
9/5/2018

1

1

The C Programming Language

(with material from Dr. Bin Ren, William & Mary Computer Science)

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overview

 Motivation

 Hello, world!

 Basic Data Types

 Variables

 Arithmetic Operators

 Relational Operators

 Assignments

 Boolean Operators

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why C?

 Age has its advantages
 C has been around for ~40 years

 Easy to understand
 C is a great language for expressing common ideas in programming in a

way that most people are comfortable with (procedural language)

 Reasonably close to the machine

 Low-level access to memory

 Language constructs that map efficiently to machine instructions

 Minimal run-time support

 Best combination of speed, low memory use, low-level access
to the hardware, and popularity

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Transitioning to C from Python

 lower level – more for you to program

 sometimes unsafe

 standard library is smaller

 different syntax

 structured vs. script

 paradigm shift: not object-oriented

 like going from automatic transmission to stick shift

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Programming in C

 C is procedural, not object-oriented

 C is fully compiled (to machine code)

 C allows direct manipulation of memory via pointers

 C does not have garbage collection

 C has many important, yet subtle, details

Source: xkcd.com/571
6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hello, world!

 Reminder: many different ways to solve the same problem

 Experiment with leaving out parts of the program, to see what
error messages you get

9/5/2018

2

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hello world!

 #include <stdio.h>
 tells the compiler to include this header file for compilation

 to access the standard functions that come with your compiler, you need
to include a header with the #include directive.

 main()

 main function, where execution begins

 { }

 curly braces are equivalent to stating "block begin" and "block end“

 the code in between is called a “block”

 printf()

 the actual print statement

 return 0

 returns a value

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Header Files

 Functions, types and macros of the standard library are
declared in standard headers

 A header can be accessed by

 #include <header>

 Note that this does not end with a semicolon

 Headers can be included in any order and any number of times

 Must be included outside of any external declaration or
definition; and before any use of anything it declares

 should not include C source files

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Compilation

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Coding Style

 always explicitly declare the return type on the function
 defaults to a type integer

 replace return 0 with return EXIT_SUCCESS (in <stdlib.h>)

 comments
 /* comment */

 comments cannot be nested

 // is a single line comment from // to the end of the line

 blanks, tabs, and newlines (or ‘‘white space’’), as well as
comments, are ignored except to separate tokens

 free-form spacing

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hello, world! (v2)

 works exactly the same as previous versions

 easier to understand

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Basic Data Types

 Integer Types
 char – smallest addressable unit; each byte has its own address

 short – short int; not used as much

 int – default type for an integer constant value

 long – do you really need it?

 Floating point Types
 inexact

 float – single precision (about 6 digits of precision)

 double – double precision (about 15 digits of precision)

 constant default unless suffixed with ‘f’

9/5/2018

3

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Basic Data Types

 char guaranteed to be one byte

 no maximum size for a type, but the following relationships
must hold:
 sizeof (short) <= sizeof (int) <= sizeof (long)

 sizeof (float) <= sizeof (double) <= sizeof (long double)

 14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Basic Data Types

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Variable Declarations

 purpose: define a variable before it is used

 format: type identifier [, identifier] ;

 initial value: can be assigned

 int i, j, k;

 char a, b, c = ‘D’;

 int i = 123;

 float f = 3.1415926535;

 double f = 3.1415926535;

 type conversion: aka type casting (coercion: use with caution)
 (type) identifier;

 int i = 65; /* what if 258 */

 char a; /* range -128 to 127 */

 a = (char) i; /* what is the value of a? */
16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Identifier Naming Convention

 similar to Python

 rules for identifiers
 a-z, A-Z, 0-9, and _

 case sensitive

 first character must be a letter or _

 keywords are reserved words, and may not be used as identifiers

 identifier naming style
 separate words with ‘_’ or capitalize the first character

 use all UPPERCASE for symbolic constant, macro definitions, etc.

 be consistent

 use mnemonic names

 sample identifiers

 i0, j1, abc, stu_score, __st__, data_t, MAXOF, MINOF ...

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Keywords

 reserves a word or identifier to have a particular meaning

 meaning of keywords — and, indeed, the meaning of the notion of
keyword differs widely from language to language.

 do not use them for any other purpose in a C program

 allowed, of course, within double quotation marks

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Operators

9/5/2018

4

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic Type Issues

 type combination and promotion
 (‘a’ – 32) = 97 – 32 = 65 = ‘A’

 smaller type (char) is “promoted” to be the same size as the larger type
(int)

 determined at compile time – based purely on the types of the values in
the expressions

 does not lose information – convert from type to compatible large type

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic Operators

 mathematical symbols
 + - * / %

 addition, subtraction, multiplication, division, modulus

 works for both int and float
 + - * /

 / operator performs integer division if both operands are integer, i.e.,
truncates; otherwise, float

 % operator divides two integer operands with an integer result
of the remainder

 precedence – left to right
 () always first

 * / %

 + -

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example

#include <stdio.h>

int main()

{

 int first, second, add;

 float divide;

 printf("Enter two integers\n");

 scanf("%d %d", &first, &second);

 add = first + second;

 divide = first / (float)second;

 printf("Sum = %d\n",add);

 printf("Division = %.2f\n",divide);

 return 0;

}

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Relational Operators

 used to compare two values
 < <= > >=

 == !=

 precedence order given above; then left to right

 arithmetic operators have higher precedence than relational
operators

 a true statement is one that evaluates to a nonzero number

 a false statement evaluates to zero

 when you perform a comparison with the relational operators,
the operator will return 1 if the comparison is true, or 0 if the
comparison is false

 0 == 2 evaluates to 0

 2 == 2 evaluates to a 1

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example

9/5/2018

5

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assignments

 in C, assignments are expressions, not statements

 embedded assignments -‐ legal anywhere an expression is legal
 allows multiple assignment a = b = c = 1;

 assignment operators
 same precedence: right to left

 = assignment

 perform the indicated operation between the left and right operands, then
assign the result to the left operand

 += add to

 -= subtract from

 *= multiply by

 /= divide by

 %= modulo by

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assignments

 example: a = x = y+3

 example: r = s + (t = u ‐ v) / 3; give “same as” code

 NOTE: using an assignment operator (=) is legal anywhere it is
legal to compare for equality (==), so it is not a syntax error
(though, depending on the compiler, it may give a warning)
because there is not a distinct boolean type in C

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Boolean Operators

 C does not have a distinct boolean type
 int is used instead

 treats integer 0 as FALSE and all non‐zero values as TRUE
i = 0;

while (i - 10) { ... }

 will execute until the variable i takes on the value 10 at which time the
expression (i ‐ 10) will become false (i.e., 0)

 a sampling of Logical/Boolean Operators:

 &&, ||, and !  AND, OR, and NOT

 && is used to compare two objects

 x != 0 && y != 0

 short‐circuit evaluation: above example, if x != 0 evaluates to
false, the whole statement is false regardless of the outcome of
y != 0 (same for or if first condition is true)

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Boolean Examples

