10/3/2018

Overview

Basic Concepts of Pointers
Pointers and Arrays
Pointers and Strings
Dynamic Memory Allocation

The C Programming Language — Part 4

(with material from Dr. Bin Ren, William & Mary Computer Science, and
Www.cpp.com)

Pointers Pointers

pointer — the address of something

myvar = 25;
foo = &myvar;

values of variables are stored in memory, at particular locations bar = myvar;

exact memory locations unknown at compile time

a location is identified and referenced with an address

myvar
e BT [[=s[]
analogous to identifying a house’s location via an address
1775 1776 177
war | mer & address in memory &y N
[= o < Value

foo bar

< variable E’:

use & to get the address of a variable

foo = &myvar;

Pointers Pointers

use * to get the value at a pointer (address) & and * are complementary
baz = *foo; & means “get the address of”

p = &c means the address of c is assigned to the variable p

* means “get the value at that address”
termed “dereferencing”
(memory)

1775 | 1176 | 117
I =1

int a = *p means get the value at the address designated by p and assign it
toa

*p =1 means assign the value of 1 to the memory location designated by
the address of p

Pointers

with following assignments

myvar = 25;
foo = &myvar;

all of the following are true

*foo == myvar

Declaring Pointers

* is used in the declaration of a pointer type

int *p means variable p is a pointer that points to an integer

every pointer points to a specific data type
exception: void

all pointers are the same size in memory
int * number;

char * character;
double * decimals;

different
int * pl, * p2;

int * pl, p2:

10/3/2018

Examples
#include <stdio.h>
int main()

floati = 10, %j;
void *k;

printf ("%f\n", *);

return 0;

Examples

#include <stdio.h>

int main (void)

charch="c

char *chptr = &ch;
inti=20;

int *intptr = &i;

float f = 1.20000;

float *fptr = &f;

char *pti | am a string”;

printf ("\n [%c], 1, [%f], [%c], [%s]\n", *chptr, *intptr, *fptr, *ptr, ptr);

return 0;

Examples

#include <stdio.h>

int main ()

{
int firstvalue, secondvalue;
int *mypointer;

mypointer = &firstvalue;
*mypointer = 10;

mypointer = &secondvalue;
*mypointer = 20;

printf (“firstvalue is %d\n", firstvalue);
printf (“secondvalue is %d\n", secondvalue);

10
is 20

Examples

#include <stdio.h>

int main ()

{
int firstvalue = 5, secondvalue = 15;
int *p1, *p2;

pl = &firstvalue;
p2 = &secondvalue;

printf ("firstvalue is %d\n",
printf (“secondvalue is %d\n", secondvalue);

firstvalue is 10
seccndvalue is 20

]
Pointers

if ip points to the integer x (ip = &x) then *ip can occur in any
context where x could
ex: *ip=*ip+10 —>x=x+10
increments the contents of the address at ip by 10

unary operators * and & bind more tightly than arithmetic
operators
ex:y = *ip + 1 takes whatever ip points at, adds 1, and assigns the result to y
other ways to increment by 1:
*ip+=1—*ip=*ip+1
++*ip
(*ip)++ (the parentheses are necessary because without them, the
expression would increment ip instead of what it points to, because unary
operators like * and ++ associate right to left)

10/3/2018

]
Pointers

pointers are variables so can be used without dereferencing
ex: int *ig, *ip;
iq=ip;
copies the contents of ip (an address) into iqg, thus making iq point to
whatever ip pointed to

Example

#include <stdio.h>

main ()

intx, *p;

X3

p=0;

printf ("X is %d\n"
printf ("*p is %d\r

*p+=1;

printf ("x is %d\n"
(*p)++;

printf ("x is %d\n",

return O;

Pointer Initialization

pointers can be initialized at declaration

int myvar;
int * myptr

= smyvar;
same as

int myvar;

int * myptr;

myptr = smyvar;
not valid

int myvar;

int * myptr;

*myptr = &myvar;

OK
int myvar;
int *foo = &myvar;
int *bar = foo;

Pointer Arithmetic

pointers can be used in arithmetic expressions, with underlying
size taken into account

suppose the following have addresses 1000, 2000, 3000
char *mychar;
short *myshort;
long *mylong;
after the following
++mychar;
++myshort;
++mylong;

values are 1001, 2002, 3004
same results for

mychar = mychar + 1;
myshort = myshork +
mylong = mylong + 1;

Pointer Arithmetic

the following is equivalent to *(p++)

*p++

other examples

*pr+ /) same * (p+

44D 18 ¥ (++]

PR as ++(*p):
F

(*p) ++ ereference

assignment done before increment
fptt = Agit;
same as

++p;
++g;

[
Pointer Arithmetic

void pointers point to no particular type
#include <stdio.h>

void increase (void *data, int psize)

if (psize == sizeof (char)) {

char &pchar; pchar = (char *) data; ++(*pchar); }
else if (psiz sizeof (int)) {

int *pint; pin nt *(data); ++(*pint); }

}

int main ()
{
char a;
intb =1602;

increase (&a, sizeof (a));
increase (&b, sizeof (b));
printf (“%d, %d%d\n", a, b);
return 0;

10/3/2018

]
Pointers

pointers can point to any address
int * p; uninitialized pointer (local variable)

int myarray[10];
int * g = myarray+20; / lemen at of bounds

pointers can point to nothing

int * p = 0;
int * g = nullptr;

or simply
int * r = NULL;

NULL pointers and void pointers are different

Pointer to Pointers

char a;
char * b;
char ** c;
a="z';s
b = sa:
c = &b;
a b C
| tz! |‘—|' 7230 “-"9092 |
7230 809z 10502

- |
Pointers and Arrays

array name with no index is a pointer to the first element

the name of the array refers to the whole array; it works by
representing a pointer to the start of the array

when passed to functions, an array without any brackets acts
like a pointer
pass the array directly without using &

-
Pointers and Arrays

arrays can always be converted to pointers

int myarray [20];
int * mypointer;

mypointer = myarray;
not valid to go the other way

myarray = mypointer;
array with index is a simply a pointer with an offset
can be represented with pointer

a[5] = 0; /al
*(at+5) = 0; // poir

Pointers and Arrays

Prototype/Call

void intSwap (int *x, int *y);
intSwap (&a[i], &a[n —i - 1]);

void printintArray (int af], int n);
printintArray (x, hmny);

int getintArray (int a[], int nmax, int sentinel);
hmny = getintArray (x, 10, 0);

void reverselntArray (int af], int n);
reverselntArray (x, hmny);

Pointers and Arrays
#include <stdio.h>
int main (void)
int numbers [5];
int *p, n;

p = numbers;

pH;

p = &numbers [2];

p = numbers +3; ;
p=numbers; *(p +4)=50;

for (n = 0; n < 5; n++)
printf ("%d, ", numbers [n]);

return 0;

10, 20, 30, 40, 50,

10/3/2018

Pointers and Strings

a string is an array of characters

no string pointers in C— character pointers instead

(just like an array)

operator (&)
char *ptr;
char str[40];
ptr = str;

a pointer to a string holds the address of the first character of the string

a string with no index is a memory address without a reference

Pointers and Strings

strings end with an implied '\0' by default
"l'am a string" = |_am_a_string\0
sizeof operator returns number of bytes, or characters
strlen() function
need string.h header file
returns the length of the null-terminated string s in bytes

— or, the offset (i.e. starting at position zero) of the terminating null
character within the array

char string[32] = "hello, world";
sizeof (string) = 32

strlen (string) = 12

— this will only work on the character array itself, not a pointer to it

Pointers and Strings

summary of string functions
need #include <string.h>

Function Work of Function
Calculates the length of string
Copies a string to another string
reat Concatenates(oins) two strings
Compares two string

triwr Converts string tc

strupr() Conve

ring 10 uppercase

tps s programiz conve-programming/sicng:handing-functions.

Pointers and Strings
#include <stdio.h>
#include <string.h>
int main (void)

char arr [4]; Il for accommodating 3 characters and one null '\0' byte
char *ptr ="ab X
/l reset all the bytes so that none of the bytes contains any junk value
memset (arr, \0', sizeof (arr));

strncpy (arr, ptr, sizeof ("abc")); // copy the string "abc" into the array arr
"\ \n",arr); /I print the array as string
/I change the first character in the array
/I 'again print the array as string

return 0;

Dynamic Memory Allocation

OXFFFFFFFF ol
t (dynamically allocated)
A\
.
Address space heap

(dynamically allocated)
static data (globals)
(data segment)

code
(text segment)

A\
0x00000000

Address space
is just array of
8-bit bytes

Typical total
size is: 2%

We will
assume that
integer is 4 bytes

A pointeris
just an index
into this array

Dynamic Memory Functions

found in stdlib.h
malloc () general-purpose memory block
calloc () array memory allocation
free () de-allocate memory; return to the system

10/3/2018

Dynamic Memory Functions: malloc ()

malloc () allocates a block of memory
number of bytes passed as argument
returns a pointer to that memory if successful
NULL otherwise
values in memory are uninitialized

prototype: void *malloc (size_t size);
size: number of bytes requested
returns void* so pointer returned can point to any type of data

Dynamic Memory Functions: malloc ()

example

#include <stdio.h>
#include <stdlib.h>

int main()
{

1
int *buffer;

buffer = (int *) malloc (10 * sizeof (int));
if (buffer == NULL) {

printf ("Error allocating memory.\n");
exit (1);

}

free (buffer);

return 0;

it codingurt. comicreference- sl unctn-malloc

Dynamic Memory Functions: malloc ()

another example:
#include <stdlib.h>

// set ptr to point to a memory address of size int
int *ptr = (int *) malloc (sizeof (int));

// slightly cleaner to write malloc statements by taking the size of the
// variable pointed to by using the pointer directly
int *ptr = (int *) malloc (sizeof (*ptr));

float *ptr = (float *) malloc (sizeof (*ptr));
float *ptr;

// hundreds of lines of code
ptr = malloc (sizeof (*ptr));

- |
Dynamic Memory Functions: calloc ()

calloc () allocates a block of memory
number of items and number bytes per item passed as argument
returns a pointer to that memory if successful
NULL otherwise
values in memory are initialized to zero

prototype: void *calloc (size_t num, size_t size);
num: number of items requested
size: size of each element
returns void* so pointer returned can point to any type of data

Dynamic Memory Functions: calloc ()

#include <stdio.h>
examp|e #include <stdlib.h>

int main()
{

{
int a, n, *buffer;

.‘) calloc (a, sizeof (int));
if (buffer ULL) { /* error */ }

for(n=0;n<a;n++){
printf (
scanf ('

free (buffer);
return 0;

10/3/2018

malloc () vs. calloc () Dynamic Memory Functions: free ()

number of arguments free () returns allocated memory back to the operating system
pointer to first location in allocated memory passed as argument
after freeing a pointer, reset it to NULL

malloc () takes a single argument: memory required in bytes

calloc () needs two arguments: number of items and size of single item

initialization of memory prototype: void free (void *p);

malloc () does not initialize memory allocated p: pointer to memory that will be de-allocated

calloc () initializes each element of allocated memory to zero

NULL pointer
0 is assigned to a pointer
pointer points to nothing
errors can be uncovered immediately when something foolish is done with

the pointer (it happens a lot, even with experienced programmers) instead
of later, after considerable damage has been done

Structures Structures

io.h>
#include <string.h>

typedef struct {
int weight;
double price;

}FRUIT_T;

typedef struct {
char title [40]
int year
} MOVIE_T;
void print_movie (MOVIE_T movie)
FRUIT_T apple;
FRUIT_T banana, melon;
or
struct {
int weight
double price;

} apple, banana, melon;
access
apple.weight
apple.price

banana.weight

printf ("9%s (%d)\n", movie title, movie.year);

int main()

printf ("Enter title:
scanf ("%6[*\n

print My favorite movis:) Mg fawoeice movie ia: en)
print_movie (mine); - L

printf ("And yours S
print_movie (y =

banana.price
melon.weight
melon.price

Structures

#include <stdio.h>

Pointers to Structures

typedef struct { pointers to struct
char title [40]

ity

pmovie -> title
} MOVIE_T;

void print_movie (MOVIE_T movie)

{ (*pmovie).title
printf ("%s (%d)\n", movie.title, movie.year);
}

int main()

different from

i " : "
MOVIE_T films [3]; pmovie -> title
intn;

: Blade Runner

S Runne *(pmovie -> title)

The Matrix

1998
Jéi’fl Driver Expression What is evaluated Equivalent|
a.b Member b of object a
‘ou have entered these movies: \n"); You have entered these movies: N
for (n=0; n <3; n++) Blade : 3 a->b Member b of object pointed to by a (*a).b
print_movie (films [n]); Tt
) Taxi Driver (1976) *a.b

Value pointed to by member b of object a[* (a.b)

Pointers to Structures

int year;
} MOVIE_T;

int main()
{

MOVIE_T mo
MOVIE_T *pn

Enter year
anf ("%d", &pmov ear);

printf ("\nYou have ent
}

10/3/2018

Pointers to Structures

#include <stdlib.h>
typedef struct {
char title [40]
int year;
} MOVIE_T;
int main()
MOVIE_T *pmovie:
pmovie = (MOVIE_T *) malloc (sizeof (MOVIE_T))
printf ("Enter title

%d)\n", pmovie -> title, pmovi

|
Nested Structures

nested struct

typedef struct {
char title [40];
int year;

} MOVIE_T;

typedef struct {
char name [30];

char email [40];
MOVIE_T favorite_movie;
} FRIEND_-

FRIEND_T charlie, maria;
FRIEND_T *pfriend = &charlie;

access

charlie.name
maria.favorite_movie

charlie.favorite_movie.year
pfriend -> favorite_movie.year

- |
Type Definition

define a new type with typedef

char
unsigned int WORD;
char * pChar;
char field [50];

define variables with new type

C mychar, anotherchar, *ptcl;
WORD myword;
Char ptc2;
field name;

[
Unions

union
similar to a struct, but all fields share the same memory
used to save space, or to easily reinterpret bits

union mytypes_t {
char c;

float f;
} mytypes;

access
mytypes.c

mytypes.i
mytypes.t

[
Unions

union

union mizx t {
int 1;
struct {
short hi;
short lo;
| -5
char c[4];
} mix;

mix

mix.1

mix.s.hi mix.s.lo

mix.c[0] mix.c[1] mix.c[2] mix.c[3]

10/3/2018

| —____________________________|
Unions Enumerated Types
anonymous union declaration

- = - 5 enum colors t [black, blue, green, cyan, red, purple, yellow, white};
structure with regular union|structure with anonymous union - g 4 L ¥
struct bookl £ { struct book2 t |
char title[50]; char title([50]; usage
char author[50]; char author[50];
union { union { colors_t mycolor;
float dollars; float dollars; -
int yen; int yen; mycolor = blue;
] k‘mE’SLe] k}:r;mki; if (mycolor == green) mycolor = red;
bookl.price.dollars, book2.dollars alternatively, can assign integer values
bookl.price.yen bookZ.yen

by default, starts at 0

enum months_t { january=1, february, march, april,
may, june, july, august,
september, october, november, december} y2k;

