
1

Course Overview

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overview

 Course theme

 Five realities

 Computer Systems

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Theme:
Abstraction Is Good But Don’t Forget Reality
 Most CS courses emphasize abstraction

 Abstract data types

 Asymptotic analysis

 These abstractions have limits

 Especially in the presence of bugs

 Need to understand details of underlying implementations

 Useful outcomes from this course
 Become more effective programmers

 Able to find and eliminate bugs efficiently

 Able to understand and tune for program performance

 Prepare for later “systems” classes in CS

 Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Float’s: Yes!

 Int’s:

 40000 * 40000 1600000000

 50000 * 50000 ??

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Int’s: Yes!

 Float’s:

 (1e20 + -1e20) + 3.14 --> 3.14

 1e20 + (-1e20 + 3.14) --> ??
Source: xkcd.com/571

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Computer Arithmetic

 Does not generate random values

 Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
 Due to finiteness of representations

 Integer operations satisfy “ring” properties

 Commutativity, associativity, distributivity

 Floating point operations satisfy “ordering” properties

 Monotonicity, values of signs

 Observation

 Need to understand which abstractions apply in which contexts

 Important issues for compiler writers and serious application programmers

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in assembly

 Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level execution
model

 Behavior of programs in presence of bugs

 High-level language models break down

 Tuning program performance

 Understand optimizations done / not done by the compiler

 Understanding sources of program inefficiency

 Implementing system software

 Compiler has machine code as target

 Operating systems must manage process state

 Creating / fighting malware

 x86 assembly is the language of choice!

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded

 It must be allocated and managed

 Many applications are memory dominated

 Memory referencing bugs especially pernicious
 Effects are distant in both time and space

 Memory performance is not uniform

 Cache and virtual memory effects can greatly affect program performance

 Adapting program to characteristics of memory system can lead to major
speed improvements

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Referencing Bug Example

 Result is system specific

fun(0) 3.14

fun(1) 3.14

fun(2) 3.1399998664856

fun(3) 2.00000061035156

fun(4) 3.14

fun(6) Segmentation fault

typedef struct {

 int a[2];

 double d;

} struct_t;

double fun(int i) {

 volatile struct_t s;

 s.d = 3.14;

 s.a[i] = 1073741824; /* Possibly out of bounds */

 return s.d;

}

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Referencing Bug Example
typedef struct {

 int a[2];

 double d;

} struct_t;

fun(0) 3.14

fun(1) 3.14

fun(2) 3.1399998664856

fun(3) 2.00000061035156

fun(4) 3.14

fun(6) Segmentation fault

Location accessed by

fun(i)

Explanation:

Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Referencing Errors

 C and C++ do not provide any memory protection

 Out of bounds array references

 Invalid pointer values

 Abuses of malloc/free

 Can lead to nasty bugs

 Whether or not bug has any effect depends on system and compiler

 Action at a distance

 Corrupted object logically unrelated to one being accessed

 Effect of bug may be first observed long after it is generated

 How can I deal with this?
 Program in Java, Ruby, Python, ML, …

 Understand what possible interactions may occur

 Use or develop tools to detect referencing errors (e.g. Valgrind)

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!

 And even exact op count does not predict performance

 Easily see 10:1 performance range depending on how code written

 Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

 Must understand system to optimize performance

 How programs compiled and executed

 How to measure program performance and identify bottlenecks

 How to improve performance without destroying code modularity and
generality

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory System Performance Example

 Hierarchical memory organization

 Performance depends on access patterns

 Including how to step through multi-dimensional array

void copyji(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (j = 0; j < 2048; j++)

 for (i = 0; i < 2048; i++)

 dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (i = 0; i < 2048; i++)

 for (j = 0; j < 2048; j++)

 dst[i][j] = src[i][j];

}

81.8ms 4.3ms
2.0 GHz Intel Core i7 Haswell

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why The Performance Differs

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
e
a

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)

copyij

copyji

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Great Reality #5:
Computers do more than execute programs

 They need to get data in and out

 I/O system critical to program reliability and performance

 They communicate with each other over networks
 Many system-level issues arise in presence of network

 Concurrent operations by autonomous processes

 Coping with unreliable media

 Cross platform compatibility

 Complex performance issues

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Perspective

 Most Systems Courses are Builder-Centric

 Computer Architecture

 Design pipelined processor in Verilog

 Operating Systems

 Implement sample portions of operating system

 Compilers

 Write compiler for simple language

 Networking

 Implement and simulate network protocols

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Perspective (Cont.)

 Our Course is Programmer-Centric

 Purpose is to show that by knowing more about the underlying system,
one can be more effective as a programmer

 Enable you to

 Write programs that are more reliable and efficient

 Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers

 Cover material in this course that you won’t see elsewhere

 Not just a course for dedicated hackers

 We bring out the hidden hacker in everyone!

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Role within CS Curriculum

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Topics

 Programs and Data

 Bits operations, arithmetic, assembly language programs

 Representation of C control and data structures

 Includes aspects of architecture and compilers

 The Memory Hierarchy
 Memory technology, memory hierarchy, caches, disks, locality

 Includes aspects of architecture and OS

 Exceptional Control Flow
 Hardware exceptions, processes, process control, Unix signals, nonlocal

jumps

 Includes aspects of compilers, OS, and architecture

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Topics (cont.)

 Virtual Memory

 Virtual memory, address translation, dynamic storage allocation

 Includes aspects of architecture and OS

 Networking, and Concurrency

 High level and low-level I/O, network programming

 Internet services, Web servers

 concurrency, concurrent server design, threads

 I/O multiplexing with select

 Includes aspects of networking, OS, and architecture

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Computer Systems

 system: a collection of intertwined hardware and software that
must cooperate to achieve the ultimate goal of running
application programs (the software) and manages the
hardware

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Roles of the Operating System

 protect the computer from misuse

 provide an abstraction for the hardware so that programs can
be written across a variety of hardware platforms

 manage resources so that multiple users can share the same
system

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The UNIX Operating System

 developed in the early 1970s

 kernel written in C

 C was developed to write UNIX and system programs

 Linux is a variant of UNIX

 other variants: Solaris, OpenBSD, OSX

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Software: Text and ASCII Files

 a file is a sequence of bytes

 not a magical container of bytes, but the bytes themselves

 information in files is interpreted in context
 the same sequence of bytes can represent a character, an integer, a float,

or an instruction, etc.

 Chapter 2

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Software: Compilation System

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Language

 instruction-based execution (Chapters 3, 7)

 each program is a sequence of instructions written in machine language

 processor executes each instruction, one at a time, sequentially

 convenient to use assembly language rather than machine language

 you will probably never have to write assembly code

 compilers translate high-level code to assembly code for you

 more patient and (mostly) better than users

 understanding assembly code is key to machine-level execution
model
 behavior of program with bugs

 tuning program performance (with or without help from compiler)

 implementing system software

 fighting malware

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Code

 can use disassembler

 tool that shows instruction sequence for executable program

 UNIX command

 gcc –o hello hello.c

 objdump –D –t –s hello

– -d -- disassemble: display assembler for executable sections

– -D -- disassemble all

– -S -- source: intermix source code with assembly

– -s -- full contents: display full contents of all sections

– -t -- syms: display contents of symbol table

– -T -- dynamic syms: display contents of dynamic symbol table

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hardware

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hardware Organization

 Processor (CPU)

 interprets/executes instructions stored in memory

 updates the PC to point to the next instruction

 PC (Program Counter)

 points at (contains the address of) some machine-level instruction in
main memory

 ALU (Arithmetic Logic Unit)

 computes new data and address value

 Register file

 small storage device containing word-sized registers with their own
names

 Chapter 5

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hardware Organization

 I/O Devices

 system’s connection to the outside world

 transfers information between I/O bus and I/O devices

 Main Memory

 temporary storage

 holds both program and data

 von Neumann architecture

 linear array of bytes, each with a unique address starting at 0

 Bus

 transfers one “word” at a time

 fundamental system parameter

 amount can fetch from memory at one time

 tends to be the size of the data bus

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Hierarchy

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Purpose of Memory Hierarchy

 reduce memory latency

 latency is the time (often measured in cycles) between a memory request
and its completion

 maximize memory bandwidth

 bandwidth is the amount of useful data that can be retrieved over a certain
time interval

 manage overhead
 cost of performing optimization (e.g., copying) should be less than

anticipated gain

 Chapter 6

32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Abstraction Provided by the OS

 Process (Chapter 8)

 a running program

 threads: multiple execution units

 includes memory and I/O devices (i.e., file abstraction)

 Virtual Memory (Chapter 9)

 provides each process with the illusion that it has exclusive use of the main
memory

 program code and data

 includes files

 begins at same fixed address for all processes

 address space

 Files (Chapter 10)

 sequence of bytes

33 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Space

