Computer Science 304 Computer Organization Spring 2025 Assignment 4

Due: beginning of class, Thursday, 3/6/2025

Answer the following questions and submit solutions by the due date. Show your work for full credit. All submissions must be completely your own work.

- 1. [9 points] Translate the following unsigned binary numbers into their base 10 equivalents. Use fractions in lowest terms to represent values on the right-hand side of the binary point.
 - a. 1100011.110
 - b. **11011.0101**
 - c. 0.0011101
- 2. [9 points] Translate the following decimal numbers into their binary equivalents using a binary point.
 - a. $67\frac{9}{16}$
 - b. $208 \frac{29}{128}$
 - C. $\frac{115}{512}$
- 3. [9 points] Using the IEEE single precision floating point format, convert the following decimal values into binary strings.
 - a. 818.5
 - b. -111.625 (hint: convert the fractional value to eighths)
 - c. -207.4375 x 2⁻¹³⁷ (hint: convert the fractional value to sixteenths)
- 4. [9 points] Using the IEEE single precision floating point format, convert the following binary strings into decimal values. First, show the value in binary (e.g., -1.11 x 2⁵), then show it in scientific notation (with powers of 10) and round decimals to the nearest hundredth.
 - a. 1 10001010 01010..0
 - b. **0 01111001 10110..0**
 - c. 1 00011110 00101..0
- 5. [14 points] Assuming a 13-bit IEEE binary string for floating point representation, with 1 bit for the sign, 5 bits for the exp, and 7 bits for the frac, show the IEEE format, and the normalized binary representation (e.g., 1.11×2^5) for each of the following (similar to Slide 26 in the Chapter 2 Floating Point notes).
 - a. Smallest Positive Normalized Value
 - b. Largest Positive Normalized Value
 - c. Zero (both kinds)
 - d. Smallest Positive Denormalized Value
 - e. Largest Positive Denormalized Value
 - f. 1.0
 - g. -∞ (negative infinity)