
10/3/2018

1

1

The C Programming Language – Part 4

(with material from Dr. Bin Ren, William & Mary Computer Science, and
www.cpp.com)

2

Overview

 Basic Concepts of Pointers

 Pointers and Arrays

 Pointers and Strings

 Dynamic Memory Allocation

3

Pointers

 pointer – the address of something

 values of variables are stored in memory, at particular locations

 exact memory locations unknown at compile time

 a location is identified and referenced with an address

 analogous to identifying a house’s location via an address

 use & to get the address of a variable

 address in memory

 Value

 variable

4

Pointers

5

Pointers

 use * to get the value at a pointer (address)

6

Pointers

 & and * are complementary

 & means “get the address of”

 p = &c means the address of c is assigned to the variable p

 * means “get the value at that address”
 termed “dereferencing”

 int a = *p means get the value at the address designated by p and assign it
to a

 *p = 1 means assign the value of 1 to the memory location designated by
the address of p

10/3/2018

2

7

Pointers

 with following assignments

 all of the following are true

8

Declaring Pointers

 * is used in the declaration of a pointer type

 int *p means variable p is a pointer that points to an integer

 every pointer points to a specific data type

 exception: void

 all pointers are the same size in memory

 different

9

Examples

#include <stdio.h>

int main()

{

 float i = 10, *j;

 void *k;

 k = &i;

 j = k;

 printf ("%f\n", *j);

 return 0;

}

10

Examples

#include <stdio.h>

int main (void)

{

 char ch = 'c';

 char *chptr = &ch;

 int i = 20;

 int *intptr = &i;

 float f = 1.20000;

 float *fptr = &f;

 char *ptr = "I am a string";

 printf ("\n [%c], [%d], [%f], [%c], [%s]\n", *chptr, *intptr, *fptr, *ptr, ptr);

 return 0;

}

11

Examples

#include <stdio.h>

int main ()
{
 int firstvalue, secondvalue;
 int *mypointer;

 mypointer = &firstvalue;
 *mypointer = 10;

 mypointer = &secondvalue;
 *mypointer = 20;

 printf ("firstvalue is %d\n", firstvalue);
 printf (“secondvalue is %d\n", secondvalue);
}

12

Examples

#include <stdio.h>

int main ()
{
 int firstvalue = 5, secondvalue = 15;
 int *p1, *p2;

 p1 = &firstvalue;
 p2 = &secondvalue;

 *p1 = 10;
 *p2 = *p1;
 p1 = p2;
 *p1 = 20;

 printf ("firstvalue is %d\n", firstvalue);
 printf (“secondvalue is %d\n", secondvalue);
}

10/3/2018

3

13

Pointers

 if ip points to the integer x (ip = &x) then *ip can occur in any
context where x could

 ex: *ip = *ip + 10 → x = x + 10

 increments the contents of the address at ip by 10

 unary operators * and & bind more tightly than arithmetic
operators
 ex: y = *ip + 1 takes whatever ip points at, adds 1, and assigns the result to y

 other ways to increment by 1:

 *ip += 1 → *ip = *ip + 1

 ++*ip

 (*ip)++ (the parentheses are necessary because without them, the
expression would increment ip instead of what it points to, because unary
operators like * and ++ associate right to left)

14

Pointers

 pointers are variables so can be used without dereferencing
 ex: int *iq, *ip;

 iq = ip;

 copies the contents of ip (an address) into iq, thus making iq point to
whatever ip pointed to

15

Example

#include <stdio.h>

main ()

{

 int x, *p;

 p = &x;

 *p = 0;

 printf ("x is %d\n", x);

 printf ("*p is %d\n", *p);

 *p += 1;

 printf ("x is %d\n", x);

 (*p)++;

 printf ("x is %d\n", x);

 return 0;

}

16

Pointer Initialization

 pointers can be initialized at declaration

 same as

 not valid

 OK

17

Pointer Arithmetic

 pointers can be used in arithmetic expressions, with underlying
size taken into account

 suppose the following have addresses 1000, 2000, 3000

 after the following

 values are 1001, 2002, 3004

 same results for

18

Pointer Arithmetic

 the following is equivalent to *(p++)

 other examples

 assignment done before increment

 same as

10/3/2018

4

19

Pointer Arithmetic

 void pointers point to no particular type

#include <stdio.h>

void increase (void *data, int psize)

{

 if (psize == sizeof (char)) {

 char &pchar; pchar = (char *) data; ++(*pchar); }

 else if (psize == sizeof (int)) {

 int *pint; pint = (int *(data); ++(*pint); }

}

int main ()

{

 char a;

 int b = 1602;

 increase (&a, sizeof (a));

 increase (&b, sizeof (b));

 printf (“%d, %d%d\n", a, b);

 return 0;

}
20

Pointers

 pointers can point to any address

 pointers can point to nothing

 or simply

 NULL pointers and void pointers are different

21

Pointer to Pointers

22

Pointers and Arrays

 array name with no index is a pointer to the first element

 the name of the array refers to the whole array; it works by
representing a pointer to the start of the array

 when passed to functions, an array without any brackets acts
like a pointer
 pass the array directly without using &

23

Pointers and Arrays

 arrays can always be converted to pointers

 not valid to go the other way

 array with index is a simply a pointer with an offset

 can be represented with pointer

24

Pointers and Arrays

Prototype/Call

void intSwap (int *x, int *y);

intSwap (&a[i], &a[n – i - 1]);

void printIntArray (int a[], int n);

printIntArray (x, hmny);

int getIntArray (int a[], int nmax, int sentinel);

hmny = getIntArray (x, 10, 0);

void reverseIntArray (int a[], int n);

reverseIntArray (x, hmny);

10/3/2018

5

25

Pointers and Arrays
#include <stdio.h>

int main (void)
{
 int numbers [5];
 int *p, n;

 p = numbers; *p = 10;
 p++; *p = 20;
 p = &numbers [2]; *p = 30;
 p = numbers + 3; *p = 40;
 p = numbers; *(p + 4) = 50;

 for (n = 0; n < 5; n++)
 printf ("%d, ", numbers [n]);

 return 0;
}

26

Pointers and Strings

 a string is an array of characters
 no string pointers in C – character pointers instead

 a pointer to a string holds the address of the first character of the string
(just like an array)

 a string with no index is a memory address without a reference
operator (&)
 char *ptr;

 char str[40];

 ptr = str;

27

Pointers and Strings

 strings end with an implied '\0' by default
 "I am a string" = I_am_a_string\0

 sizeof operator returns number of bytes, or characters

 strlen() function

 need string.h header file

 returns the length of the null-terminated string s in bytes

– or, the offset (i.e. starting at position zero) of the terminating null
character within the array

char string[32] = "hello, world";

sizeof (string) ⇒ 32

strlen (string) ⇒ 12

– this will only work on the character array itself, not a pointer to it

 28

Pointers and Strings

 summary of string functions
 need #include <string.h>

https://www.programiz.com/c-programming/string-handling-functions

29

Pointers and Strings

#include <stdio.h>

#include <string.h>

int main (void)

{

 char arr [4]; // for accommodating 3 characters and one null '\0' byte

 char *ptr = "abc"; // a string containing 'a', 'b', 'c', '\0'

 // reset all the bytes so that none of the bytes contains any junk value

 memset (arr, '\0', sizeof (arr));

 strncpy (arr, ptr, sizeof ("abc")); // copy the string "abc" into the array arr

 printf ("\n %s \n",arr); // print the array as string

 arr [0] = 'p'; // change the first character in the array

 printf ("\n %s \n",arr); // again print the array as string

 return 0;

}

30

Dynamic Memory Allocation

 need #include <string.h>

10/3/2018

6

31

Dynamic Memory Functions

 found in stdlib.h
 malloc () general-purpose memory block

 calloc () array memory allocation

 free () de-allocate memory; return to the system

32

Dynamic Memory Functions: malloc ()

 malloc () allocates a block of memory
 number of bytes passed as argument

 returns a pointer to that memory if successful

 NULL otherwise

 values in memory are uninitialized

 prototype: void *malloc (size_t size);

 size: number of bytes requested

 returns void* so pointer returned can point to any type of data

33

Dynamic Memory Functions: malloc ()

 example
 #include <stdio.h>

#include <stdlib.h>

int main()

{

 int *buffer;

 buffer = (int *) malloc (10 * sizeof (int));

 if (buffer == NULL) {

 printf ("Error allocating memory.\n");

 exit (1);

 }

 free (buffer);

 return 0;

}

http://www.codingunit.com/c-reference-stdlib-h-function-malloc

34

Dynamic Memory Functions: malloc ()

 another example:
 #include <stdlib.h>

 // set ptr to point to a memory address of size int
 int *ptr = (int *) malloc (sizeof (int));

 // slightly cleaner to write malloc statements by taking the size of the
 // variable pointed to by using the pointer directly
 int *ptr = (int *) malloc (sizeof (*ptr));

 float *ptr = (float *) malloc (sizeof (*ptr));

 float *ptr;
 // hundreds of lines of code
 ptr = malloc (sizeof (*ptr));

35

Dynamic Memory Functions: calloc ()

 calloc () allocates a block of memory
 number of items and number bytes per item passed as argument

 returns a pointer to that memory if successful

 NULL otherwise

 values in memory are initialized to zero

 prototype: void *calloc (size_t num, size_t size);

 num: number of items requested

 size: size of each element

 returns void* so pointer returned can point to any type of data

36

Dynamic Memory Functions: calloc ()

 example

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int a, n, *buffer;

 scanf ("%d", &a);

 buffer = (int *) calloc (a, sizeof (int));

 if (buffer == NULL) { /* error */ }

 for (n = 0; n < a; n++) {

 printf ("Enter number #%d: ", n);

 scanf ("%d", &buffer [n]); }

 printf ("Output: ");

 for (n = 0; n < a; n++)

 printf ("%d", buffer [n]);

 free (buffer);

 return 0;

}
https://www.codingunit.com/c-reference-stdlib-h-function-calloc

10/3/2018

7

37

malloc () vs. calloc ()

 number of arguments
 malloc () takes a single argument: memory required in bytes

 calloc () needs two arguments: number of items and size of single item

 initialization of memory
 malloc () does not initialize memory allocated

 calloc () initializes each element of allocated memory to zero

38

Dynamic Memory Functions: free ()

 free () returns allocated memory back to the operating system
 pointer to first location in allocated memory passed as argument

 after freeing a pointer, reset it to NULL

 prototype: void free (void *p);
 p: pointer to memory that will be de-allocated

 NULL pointer

 0 is assigned to a pointer

 pointer points to nothing

 errors can be uncovered immediately when something foolish is done with
the pointer (it happens a lot, even with experienced programmers) instead
of later, after considerable damage has been done

39

Structures

 struct

 or

 access

typedef struct {

 int weight;

 double price;

} FRUIT_T;

FRUIT_T apple;

FRUIT_T banana, melon;

struct {

 int weight;

 double price;

} apple, banana, melon;

apple.weight

apple.price

banana.weight

banana.price

melon.weight

melon.price
40

Structures
#include <stdio.h>

#include <string.h>

typedef struct {

 char title [40];

 int year;

} MOVIE_T;

void print_movie (MOVIE_T movie)

{

 printf ("%s (%d)\n", movie.title, movie.year);

}

int main()

{

 MOVIE_T mine, yours;

 strcpy (mine.title, "2001: A Space Odyssey");

 mine.year = 1968;

 printf ("Enter title: ");

 scanf ("%[^\n]s", yours.title);

 printf ("Enter year: ");

 scanf ("%d", &yours.year);

 printf ("My favorite movie is: ");

 print_movie (mine);

 printf ("And yours is: \n");

 print_movie (yours);

}

41

Structures
#include <stdio.h>

typedef struct {

 char title [40];

 int year;

} MOVIE_T;

void print_movie (MOVIE_T movie)

{

 printf ("%s (%d)\n", movie.title, movie.year);

}

int main()

{

 MOVIE_T films [3];

 int n;

 for (n = 0; n < 3; n++) {

 printf ("Enter title: ");

 scanf (" %[^\n]s", films [n].title);

 printf ("Enter year: ");

 scanf ("%d", &films [n].year);

 }

 printf ("\nYou have entered these movies: \n");

 for (n = 0; n < 3; n++)

 print_movie (films [n]);

}

42

Pointers to Structures

 pointers to struct

 different from

pmovie -> title

(*pmovie).title

*pmovie -> title

*(pmovie -> title)

10/3/2018

8

43

Pointers to Structures
#include <stdio.h>

typedef struct {

 char title [40];

 int year;

} MOVIE_T;

int main()

{

 MOVIE_T movie;

 MOVIE_T *pmovie;

 pmovie = &movie;

 printf ("Enter title: ");

 scanf ("%[^\n]s%*c", pmovie -> title);

 printf ("Enter year: ");

 scanf ("%d", &pmovie -> year);

 printf ("\nYou have entered: \n %s (%d)\n", movie.title, pmovie -> year);

}

44

Pointers to Structures
#include <stdio.h>

#include <stdlib.h>

typedef struct {

 char title [40];

 int year;

} MOVIE_T;

int main()

{

 MOVIE_T *pmovie;

 pmovie = (MOVIE_T *) malloc (sizeof (MOVIE_T));

 printf ("Enter title: ");

 scanf ("%[^\n]s%*c", pmovie -> title);

 printf ("Enter year: ");

 scanf ("%d", &pmovie -> year);

 printf ("\nYou have entered: \n %s (%d)\n", pmovie -> title, pmovie -> year);

}

45

Nested Structures

 nested struct

 access

typedef struct {

 char title [40];

 int year;

} MOVIE_T;

typedef struct {

 char name [30];

 char email [40];

 MOVIE_T favorite_movie;

} FRIEND_T;

FRIEND_T charlie, maria;

FRIEND_T *pfriend = &charlie;

charlie.name

maria.favorite_movie

charlie.favorite_movie.year

pfriend -> favorite_movie.year

46

Type Definition

 define a new type with typedef

 define variables with new type

47

Unions

 union
 similar to a struct, but all fields share the same memory

 used to save space, or to easily reinterpret bits

 access

48

Unions

 union

10/3/2018

9

49

Unions

 anonymous union

50

Enumerated Types

 declaration

 usage

 alternatively, can assign integer values

 by default, starts at 0

