The C Programming Language

(with material from Dr. Bin Ren, William & Mary Computer Science)

Overview

Motivation

Hello, world!

Basic Data Types
Variables

Arithmetic Operators
Relational Operators
Assignments
Boolean Operators

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why C?

Age has its advantages

C has been around for ~40 years

Easy to understand

Cis a great language for expressing common ideas in programming in a
way that most people are comfortable with (procedural language)

Reasonably close to the machine

Low-level access to memory

Language constructs that map efficiently to machine instructions
Minimal run-time support

Best combination of speed, low memory use, low-level access
to the hardware, and popularity

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Transitioning to C from Python

lower level — more for you to program
sometimes unsafe

standard library is smaller

different syntax

structured vs. script

paradigm shift: not object-oriented

like going from automatic transmission to stick shift

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Programming in C

C is procedural, not object-oriented

C is fully compiled (to machine code)

C allows direct manipulation of memory via pointers
C does not have garbage collection

C has many important, yet subtle, details

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Source: xked.com/571 5

Hello, world!

#include <stdio.h> #include <stdio.h>

void main(void) int main(void) {

{ printf("Hello, world!\n");
printf(“Hello, world!\n”); return (0); }

}

#include <stdio.h>
#include <stdio.h> : . = main() {
void main(void) { Which one is best? printf("Hello, world!\n");

printf(“Hello, “); : : return 0; }
printf(“world!”); #include <stdio.h>

printf(“\n”); } int m?in(unid){
printf("Hello, world!\n");
getchar();
return 0; }

Reminder: many different ways to solve the same problem

Experiment with leaving out parts of the program, to see what
error messages you get

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hello world!

#include <stdio.h>
tells the compiler to include this header file for compilation

to access the standard functions that come with your compiler, you need
to include a header with the #include directive.

main()
main function, where execution begins

i}

curly braces are equivalent to stating "block begin" and "block end”
the code in between is called a “block”

printf()
the actual print statement

return 0

returns a value

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Header Files

Functions, types and macros of the standard library are
declared in standard headers

A header can be accessed by
#include <header>
Note that this does not end with a semicolon

Headers can be included in any order and any number of times

Must be included outside of any external declaration or
definition; and before any use of anything it declares

should not include C source files

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Compilation

hello.c K
I

Type in program using an editor of
your choice (file.c); plain text

%gcc -0 hello hello.c
Y Source Code

Prepmocessor —

.c +.h =.i which is the “ultimate source
code”? i.e. # includes expanded and
#defines replaced

Compiler

+ Assembly Code

Assembler -

|
+ Object Code

Link Editor o ____

l Executable Code
hello

.i = .s which is assembler source code

.5 = .0 which is an object file; fragments of
machine code with unresolved symbols i.e.

some addresses not yet known (vars/subrs).

.0 + library links = a.out (default name);
resolves symbols, generates an

e hsio

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Coding Style

always explicitly declare the return type on the function
defaults to a type integer

replace return 0 with return EXIT_SUCCESS (in <stdlib.h>)
comments

/* comment */
comments cannot be nested
// is a single line comment from // to the end of the line

blanks, tabs, and newlines (or “white space”’), as well as
comments, are ignored except to separate tokens

free-form spacing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hello, world! (v2)

#include <stdio.h>
#include <stdlib.h>

/* Main Function

* Purpose: Controls program, prints Hello, World!
* Input: None
* Output: Returns Exit Status
*/
int main(int argc, char **argv) {
printf("Hello, world!\n");
return EXIT_SUCCESS;
}

works exactly the same as previous versions
easier to understand

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Basic Data Types

Integer Types
char —smallest addressable unit; each byte has its own address
short — short int; not used as much

int — default type for an integer constant value
long — do you really need it?

Floating point Types
inexact
float — single precision (about 6 digits of precision)

double — double precision (about 15 digits of precision)
constant default unless suffixed with f’

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Basic Data Types

char
unsigned
short
unsigned
int
unsigned i
long
unsigned
float
double

bytes -128 to 127

bytes 0 to 255

bytes -32768 to 327e7

bytes 0 to 65535

bytes —-2147483648 to 2147483647
bytes 0 to 4294967295

bytes -2147483648 to 2147483647
bytes 0 to 4294967295

bytes 1.175494e-38 to 3.402823e+38
bytes 2.225074e-308 to 1.797693e+308

OO s i B B B DD B

char guaranteed to be one byte

no maximum size for a type, but the following relationships
must hold:

sizeof (short) <= sizeof (int) <= sizeof (long)

sizeof (float) <= sizeof (double) <= sizeof (long double)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Basic Data Types

C Language Variable Types

Whether you're working with regular or unsigned variables in your C program, you need to know a bit

about those various variables. The following table show C variable types, their value ranges, and a
few helpful comments:

Type Value Range Comments
char -128 to 127
unsigned char 0 to 255
int -32,768 to 32,767

-2,147,483,648 to 2,147,483,647
unsigned int 0 to 65,535

0 to 4,294,967,295

short int -32,768 to 32,767
unsigned short int 0 to 65,535
long int -2,147,483,648 to 2,147,483,647
unsigned long int 0 to 4,294,967,295
float 1.17x10* to 3.40x10" 6-digit precision
double 2.22x10°" to 1.79x10™* 15-digit precision

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Variable Declarations

purpose: define a variable before it is used
format: type identifier [, identifier] ;

initial value: can be assigned
inti, j, k;
chara, b,c=D’;
inti=123;
float f = 3.1415926535;
double f =3.1415926535;

type conversion: aka type casting (coercion: use with caution)
(type) identifier;
inti=65; /*whatif 258 */
char a; /* range -128 to 127 */
a = (char) i; /* what is the value of a? */

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Identifier Naming Convention

similar to Python

rules for identifiers
a-z, A-Z, 0-9, and _
case sensitive
first character must be a letter or _

keywords are reserved words, and may not be used as identifiers
identifier naming style

separate words with ‘' or capitalize the first character

use all UPPERCASE for symbolic constant, macro definitions, etc.
be consistent

use mnemonic names
sample identifiers
i0, j1, abc, stu_score, st , data_t, MAXOF, MINOF ...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Keywords

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do 1T static while

reserves a word or identifier to have a particular meaning

meaning of keywords — and, indeed, the meaning of the notion of
keyword differs widely from language to language.

do not use them for any other purpose in a C program
allowed, of course, within double quotation marks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Operators

C Language Operators

In programming with C, you occasionally want to use common mathematical operators for common
mathematical functions and not-so-common cperators for logic and sequence functions. Here's a
look at C language operators to use:

Operator, Category, Duty

, Assignment, Equals

. Mathematical, Addition
. Mathematical, Subtraction
* Mathematical, Multiplication

/, Mathematical, Division

%, Mathematical, Modulo

= Comparison, Greater than

== Comparison, Greater than

or equal to

<, Comparison, Less than

<=, Comparison, Less than or

equal to

==, Comparison, Is equal to

Operator, Category, Duty

I=_ Comparison, Is not equal
to

&&, Logical, AND
||, Logical, OR
! Logical, NOT

++ Mathematical, Increment
by 1

- Mathematical, Decrement
by 1

&, Bitwise, AND

|, Bitwise, Inclusive OR

* Bitwise, Exclusive OR

(XOR or EOR)

== _Bitwise, Shift bits left

Operator, Category, Duty

=, Bitwise, Shift bits right

~, Bitwise, One’s complement
+ Unary, Positive
-, Unary, Negative

*. Unary, Pointer

&, Unary, Address

sizeof, Unary, Returns the size
of an object

., Structure, Element access

-= Structure, Pointer element
access

?-, Conditional , Funky if
operator expression

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic Type Issues

type combination and promotion
(@’ —32)=97-32=65="A’
smaller type (char) is “promoted” to be the same size as the larger type
(int)
determined at compile time — based purely on the types of the values in
the expressions
does not lose information — convert from type to compatible large type

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic Operators

mathematical symbols

+-*/%

addition, subtraction, multiplication, division, modulus
works for both int and float

+-*/

/ operator performs integer division if both operands are integer, i.e.,
truncates; otherwise, float

% operator divides two integer operands with an integer result
of the remainder
precedence — left to right

() always first

* / %

+-

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example

#include <stdio.h>

int main ()

{

int first, second, add;

float divide;

printf ("Enter two integers\n");

scanf ("%d %$d", &first, &second);

add = first + second;

divide = first / (float)second;

printf ("Sum = %d\n",add) ;

printf ("Division = %.2f\n",divide) ;

return O;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Relational Operators

used to compare two values

<<=>>=

precedence order given above; then left to right

arithmetic operators have higher precedence than relational
operators

a true statement is one that evaluates to a nonzero number
a false statement evaluates to zero

when you perform a comparison with the relational operators,
the operator will return 1 if the comparison is true, or 0 if the
comparison is false

0 == 2 evaluates to O

2 ==2evaluatestoal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

#include <stdio.h>
/* print Fahrenheit-Celsius table for fahr = 0, 20, ..., 300
where the conversion factoris C = (5/9) x (F-32) */
main()
{
int fahr, celsius;
int lower, upper, step;
lower = 0; /* lower limit of temperature scale */
upper = 300; /* upper limit */
step = 20; /* step size */
fahr = lower;
while (fahr <= upper) {
celsius =5 * (fahr-32) /9; // problem? 9.0? Typecast?
printf("%d\t%d\n", fahr, celsius);
fahr = fahr + step; }
return 0;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

#include <stdio.h> i++ is the same as:
#define MAGIC 10 izi+1

int main(void) How evaluate?
{ i=i+1< 3
int i, fact, quotient; prﬂt:ie"l-l bzut._.
while (i++ < 3) // value of i? need to initialize (i=i . 1)<3
{
printf(”Guess a factor of MAGIC larger
scanf("%d"”, &fact);
quotient = MAGIC % fact;
if (0 == quotient)
printf(”You got it!\n");
else

printf(”Sorry, You missed it!\n”);

}

return 0;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assignments

in C, assignments are expressions, not statements
embedded assignments -- legal anywhere an expression is legal

allows multiple assignmenta=b=c=1;
assighment operators

same precedence: right to left

= assignment

perform the indicated operation between the left and right operands, then
assign the result to the left operand

+=add to

-= subtract from
*= multiply by
/= divide by

%= modulo by

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assignments

example:a=x=y+3
example:r=s+ (t=u-v)/3; give “same as” code

NOTE: using an assignment operator (=) is legal anywhere it is
legal to compare for equality (==), so it is not a syntax error
(though, depending on the compiler, it may give a warning)
because there is not a distinct boolean type in C

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Boolean Operators

C does not have a distinct boolean type

int is used instead

treats integer 0 as FALSE and all non-zero values as TRUE
i =0;
while (i-10){ ...}
will execute until the variable i takes on the value 10 at which time the
expression (i - 10) will become false (i.e., 0)
a sampling of Logical/Boolean Operators:
&&, ||, and ! > AND, OR, and NOT

&&: is used to compare two objects
x1=0&&y!=0

short-circuit evaluation: above example, if x != 0 evaluates to
false, the whole statement is false regardless of the outcome of
y != 0 (same for or if first condition is true)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Boolean Examples

Operator Operator's Name | Example Result

&& AND 3>2 && 3>1 1(true)
&& AND 3>2 && 3«1 O(false)
&& AND 3<2 && 3«1 O(false)
| OR 3>2 || 3>1 1(true)
| OR 3>2 |] 3«1 1(true)
OR 3<2 |] 3«1 O(false)
1(3==2) 1(true)
1(3==3) O(false)

A. 1(1]]0) ANSWER: 0

B. '(1]]|1&&0) ANSWER: 0 (AND is evaluated before OR)

C. '((1]|0)&&0) ANSWER: 1 (Parenthesis are useful)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

