
Introduction to C++

with content from www.cplusplus.com



Introduction

2

−C++

−widely-used general-purpose programming language

−compiled

−procedural and object-oriented support

−strong library support

−created by Bjarne Stroustrup starting in 1979

−based on C

−first called “C with Classes”

−also with inheritance, inlining, default function 

arguments, and strong type checking

−many C programs compile with C++ compiler

−major releases in 1983, 1989, 1998, 2011 (C++11)



Structure of a C++ Program

3



Structure of a C++ Program

4

−previous program could also be written as follows



Structure of a C++ Program

5

− two styles of comments



Structure of a C++ Program

6

−namespace



Identifiers

7

−similar to rules for Python identifiers

−case-sensitive

−keywords



Types

8

− fundamental types



Variables

9

−must be declared



Initializing Variables

10

−different ways to initialize variables at declaration



Variables

11

−automatic type deduction

−with initialization

−without initialization

−used in cases where type cannot be obtained easily for 

generality



Strings

12



Literals

13

− integers

− floats

−chars



Literals

14

−escape sequences



Constants

15

− typed constants



Constants

16

−#define constants



Increment/Decrement

17

−prefix/postfix



Operators

18

− if a=2, b=3, c=6

−AND/OR

−other operators work similarly to Python



Ternary Operator

19

−condition ? result1 : result2



Bitwise Operators

20



Type Casting

21

−both OK



Operator Precedence

22



Input/Output

23



Input/Output

24



if Statements

25

−compound if



Iteration

26

−while statement



Iteration

27

−do-while statement



Iteration

28

− for loop



Iteration

29

− range-based for loop



break Statement

30

−break



continue Statement

31

−continue



switch Statement

32



Functions

33



Functions

34



Functions

35



Functions

36

− return value from main



Functions

37

−pass by value vs. pass by reference



Functions

38

− inline functions



Functions

39

−default values for parameters



Functions

40

− function prototypes



Functions

41

− recursion



Scope

42

−global vs. local variables

−general rule: DO NOT USE



Scope

43

−name can only represent one entity



Scope

44

−block scope



Arrays

45

−contiguous memory locations



Initializing Arrays

46

−elements not automatically initialized, but can be explicitly

initialized



Initializing Arrays

47

− if { } are present, values are initialized to default values



Initializing Arrays

48

− initialized arrays without size are automatically sized to 

accommodate values

−can be initialized without =

−no error if range exceeded

−example uses of arrays



Arrays

49



Multidimensional Arrays

50

−arrays of arrays



Multidimensional Arrays

51

−can be any dimension, but space increases exponentially

−allocates a char for each second in the last century

−consumes 3GB of memory

−could have been implemented as a single-dimension array



Multidimensional Arrays

52



Arrays as Parameters

53



Character Arrays

54

−sets aside space, but not initialized



Character Arrays

55

−can initialize with individual elements or string literals

−not valid

−OK



Strings and Character Arrays

56



Strings and Character Arrays

57

−can be transformed one to another



Pointers

58

−pointer – the address of something

−exact memory locations unknown at compile time

−use & to get the address of a variable



Pointers

59

−use * to get the value at a pointer (address)



Pointers

60

−& and * are complementary

−with following assignments

−all of the following are true



Declaring Pointers

61

−all are the same size in memory

−different



Pointers

62



Pointers

63



Pointers and Arrays

64

−array name with no index is a pointer to the first element

−arrays can always be converted to pointers

−not valid to go the other way



Pointers and Arrays

65

v



Pointers and Arrays

66

−array with index is a simply a pointer with an offset

−can be represented with pointer



Pointer Initialization

67

−pointers can be initialized at declaration

−same as

−not valid

−OK



Pointer Arithmetic

68

−pointers can be used in arithmetic expressions, with 

underlying size taken into account

−suppose the following have addresses 1000, 2000, 3000

−after the following

−values are 1001, 2002, 3004

−same results for 



Pointer Arithmetic

69

− the following is equivalent to *(p++)

−other examples

−assignment done before increment

−same as



Pointers and const

70

− if value pointed to is const, it cannot be modified

−pointers can be const

−same



Pointers and const

71

−pointers are not const, so can be modified



Pointers to Pointers

72



void Pointers

73

−void pointers point to no particular type



Pointers

74

−pointers can point to any address

−pointers can point to nothing

−or simply

−NULL pointers and void pointers are different



Dynamic Memory

75

−memory can be allocated during run time with new

−can check for success/failure



Dynamic Memory

76

−memory can (and should) be de-allocated during run time 

with delete

−can also use malloc/free (from C), but don’t mix



Dynamic Memory

77



Data Structures

78

−struct

−or

−access



Data Structures

79



Data Structures

80



Data Structures

81



Data Structures

82

−pointers to structs

−different from



Data Structures

83

−nested structs

−access



Other Data Structures

84

− type aliases

−can be used as

−with using clause



Other Data Structures

85

−union

−can be accessed as



Other Data Structures

86

−union



Other Data Structures

87

−anonymous union



Enumerated Types

88

−can assign integer values (assigned anyway starting at 0)


