Course Overview




Overview

Course theme
Five realities
Computer Systems

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Course Theme:
Abstraction Is Good But Don’t Forget Reality

Most CS courses emphasize abstraction

Abstract data types
Asymptotic analysis

These abstractions have limits

Especially in the presence of bugs

Need to understand details of underlying implementations

Useful outcomes from this course
Become more effective programmers
Able to find and eliminate bugs efficiently
Able to understand and tune for program performance
Prepare for later “systems” classes in CS

Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Great Reality #1:
Ints are not Integers, Floats are not Reals

Example 1: Is x2 2 0?

Float’s: Yes!

Int’s:

Io-o?...

A

-

. 1,306... 1,307. ..

BanaA

5D
/Fw

A A A

-

... 32,767...-32,7%8...

275

=]

v =32,767... 32,765 ...

40000 * 40000 -> 1600000000
50000 * 50000 - ??

Example 2:Is(x +y)+z = x+(y + 2)?
Unsigned & Signed Int’s: Yes!

Float’s:

(1e20 + -1e20) + 3.14 --> 3.14
1e20 + (-1e20 + 3.14) --> ??

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Source: xkcd.com/571 4




Computer Arithmetic

Does not generate random values
Arithmetic operations have important mathematical properties

I (] I”

Cannot assume all “usual” mathematical properties
Due to finiteness of representations
Integer operations satisfy “ring” properties
Commutativity, associativity, distributivity
Floating point operations satisfy “ordering” properties
Monotonicity, values of signs

Observation
Need to understand which abstractions apply in which contexts
Important issues for compiler writers and serious application programmers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Great Reality #2:
You’'ve Got to Know Assembly

Chances are, you’ll never write programs in assembly
Compilers are much better & more patient than you are

But: Understanding assembly is key to machine-level execution
model
Behavior of programs in presence of bugs
High-level language models break down
Tuning program performance
Understand optimizations done / not done by the compiler
Understanding sources of program inefficiency
Implementing system software
Compiler has machine code as target
Operating systems must manage process state

Creating / fighting malware

x86 assembly is the language of choice!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition




Great Reality #3: Memory Matters

Random Access Memory Is an Unphysical Abstraction

Memory is not unbounded
It must be allocated and managed
Many applications are memory dominated
Memory referencing bugs especially pernicious

Effects are distant in both time and space

Memory performance is not uniform
Cache and virtual memory effects can greatly affect program performance

Adapting program to characteristics of memory system can lead to major
speed improvements

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Memory Referencing Bug Example

typedef struct {
int a[2];
double d;

} struct t;

double fun(int i) {
volatile struct t s;
s.d = 3.14;

s.a[i] = 1073741824; /* Possibly out of bounds */
return s.d;

.14

.14
.1399998664856
.0000006103515606
.14

Segmentation fault

Result is system specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Memory Referencing Bug Example

typedef struct { .14
int a[2]; .14
double d; .1399998664856
} struct_t; .00000061035156
.14
Segmentation fault

Explanation:

Critical State
?

?

Location accessed by
fun (1)

struct t =

-

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Memory Referencing Errors

C and C++ do not provide any memory protection
Out of bounds array references
Invalid pointer values
Abuses of malloc/free

Can lead to nasty bugs
Whether or not bug has any effect depends on system and compiler
Action at a distance
Corrupted object logically unrelated to one being accessed
Effect of bug may be first observed long after it is generated

How can | deal with this?
Program in Java, Ruby, Python, ML, ...

Understand what possible interactions may occur
Use or develop tools to detect referencing errors (e.g. Valgrind)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Great Reality #4: There’s more to
performance than asymptotic complexity

Constant factors matter too!
And even exact op count does not predict performance

Easily see 10:1 performance range depending on how code written
Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

Must understand system to optimize performance
How programs compiled and executed
How to measure program performance and identify bottlenecks

How to improve performance without destroying code modularity and
generality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Memory System Performance Example

void copyij (int
int
{
int i, j;
for (i = 0; 1
for (3 = 0;
dst[i] []]

src[2048] [2048],
dst[2048] [2048])

2048; i++)
j < 2048; j++)
src[i] [J]-

void copyji (int
int
{
int 1i,3j;
for (3 = 0; j
for (i = 0;
dst[i] []]

Ty

}

src[2048][2048],
dst[2048] [2048])

2048; j++)
i < 2048; i++)
src[i] [j]-

4.3ms

2.0 GHz Intel Core i7 Haswell

Hierarchical memory organization

Performance depends on access patterns
Including how to step through multi-dimensional array

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

81.8ms




Why The Performance Differs

copyij

16000 -
14000

12000

10000

8000

6000

~—~
0
S~
28]
=
N—r
)
>
Q.
<
(o))
>
o
—_
e
)
°©
@®
Q
o

4000

copyji
0

s3 128k
S5 512k
s7 2m

Stride (x8 bytes) 8m

sll
128m

Size (bytes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

32k




Great Reality #5:
Computers do more than execute programs

They need to get data in and out

|/O system critical to program reliability and performance

They communicate with each other over networks
Many system-level issues arise in presence of network
Concurrent operations by autonomous processes
Coping with unreliable media
Cross platform compatibility
Complex performance issues

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Course Perspective

Most Systems Courses are Builder-Centric
Computer Architecture
Design pipelined processor in Verilog
Operating Systems
Implement sample portions of operating system
Compilers
Write compiler for simple language
Networking
Implement and simulate network protocols

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Course Perspective (Cont.)

Our Course is Programmer-Centric

Purpose is to show that by knowing more about the underlying system,
one can be more effective as a programmer

Enable you to
Write programs that are more reliable and efficient
Incorporate features that require hooks into OS
— E.g., concurrency, signal handlers
Cover material in this course that you won’t see elsewhere
Not just a course for dedicated hackers
We bring out the hidden hacker in everyone!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Role within CS Curriculum

W&M Computer Science prerequisite chart

141
Computational
Problem
/ o
241 243
Data Discrate
Structures Structures
§

304 301 303

Computer Software Algorithms
Organization Development

423
Finite
Automata

1 Math 112 &May substitute * not offered
prerequisite Math 214 2016-2017

1 Math 211 - - - one or the

prerequisite other Revised 04-18-16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Topics

Programs and Data
Bits operations, arithmetic, assembly language programs
Representation of C control and data structures
Includes aspects of architecture and compilers

The Memory Hierarchy
Memory technology, memory hierarchy, caches, disks, locality
Includes aspects of architecture and OS

Exceptional Control Flow

Hardware exceptions, processes, process control, Unix signals, nonlocal
jumps

Includes aspects of compilers, OS, and architecture

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Topics (cont.)

Virtual Memory
Virtual memory, address translation, dynamic storage allocation
Includes aspects of architecture and OS

Networking, and Concurrency
High level and low-level I/O, network programming
Internet services, Web servers
concurrency, concurrent server design, threads
|/0 multiplexing with select
Includes aspects of networking, OS, and architecture

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Computer Systems

system: a collection of intertwined hardware and software that
must cooperate to achieve the ultimate goal of running

application programs (the software) and manages the
hardware

: SOGFTWAREn

LOAD/STORE
ADDRESS @
BUS
DATA '
BUS
: ADDRESSIBILITY

BIG/LITTLE
ENDIAN

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition




Roles of the Operating System

protect the computer from misuse

provide an abstraction for the hardware so that programs can
be written across a variety of hardware platforms

manage resources so that multiple users can share the same
system

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



The UNIX Operating System

developed in the early 1970s

kernel written in C
C was developed to write UNIX and system programs

Linux is a variant of UNIX
other variants: Solaris, OpenBSD, OSX

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Software: Text and ASCII Files

a file is a sequence of bytes
not a magical container of bytes, but the bytes themselves

information in files is interpreted in context

the same sequence of bytes can represent a character, an integer, a float,
or an instruction, etc.

Chapter 2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Software: Compilation System

hello.c K
I

Type in program using an editor of
your choice (file.c); plain text

%gcc -0 hello hello.c
Y Source Code

Prepmocessor —

.c +.h =.i which is the “ultimate source
code”? i.e. # includes expanded and
#defines replaced

Compiler

+ Assembly Code

Assembler -

|
+ Object Code

Link Editor o ____

l Executable Code
hello

.i = .s which is assembler source code

.5 = .0 which is an object file; fragments of
machine code with unresolved symbols i.e.

some addresses not yet known (vars/subrs).

.0 + library links = a.out (default name);
resolves symbols, generates an

e hsio

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition




Assembly Language

instruction-based execution (Chapters 3, 7)
each program is a sequence of instructions written in machine language
processor executes each instruction, one at a time, sequentially
convenient to use assembly language rather than machine language

you will probably never have to write assembly code

compilers translate high-level code to assembly code for you
more patient and (mostly) better than users

understanding assembly code is key to machine-level execution
model
behavior of program with bugs
tuning program performance (with or without help from compiler)
implementing system software
fighting malware

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Assembly Code

can use disassembler
tool that shows instruction sequence for executable program
UNIX command
gcc —o hello hello.c
objdump —D —t —s hello
— -d -- disassemble: display assembler for executable sections
— -D -- disassemble all
— -S -- source: intermix source code with assembly
-s -- full contents: display full contents of all sections
-t -- syms: display contents of symbol table
-T -- dynamic syms: display contents of dynamic symbol table

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Hardware

C P U Register File

=
N

g

Bus Interface

hellot executable
stored on disk*

Memory
bus

Expansion slots for
other devices such as
network adapters,

video cards, etc.

Main
memory

4

USB
controller

<— Mouse
<— Keyboard

Graphics
adapter

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

>
4

Disk
Controller




Hardware Organization

Processor (CPU)

interprets/executes instructions stored in memory
updates the PC to point to the next instruction
PC (Program Counter)

points at (contains the address of) some machine-level instruction in
main memory

ALU (Arithmetic Logic Unit)
computes new data and address value
Register file

small storage device containing word-sized registers with their own
names

Chapter 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Hardware Organization

/O Devices

system’s connection to the outside world
transfers information between |/O bus and 1/O devices

Main Memory
temporary storage
holds both program and data
von Neumann architecture
linear array of bytes, each with a unique address starting at 0

Bus
transfers one “word” at a time
fundamental system parameter
amount can fetch from memory at one time
tends to be the size of the data bus

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Memory Hierarchy

CPU Registers
100 bytes
<1ns

Static RAM (SRAM)
megabytes
0.5-2.5ns

Dynamic RAM (DRAM)

gigabytes
50-70ns

Magnetic Disk
terabytes
5ms - 20ms

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Purpose of Memory Hierarchy

reduce memory latency

latency is the time (often measured in cycles) between a memory request
and its completion

maximize memory bandwidth

bandwidth is the amount of useful data that can be retrieved over a certain
time interval

manage overhead

cost of performing optimization (e.g., copying) should be less than
anticipated gain

Chapter 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Abstraction Provided by the OS

Process (Chapter 8)
a running program
threads: multiple execution units
includes memory and 1/O devices (i.e., file abstraction)

Virtual Memory (Chapter 9)

provides each process with the illusion that it has exclusive use of the main
memory

program code and data
includes files
begins at same fixed address for all processes
address space

Files (Chapter 10)

sequence of bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Address Space

« An array of ADDRESS SPACE Decription/info

8-bit bytes Kernel virtual memory Memory invisible to user code

User stack (created at run time) | Implements function calls
A pointer is A i
just an

index into
this array

Memory mapped region for Ex. printf function
shared libraries

t

Run-time heap Dynamic in size
: (created at run time by malloc/

32/64 bit

starting calloc)

address Read/write data } Program (executable file)

l Read-only code and data

Address 0 —
Notice symbolically drawn with memory “starting” at the bottom

Fixed size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



