
10/3/2018 

1 

1 

The C Programming Language – Part 4 
 
(with material from Dr. Bin Ren, William & Mary Computer Science, and 
www.cpp.com) 

2 

Overview 

 Basic Concepts of Pointers 

 Pointers and Arrays 

 Pointers and Strings 

 Dynamic Memory Allocation 

 

3 

Pointers 

 pointer – the address of something 

 

 values of variables are stored in memory, at particular locations 

 exact memory locations unknown at compile time 

 a location is identified and referenced with an address 

 analogous to identifying a house’s location via an address 

 

 

 

 

 use & to get the address of a variable 
 

 

 address in memory 

 Value 

 variable 

4 

Pointers 

 

 

5 

Pointers 

 use * to get the value at a pointer (address) 

 
 

 

6 

Pointers 

 & and * are complementary 

 

 & means “get the address of” 

 p = &c means the address of c is assigned to the variable p 

 

 * means “get the value at that address” 
 termed “dereferencing” 

 int a = *p means get the value at the address designated by p and assign it 
to a 

 *p = 1  means assign the value of 1 to the memory location designated by 
the address of p 

 



10/3/2018 

2 

7 

Pointers 

 with following assignments 

 

 

 

    all of the following are true 

8 

Declaring Pointers 

 * is used in the declaration of a pointer type 

 int  *p means variable p is a pointer that points to an integer 

 every pointer points to a specific data type  

 exception: void 

 

 all pointers are the same size in memory 

 

 

 

 different 

9 

Examples 

 

 

#include <stdio.h> 

  

int main()  

{  

     float i = 10, *j;  

     void *k; 

 

     k = &i;  

      j = k; 

  

     printf ("%f\n", *j);  

 

     return 0;  

} 

10 

Examples 

 

 

#include <stdio.h> 

 

int main (void)  

{  

    char ch = 'c';  

    char *chptr = &ch;  

    int i = 20;  

    int *intptr = &i;  

    float f = 1.20000;  

    float *fptr = &f;  

    char *ptr = "I am a string";  

 

    printf ("\n [%c], [%d], [%f], [%c], [%s]\n", *chptr, *intptr, *fptr, *ptr,  ptr);  

 

    return 0;  

} 

11 

Examples 

 

 

#include <stdio.h> 
 
int main ()  
{      
     int firstvalue, secondvalue; 
     int *mypointer; 
 
     mypointer = &firstvalue; 
     *mypointer = 10; 
 
     mypointer = &secondvalue; 
     *mypointer = 20; 
 
    printf ("firstvalue is %d\n", firstvalue); 
    printf (“secondvalue is %d\n", secondvalue); 
} 

12 

Examples 

 

 

#include <stdio.h> 
 
int main ()  
{      
     int firstvalue = 5, secondvalue = 15; 
     int *p1, *p2; 
 
     p1 = &firstvalue; 
     p2 = &secondvalue; 
 
     *p1 = 10; 
     *p2 = *p1; 
     p1 = p2; 
     *p1 = 20; 
 
    printf ("firstvalue is %d\n", firstvalue); 
    printf (“secondvalue is %d\n", secondvalue); 
} 



10/3/2018 

3 

13 

Pointers 

 if ip points to the integer x (ip = &x) then *ip can occur in any 
context where x could 

 ex: *ip = *ip + 10 → x = x + 10 

 increments the contents of the address at ip by 10 

 

 unary operators * and & bind more tightly than arithmetic 
operators 
 ex: y = *ip + 1 takes whatever ip points at, adds 1, and assigns the result to y 

 other ways to increment by 1: 

 *ip += 1 → *ip = *ip + 1 

 ++*ip 

 (*ip)++      (the parentheses are necessary because without them, the 
expression would increment ip instead of what it points to, because unary 
operators like * and ++ associate right to left) 

14 

Pointers 

 pointers are variables so can be used without dereferencing 
 ex:  int  *iq, *ip; 

            iq = ip; 

 copies the contents of ip (an address) into iq, thus making iq point to 
whatever ip pointed to 

 

15 

Example 

 

 

#include <stdio.h>  

 

main ()  

{  

    int x, *p; 

  

    p = &x;  

    *p = 0; 

  

    printf ("x is %d\n", x);    

    printf ("*p is %d\n", *p); 

   

    *p += 1;   

 

    printf ("x is %d\n", x); 

    

    (*p)++; 

  

    printf ("x is %d\n", x); 

   

    return 0;  

} 

16 

Pointer Initialization 

 pointers can be initialized at declaration 

 

 

 same as 

 

 

 not valid 

 

 

 OK 

17 

Pointer Arithmetic 

 pointers can be used in arithmetic expressions, with underlying 
size taken into account 

 suppose the following have addresses 1000, 2000, 3000 

 

 

 after the following 

 

 
 values are 1001, 2002, 3004 

 same results for  

 

18 

Pointer Arithmetic 

 the following is equivalent to *(p++) 

 

 

 other examples 

 

 

 

 assignment done before increment 

 

 same as 

 

 

 



10/3/2018 

4 

19 

Pointer Arithmetic 

 void pointers point to no particular type 

 

 

 

 

 

#include <stdio.h>  

 

void increase (void *data, int psize) 

{ 

   if (psize == sizeof (char))  { 

      char &pchar;  pchar = (char *) data;  ++(*pchar);  } 

   else if (psize == sizeof (int)) { 

      int *pint; pint = (int *(data);  ++(*pint); } 

} 

 

int main ()  

{  

    char a; 

    int b = 1602; 

 

    increase (&a, sizeof (a)); 

    increase (&b, sizeof (b)); 

    printf (“%d, %d%d\n", a, b);    

    return 0;  

} 
20 

Pointers 

 pointers can point to any address 

 

 

 

 pointers can point to nothing 

 

 

 or simply 

 

 

 NULL pointers and void pointers are different 

21 

Pointer to Pointers 

22 

Pointers and Arrays 

 array name with no index is a pointer to the first element 

 

 the name of the array refers to the whole array; it works by 
representing a pointer to the start of the array 

 

 when passed to functions, an array without any brackets acts 
like a pointer 
 pass the array directly without using & 

23 

Pointers and Arrays 

 arrays can always be converted to pointers 

 

 

 

 not valid to go the other way 

 

 

 array with index is a simply a pointer with an offset 

 can be represented with pointer 

 

 

24 

Pointers and Arrays 

Prototype/Call 

 

void intSwap (int *x, int *y); 

intSwap (&a[i], &a[n – i - 1]); 

 

void printIntArray (int a[], int n); 

printIntArray (x, hmny); 

 

int getIntArray (int a[], int nmax, int sentinel); 

hmny = getIntArray (x, 10, 0); 

 

void reverseIntArray (int a[], int n); 

reverseIntArray (x, hmny); 

 



10/3/2018 

5 

25 

Pointers and Arrays 
#include <stdio.h> 
 
int main (void)  
{      
     int numbers [5]; 
     int *p, n; 
 
     p = numbers;              *p = 10;      
     p++;                              *p = 20; 
     p = &numbers [2];     *p = 30; 
     p = numbers + 3;        *p = 40; 
     p = numbers;     *(p + 4) = 50; 
 
     for (n = 0; n < 5; n++) 
          printf ("%d, ", numbers [n]); 
 
     return 0; 
} 

 

26 

Pointers and Strings 

 a string is an array of characters 
 no string pointers in C – character pointers instead 

 a pointer to a string holds the address of the first character of the string 
(just like an array) 

 

 a string with no index is a memory address without a reference 
operator (&) 
     char *ptr;  

     char str[40];  

     ptr = str; 

 

27 

Pointers and Strings 

 strings end with an implied '\0' by default 
 "I am a string" = I_am_a_string\0 

 sizeof operator returns number of bytes, or characters 

 strlen() function  

 need string.h header file 

 returns the length of the null-terminated string s in bytes 

– or, the offset (i.e. starting at position zero) of the terminating null 
character within the array 

 

char string[32] = "hello, world";  

sizeof (string) ⇒ 32  

strlen (string) ⇒ 12 

 

– this will only work on the character array itself, not a pointer to it 

 28 

Pointers and Strings 

 summary of string functions 
 need #include <string.h> 

 

https://www.programiz.com/c-programming/string-handling-functions 

29 

Pointers and Strings 

#include <stdio.h>  

#include <string.h>  

 

int main (void)  

{      

      char arr [4];                // for accommodating 3 characters and one null '\0' byte  

      char *ptr = "abc";            // a string containing 'a', 'b', 'c', '\0'  

       

      // reset all the bytes so that none of the bytes contains any junk value  

      memset (arr, '\0', sizeof (arr)); 

 

      strncpy (arr, ptr, sizeof ("abc"));    // copy the string "abc" into the array arr  

      printf ("\n %s \n",arr);        // print the array as string  

      arr [0] = 'p';    // change the first character in the array  

      printf ("\n %s \n",arr);  // again print the array as string  

      return 0;  

} 
 

30 

Dynamic Memory Allocation 

 
 need #include <string.h> 

 



10/3/2018 

6 

31 

Dynamic Memory Functions 

 found in stdlib.h 
 malloc () general-purpose memory block 

 calloc ()  array memory allocation 

 free () de-allocate memory; return to the system 

 

 

32 

Dynamic Memory Functions: malloc () 

 malloc () allocates a block of memory  
 number of bytes passed as argument 

 returns a pointer to that memory if successful  

 NULL otherwise 

 values in memory are uninitialized 

 

 prototype: void *malloc (size_t size); 

 size: number of bytes requested 

 returns void* so pointer returned can point to any type of data 

 

 

33 

Dynamic Memory Functions: malloc () 

 example 
 #include <stdio.h> 

#include <stdlib.h> 

  

int main()  

{  

    int *buffer;  

 

    buffer = (int *) malloc (10 * sizeof (int));  

    if (buffer == NULL) { 

 

       printf ("Error allocating memory.\n"); 

       exit (1); 

    } 

 

    free (buffer); 

    return 0;  

} 

http://www.codingunit.com/c-reference-stdlib-h-function-malloc 
 

34 

Dynamic Memory Functions: malloc () 

 another example: 
    #include <stdlib.h> 

 
     // set ptr to point to a memory address of size int 
    int *ptr = (int *) malloc (sizeof (int)); 
     
     // slightly cleaner to write malloc statements by taking the size of the  
     //   variable pointed to by using the pointer directly        
    int *ptr = (int *) malloc (sizeof (*ptr));  
 
    float *ptr = (float *) malloc (sizeof (*ptr));   
 
    float *ptr;  
    // hundreds of lines of code 
    ptr = malloc (sizeof (*ptr));  

35 

Dynamic Memory Functions: calloc () 

 calloc () allocates a block of memory 
 number of items and number bytes per item passed as argument 

 returns a pointer to that memory if successful  

 NULL otherwise 

 values in memory are initialized to zero 

 

 prototype: void *calloc (size_t num, size_t size); 

 num: number of items requested 

 size: size of each element 

 returns void* so pointer returned can point to any type of data 

 

 

36 

Dynamic Memory Functions: calloc () 

 example 
 

#include <stdio.h> 

#include <stdlib.h> 

  

int main()  

{  

    int a, n, *buffer;  

 

    scanf ("%d", &a); 

    buffer = (int *) calloc (a, sizeof (int));  

    if (buffer == NULL) { /* error */ } 

 

    for (n = 0; n < a; n++ ) {  

        printf ("Enter number #%d: ", n); 

        scanf ("%d", &buffer [n]); }  

 

    printf ("Output: ");  

    for (n = 0; n < a; n++)  

        printf ("%d", buffer [n]);  

 

    free (buffer); 

    return 0;  

} 
https://www.codingunit.com/c-reference-stdlib-h-function-calloc 



10/3/2018 

7 

37 

malloc () vs. calloc () 

 number of arguments 
 malloc () takes a single argument: memory required in bytes 

 calloc () needs two arguments: number of items and size of single item  

 

 initialization of memory 
 malloc () does not initialize memory allocated 

 calloc () initializes each element of allocated memory to zero 

 

38 

Dynamic Memory Functions: free () 

 free () returns allocated memory back to the operating system 
 pointer to first location in allocated memory passed as argument 

 after freeing a pointer, reset it to NULL 

 

 prototype: void free (void *p); 
 p: pointer to memory that will be de-allocated 

 

 NULL pointer 

 0 is assigned to a pointer 

 pointer points to nothing 

 errors can be uncovered immediately when something foolish is done with 
the pointer (it happens a lot, even with experienced programmers) instead 
of later, after considerable damage has been done 

 

39 

Structures 

 struct 
 
 
 

 
 

 

 

 or 
 
 

 

 

 

 access 

typedef struct { 

   int weight; 

   double price; 

} FRUIT_T; 

 

FRUIT_T apple; 

FRUIT_T banana, melon; 

struct { 

   int weight; 

   double price; 

} apple, banana, melon; 

apple.weight 

apple.price 

banana.weight 

banana.price 

melon.weight 

melon.price 
40 

Structures 
#include <stdio.h> 

#include <string.h> 

 

typedef struct { 

   char title [40]; 

   int year; 

} MOVIE_T; 

 

void print_movie (MOVIE_T movie) 

{ 

   printf ("%s (%d)\n", movie.title, movie.year); 

} 

 

int main()  

{  

   MOVIE_T mine, yours; 

 

   strcpy (mine.title, "2001: A Space Odyssey"); 

   mine.year = 1968; 

 

   printf ("Enter title: "); 

   scanf ("%[^\n]s", yours.title); 

   printf ("Enter year: "); 

   scanf ("%d", &yours.year); 

 

   printf ("My favorite movie is: "); 

   print_movie (mine); 

   printf ("And yours is: \n"); 

   print_movie (yours); 

} 

41 

Structures 
#include <stdio.h> 

 

typedef struct { 

   char title [40]; 

   int year; 

} MOVIE_T; 

 

void print_movie (MOVIE_T movie) 

{ 

   printf ("%s (%d)\n", movie.title, movie.year); 

} 

 

int main()  

{  

   MOVIE_T  films [3]; 

   int n; 

 

   for (n = 0; n < 3; n++) { 

      printf ("Enter title: "); 

      scanf (" %[^\n]s", films [n].title); 

      printf ("Enter year: "); 

      scanf ("%d", &films [n].year); 

   } 

 

   printf ("\nYou have entered these movies: \n"); 

   for (n = 0; n < 3; n++) 

      print_movie (films [n]); 

} 

42 

Pointers to Structures 

 pointers to struct 

 

 

 

 different from 

 

 

 

 

pmovie -> title 

(*pmovie).title 

*pmovie -> title 

*(pmovie -> title) 



10/3/2018 

8 

43 

Pointers to Structures 
#include <stdio.h> 

 

typedef struct { 

   char title [40]; 

   int year; 

} MOVIE_T; 

 

int main()  

{  

   MOVIE_T movie; 

   MOVIE_T *pmovie; 

 

   pmovie = &movie; 

 

   printf ("Enter title: "); 

   scanf ("%[^\n]s%*c", pmovie -> title); 

   printf ("Enter year: "); 

   scanf ("%d", &pmovie -> year); 

 

   printf ("\nYou have entered: \n %s (%d)\n",  movie.title, pmovie -> year); 

} 

44 

Pointers to Structures 
#include <stdio.h> 

#include <stdlib.h> 

 

typedef struct { 

   char title [40]; 

   int year; 

} MOVIE_T; 

 

int main()  

{  

   MOVIE_T *pmovie; 

 

   pmovie = (MOVIE_T *) malloc (sizeof (MOVIE_T)); 

 

   printf ("Enter title: "); 

   scanf ("%[^\n]s%*c", pmovie -> title); 

   printf ("Enter year: "); 

   scanf ("%d", &pmovie -> year); 

 

   printf ("\nYou have entered: \n %s (%d)\n",  pmovie -> title, pmovie -> year); 

} 

45 

Nested Structures 

 nested struct 

 

 

 

 

 

 

 

 access 

 

 

 

 

typedef struct { 

   char title [40]; 

   int year; 

} MOVIE_T; 

 

typedef struct { 

   char name [30]; 

   char email [40]; 

   MOVIE_T favorite_movie; 

} FRIEND_T; 

 

FRIEND_T charlie, maria; 

FRIEND_T *pfriend = &charlie; 

charlie.name 

maria.favorite_movie 

charlie.favorite_movie.year 

pfriend -> favorite_movie.year 

46 

Type Definition 

 define a new type with typedef 

 

 

 

 define variables with new type 

 

 

 

 

47 

Unions 

 union  
 similar to a struct, but all fields share the same memory 

 used to save space, or to easily reinterpret bits 

 

 

 

 

 access 

 

 

 

 
48 

Unions 

 union  

 

 

 

 

 



10/3/2018 

9 

49 

Unions 

 anonymous union  

 

 

 

 

 

50 

Enumerated Types 

 declaration 

 

 

 usage 

 

 

 

 

 alternatively, can assign integer values 

 by default, starts at 0 

 

 

 

 

 

 


