−not valid to go the other way



Pointers and Arrays
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v



Pointers and Arrays
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−array with index is a simply a pointer with an offset

−can be represented with pointer



Pointer Initialization
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−pointers can be initialized at declaration

−same as

−not valid

−OK



Pointer Arithmetic
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−pointers can be used in arithmetic expressions, with 

underlying size taken into account

−suppose the following have addresses 1000, 2000, 3000

−after the following

−values are 1001, 2002, 3004

−same results for 



Pointer Arithmetic
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− the following is equivalent to *(p++)

−other examples

−assignment done before increment

−same as



Pointers and const
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− if value pointed to is const, it cannot be modified

−pointers can be const

−same



Pointers and const
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−pointers are not const, so can be modified



Pointers to Pointers
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void Pointers
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−void pointers point to no particular type



Pointers
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−pointers can point to any address

−pointers can point to nothing

−or simply

−NULL pointers and void pointers are different



Dynamic Memory
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−memory can be allocated during run time with new

−can check for success/failure



Dynamic Memory
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−memory can (and should) be de-allocated during run time 

with delete

−can also use malloc/free (from C), but don’t mix



Dynamic Memory
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Data Structures
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−struct

−or

−access



Data Structures
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Data Structures
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−pointers to structs

−different from



Data Structures
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−nested structs

−access



Other Data Structures
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− type aliases

−can be used as

−with using clause



Other Data Structures
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−union

−can be accessed as



Other Data Structures
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−union



Other Data Structures
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−anonymous union



Enumerated Types
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−can assign integer values (assigned anyway starting at 0)


