
9/3/2018

1

1

Course Overview

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overview

 Course theme

 Five realities

 Computer Systems

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Theme:
Abstraction Is Good But Don’t Forget Reality
 Most CS courses emphasize abstraction
 Abstract data types

 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs

 Need to understand details of underlying implementations

 Useful outcomes from this course
 Become more effective programmers

 Able to find and eliminate bugs efficiently

 Able to understand and tune for program performance

 Prepare for later “systems” classes in CS

 Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Float’s: Yes!

 Int’s:

 40000 * 40000  1600000000

 50000 * 50000  ??

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Int’s: Yes!

 Float’s:

 (1e20 + -1e20) + 3.14 --> 3.14

 1e20 + (-1e20 + 3.14) --> ??
Source: xkcd.com/571

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Computer Arithmetic

 Does not generate random values
 Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
 Due to finiteness of representations

 Integer operations satisfy “ring” properties

 Commutativity, associativity, distributivity

 Floating point operations satisfy “ordering” properties

 Monotonicity, values of signs

 Observation

 Need to understand which abstractions apply in which contexts

 Important issues for compiler writers and serious application programmers

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in assembly
 Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level execution
model

 Behavior of programs in presence of bugs

 High-level language models break down

 Tuning program performance

 Understand optimizations done / not done by the compiler

 Understanding sources of program inefficiency

 Implementing system software

 Compiler has machine code as target

 Operating systems must manage process state

 Creating / fighting malware

 x86 assembly is the language of choice!

9/3/2018

2

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded

 It must be allocated and managed

 Many applications are memory dominated

 Memory referencing bugs especially pernicious

 Effects are distant in both time and space

 Memory performance is not uniform

 Cache and virtual memory effects can greatly affect program performance

 Adapting program to characteristics of memory system can lead to major
speed improvements

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Referencing Bug Example

 Result is system specific

fun(0)  3.14

fun(1)  3.14

fun(2)  3.1399998664856

fun(3)  2.00000061035156

fun(4)  3.14

fun(6)  Segmentation fault

typedef struct {

 int a[2];

 double d;

} struct_t;

double fun(int i) {

 volatile struct_t s;

 s.d = 3.14;

 s.a[i] = 1073741824; /* Possibly out of bounds */

 return s.d;

}

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Referencing Bug Example
typedef struct {

 int a[2];

 double d;

} struct_t;

fun(0)  3.14

fun(1)  3.14

fun(2)  3.1399998664856

fun(3)  2.00000061035156

fun(4)  3.14

fun(6)  Segmentation fault

Location accessed by

fun(i)

Explanation:

Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Referencing Errors

 C and C++ do not provide any memory protection
 Out of bounds array references

 Invalid pointer values

 Abuses of malloc/free

 Can lead to nasty bugs
 Whether or not bug has any effect depends on system and compiler

 Action at a distance

 Corrupted object logically unrelated to one being accessed

 Effect of bug may be first observed long after it is generated

 How can I deal with this?

 Program in Java, Ruby, Python, ML, …

 Understand what possible interactions may occur

 Use or develop tools to detect referencing errors (e.g. Valgrind)

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!

 And even exact op count does not predict performance
 Easily see 10:1 performance range depending on how code written

 Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

 Must understand system to optimize performance

 How programs compiled and executed

 How to measure program performance and identify bottlenecks

 How to improve performance without destroying code modularity and
generality

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory System Performance Example

 Hierarchical memory organization

 Performance depends on access patterns
 Including how to step through multi-dimensional array

void copyji(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (j = 0; j < 2048; j++)

 for (i = 0; i < 2048; i++)

 dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (i = 0; i < 2048; i++)

 for (j = 0; j < 2048; j++)

 dst[i][j] = src[i][j];

}

81.8ms 4.3ms
2.0 GHz Intel Core i7 Haswell

9/3/2018

3

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why The Performance Differs

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
e
a
d

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

copyij

copyji

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Great Reality #5:
Computers do more than execute programs

 They need to get data in and out
 I/O system critical to program reliability and performance

 They communicate with each other over networks
 Many system-level issues arise in presence of network

 Concurrent operations by autonomous processes

 Coping with unreliable media

 Cross platform compatibility

 Complex performance issues

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Perspective

 Most Systems Courses are Builder-Centric
 Computer Architecture

 Design pipelined processor in Verilog

 Operating Systems

 Implement sample portions of operating system

 Compilers

 Write compiler for simple language

 Networking

 Implement and simulate network protocols

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Perspective (Cont.)

 Our Course is Programmer-Centric
 Purpose is to show that by knowing more about the underlying system,

one can be more effective as a programmer

 Enable you to

 Write programs that are more reliable and efficient

 Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers

 Cover material in this course that you won’t see elsewhere

 Not just a course for dedicated hackers

 We bring out the hidden hacker in everyone!

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Role within CS Curriculum

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Topics

 Programs and Data
 Bits operations, arithmetic, assembly language programs

 Representation of C control and data structures

 Includes aspects of architecture and compilers

 The Memory Hierarchy
 Memory technology, memory hierarchy, caches, disks, locality

 Includes aspects of architecture and OS

 Exceptional Control Flow

 Hardware exceptions, processes, process control, Unix signals, nonlocal
jumps

 Includes aspects of compilers, OS, and architecture

9/3/2018

4

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Topics (cont.)

 Virtual Memory
 Virtual memory, address translation, dynamic storage allocation

 Includes aspects of architecture and OS

 Networking, and Concurrency
 High level and low-level I/O, network programming

 Internet services, Web servers

 concurrency, concurrent server design, threads

 I/O multiplexing with select

 Includes aspects of networking, OS, and architecture

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Computer Systems

 system: a collection of intertwined hardware and software that
must cooperate to achieve the ultimate goal of running
application programs (the software) and manages the
hardware

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Roles of the Operating System

 protect the computer from misuse

 provide an abstraction for the hardware so that programs can
be written across a variety of hardware platforms

 manage resources so that multiple users can share the same
system

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The UNIX Operating System

 developed in the early 1970s

 kernel written in C
 C was developed to write UNIX and system programs

 Linux is a variant of UNIX
 other variants: Solaris, OpenBSD, OSX

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Software: Text and ASCII Files

 a file is a sequence of bytes
 not a magical container of bytes, but the bytes themselves

 information in files is interpreted in context
 the same sequence of bytes can represent a character, an integer, a float,

or an instruction, etc.

 Chapter 2

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Software: Compilation System

9/3/2018

5

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Language

 instruction-based execution (Chapters 3, 7)
 each program is a sequence of instructions written in machine language

 processor executes each instruction, one at a time, sequentially

 convenient to use assembly language rather than machine language

 you will probably never have to write assembly code
 compilers translate high-level code to assembly code for you

 more patient and (mostly) better than users

 understanding assembly code is key to machine-level execution
model
 behavior of program with bugs

 tuning program performance (with or without help from compiler)

 implementing system software

 fighting malware

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Code

 can use disassembler
 tool that shows instruction sequence for executable program

 UNIX command

 gcc –o hello hello.c

 objdump –D –t –s hello

– -d -- disassemble: display assembler for executable sections

– -D -- disassemble all

– -S -- source: intermix source code with assembly

– -s -- full contents: display full contents of all sections

– -t -- syms: display contents of symbol table

– -T -- dynamic syms: display contents of dynamic symbol table

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hardware

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hardware Organization

 Processor (CPU)
 interprets/executes instructions stored in memory

 updates the PC to point to the next instruction

 PC (Program Counter)

 points at (contains the address of) some machine-level instruction in
main memory

 ALU (Arithmetic Logic Unit)

 computes new data and address value

 Register file

 small storage device containing word-sized registers with their own
names

 Chapter 5

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hardware Organization

 I/O Devices
 system’s connection to the outside world

 transfers information between I/O bus and I/O devices

 Main Memory
 temporary storage

 holds both program and data

 von Neumann architecture

 linear array of bytes, each with a unique address starting at 0

 Bus

 transfers one “word” at a time

 fundamental system parameter

 amount can fetch from memory at one time

 tends to be the size of the data bus

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Hierarchy

9/3/2018

6

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Purpose of Memory Hierarchy

 reduce memory latency
 latency is the time (often measured in cycles) between a memory request

and its completion

 maximize memory bandwidth
 bandwidth is the amount of useful data that can be retrieved over a certain

time interval

 manage overhead

 cost of performing optimization (e.g., copying) should be less than
anticipated gain

 Chapter 6

32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Abstraction Provided by the OS

 Process (Chapter 8)
 a running program

 threads: multiple execution units

 includes memory and I/O devices (i.e., file abstraction)

 Virtual Memory (Chapter 9)
 provides each process with the illusion that it has exclusive use of the main

memory

 program code and data

 includes files

 begins at same fixed address for all processes

 address space

 Files (Chapter 10)
 sequence of bytes

33 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Space

