
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Floating Point

(with contributions from Dr. Bin Ren, William & Mary Computer Science)

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2i

2i-1

4

2

1

1/2

1/4

1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

 Representation

▪ Bits to right of “binary point” represent fractional powers of 2

▪ Represents rational number:

• • •

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fractional binary numbers

 What is 1011.1012?

▪ 1/2 + 1/8 = 5/8 11 5/8 or 11.625

 What is 123.45 in binary?
▪ 123 = 1111011

▪ to get the .45, use repeated multiplication by 2

▪ if product < 1, bit is 0

▪ if product >= 1, bit is 1 and subtract 1 from product

 .45 * 2 =

 .9 * 2 = 0

 (1.8 – 1) * 2 = 1

 (1.6 – 1) * 2 = 1

 (1.2 – 1) * 2 = 1

 .4 0

▪ 1111011.01110

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fractional Binary Numbers: Examples

 Value Representation

 5 3/4 101.112

 2 7/8 010.1112

 1 7/16 001.01112

 Observations
▪ Divide by 2 by shifting right (unsigned)

▪ compare 101.112 with 10.1112

▪ Multiply by 2 by shifting left

▪ compare 101.112 with 1011.12

▪ Numbers of form 0.111111…2 are just below 1.0

▪ 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0

▪ notation sometimes seen: 1.0 – ε

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representable Numbers

 Limitation #1

▪ Can only exactly represent numbers of the form x/2k

▪ Other rational numbers have repeating bit representations

▪ Value Representation

▪ 1/3 0.0101010101[01]…2

▪ 1/5 0.001100110011[0011]…2

▪ 1/10 0.0001100110011[0011]…2

 Limitation #2
▪ Just one setting of binary point within the w bits

▪ Limited range of numbers (very small values? very large?)

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representable Numbers

 Numbers 0.111…11 base 2 represent numbers just below 1

▪ 0.111111 base 2 = 63/64

 Only finite-length encodings
▪ 1/3 and 5/7 cannot be represented exactly

 Fractional binary notation can only represent numbers that can
be written x * 2y (i.e. 63/64 = 63*2-6)
▪ Otherwise, approximated

▪ Increasing accuracy = lengthening the binary representation but still have
finite space

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Practice

 Fractional value of the following binary values:

▪ .01 =

▪ .010 =

▪ 1.00110 =

▪ 11.001101 =

 123.45 base 10
▪ Binary value =

▪ FYI also equals:

▪ 1.2345 x 102 in normalized form

▪ 12345 x 10-2 using significand/mantissa/coefficient and exponent

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IEEE Floating Point

 IEEE Standard 754

▪ Established in 1985 as uniform standard for floating point arithmetic

▪ Before that, many idiosyncratic formats

▪ Supported by all major CPUs

▪ Intel-based PCs

▪ Apple

▪ Unix/Linux

 Driven by numerical concerns

▪ Nice standards for rounding, overflow, underflow

▪ Hard to make fast in hardware

▪ Numerical analysts predominated over hardware designers in defining
standard

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Numerical Form:
 (–1)s M 2E

▪ Sign bit s determines whether number is negative or positive

▪ Significand M normally a fractional value in range [1.0,2.0).

▪ Exponent E weights value by power of two

 Encoding

▪ MSB s is sign bit s

▪ exp field encodes E (but is not equal to E)

▪ frac field encodes M (but is not equal to M)

Floating Point Representation

s exp frac

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Precision options

 Single precision: 32 bits

 Double precision: 64 bits

 Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Normalized Values

 When: exp ≠ 000…0 and exp ≠ 111…1

 Exponent coded as a biased value: E = Exp – Bias

▪ Exp: unsigned value of exp field

▪ Bias = 2k-1 - 1, where k is number of exponent bits

▪ Single precision: 127 (Exp: 1…254, E: -126…127)

▪ Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

 Significand coded with implied leading 1: M = 1.xxx…x2

▪ xxx…x: bits of frac field

▪ Minimum when frac = 000…0 (M = 1.0)

▪ Maximum when frac = 111…1 (M = 2.0 – ε)

▪ Get extra leading bit for “free”

v = (–1)s M 2E

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bias Notes

 Biasing is done because exponents have to be signed values in
order to be able to represent both tiny and huge values, but
two's complement, the usual representation for signed values,
would make comparison harder.

▪ To solve this problem the exponent is biased to put it within an unsigned
range suitable for comparison.

▪ By arranging the fields so that the sign bit is in the most significant bit
position, the biased exponent in the middle, then the mantissa in the least
significant bits, the resulting value will be ordered properly, whether it's
interpreted as a floating point or integer value. This allows high speed
comparisons of floating point numbers using fixed point hardware.

 When interpreting the floating-point number, the bias is
subtracted to retrieve the actual exponent.

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Significand Notes

 Represents the fraction, or precision bits of the number.

 It is composed of an implicit (i.e., hidden) leading bit and the
fraction bits.

 In order to maximize the quantity of representable numbers,
floating-point numbers are typically stored in normalized form.

▪ This basically puts the radix point after the first non-zero digit

▪ Nice optimization available in base two, since the only possible non-zero
digit is 1.

▪ Thus, we can just assume a leading digit of 1, and don't need to represent
it explicitly.

▪ As a result, the mantissa/significand has effectively 24 bits of resolution, by
way of 23 fraction bits.

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Normalized Encoding Example

 Value: float F = 15213.0;
▪ 1521310 = 111011011011012

 = 1.11011011011012 x 213

 Significand
M = 1.11011011011012

frac = 110110110110100000000002

 Exponent
E = 13

Bias = 127

Exp = 140 = 100011002

 Result:

0 10001100 11011011011010000000000
s exp frac

v = (–1)s M 2E

E = Exp – Bias

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Normalized Encoding Example 2

s exp frac

 Value: π, rounded to 24 bits of precision
▪ sign: 0

 Significand
s = 11.0010010000111111011011 (including hidden bit)

M = 1.100100100001111110110112 (x 21)

frac = 100100100001111110110112

 Exponent
E = 1

Bias = 127

Exp = 128 = 100000002

 Result:

0 10000000 10010010000111111011011

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Normalized Encoding Practice

 Value: -π

▪ same as before; only sign bit changes

1 10000000 10010010000111111011011
s exp frac

 Value: -78 3/8 (-78.375)
1001110.011 = 1.001110011 x 26 6 + 127 = 133 or 10000101

1 10000101 00111001100000000000000
s exp frac

 Value: 63 11/32 (127.34375)
111111.01011 = 1.1111101011 x 25 5 + 127 = 132 or 10000100

0 10000100 11111010110000000000000
s exp frac

 Value: -1/64 (-0.015625)
0.000001 = 1.0 x 2-6 -6 + 127 = 121 or 01111001

1 01111001 00000000000000000000000

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Denormalized Values

 Also called denormal or subnormal numbers

 Values that are very close to zero
▪ Fill the “underflow” gap around zero

▪ Gradual underflow = numeric values are spaced evenly near 0.0

 Any number with magnitude smaller than the smallest
normal number
▪ When the exponent field is all zeros

▪ E = 1-bias

▪ Significand M = f without implied leading 1

▪ h = 0 (hidden bit)

 Representation of numeric value 0
▪ -0.0 and +0.0 are considered different in some ways and the same

in others

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Denormalized Values

 In a normal floating point value, there are no leading
zeros in the significand, instead leading zeros are moved
to the exponent.

 e.g., 0.0123 would be written as 1.23 * 10-2

 Denormalized numbers are numbers where this
representation would result in an exponent that is too
small (the exponent usually having a limited range). Such
numbers are represented using leading zeros in the
significand.

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Denormalized Values

 Condition: exp = 000…0

 Exponent value: E = 1 – Bias (instead of E = 0 – Bias)

 Significand coded with implied leading 0: M = 0.xxx…x2

▪ xxx…x: bits of frac

 Cases
▪ exp = 000…0, frac = 000…0

▪ Represents zero value

▪ Note distinct values: +0 and –0 (why?)

▪ exp = 000…0, frac ≠ 000…0

▪ Numbers closest to 0.0

▪ Equispaced

v = (–1)s M 2E

E = 1 – Bias

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Denormalized Decoding Example

s exp frac

 What is the decimal value of the following?

 0 00000000 00000010000111000000000

▪ sign: 0 (positive)

▪ we know it’s a denormalized value because exp is all 0s

 Exponent
E = 1 - 127 = -126 (same for all denormalized numbers)

 Significand
frac = 000000100001110000000002

M = 0.000000100001110000000002

 Result:
▪ 0.00000010000111000000000 x 2-126 = 1.0000111 x 2-133

▪ 10000111 x 2-140 = 135 x 2-140 = 9.69 x 10-41

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Denormalized Encoding Example

s exp frac

 Value: -25 15/32 x 2-132

▪ sign: 1

▪ power of 2 indicates denormalized number (< -126)

 Exponent
Bias = 127

Exp = 000000002 (same for all denormalized numbers)

E = 1 - 127 = – 126

 Significand
s = 11001.01111 x 2-132 (move 6 places left to match -126)

M = 0.01100101111000000000000002 (x 2-126)

frac = 01100101111000000000000002

 Result:

 1 00000000 01100101111000000000000

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Special Values

 Condition: exp = 111…1

 Case: exp = 111…1, frac = 000…0

▪ Represents value  (infinity)

▪ Operation that overflows

▪ Both positive and negative

▪ E.g., 1.0/0.0 = −1.0/−0.0 = +, 1.0/−0.0 = −

 Case: exp = 111…1, frac ≠ 000…0

▪ Not-a-Number (NaN)

▪ Represents case when no numeric value can be determined

▪ E.g., sqrt(–1),  − ,   0

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Visualization: Floating Point Encodings

+−

−0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Interesting Numbers

Description exp frac Numeric Value

 Zero 00…00 00…00 0.0

 Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022}

▪ Single ≈ 1.4 x 10–45

▪ Double ≈ 4.9 x 10–324

 Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022}

▪ Single ≈ 1.18 x 10–38

▪ Double ≈ 2.2 x 10–308

 Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022}

▪ Just larger than largest denormalized

 One 01…11 00…00 1.0

 Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023}

▪ Single ≈ 3.4 x 1038

▪ Double ≈ 1.8 x 10308

{single,double}

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Examples and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tiny Floating Point Example

 8-bit Floating Point Representation

▪ the sign bit is in the most significant bit

▪ the next four bits are the exponent, with a bias of 7

▪ the last three bits are the frac

 Same general form as IEEE Format

▪ normalized, denormalized

▪ representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Normalize

 Requirement

▪ Set binary point so that numbers of form 1.xxxxx

▪ Adjust all to have leading one

▪ Decrement exponent as shift left

▪ Increment exponent as shift right

Value Binary Fraction Exponent

 128 10000000 1.0000000 7

 13 00001101 1.1010000 3

 17 00010001 1.0001000 4

 19 00010011 1.0011000 4

 138 10001010 1.0001010 7

 63 00111111 1.1111100 5

s exp frac

1 4-bits 3-bits

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

s exp frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001 -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

Dynamic Range (Positive Only)

closest to zero

largest denorm

smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

v = (–1)s M 2E

n: E = Exp – Bias
d: E = 1 – Bias

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

-15 -10 -5 0 5 10 15

Denormalized Normalized Infinity

Distribution of Values

 6-bit IEEE-like format

▪ e = 3 exponent bits

▪ f = 2 fraction bits

▪ Bias is 23-1-1 = 3

 Notice how the distribution gets denser toward zero.

8 values

s exp frac

1 3-bits 2-bits

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Distribution of Values (close-up view)

 6-bit IEEE-like format

▪ e = 3 exponent bits

▪ f = 2 fraction bits

▪ Bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1

Denormalized Normalized Infinity

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Special Properties of the IEEE Encoding

 FP Zero Same as Integer Zero

▪ All bits = 0

 Can (Almost) Use Unsigned Integer Comparison

▪ Must first compare sign bits

▪ Must consider −0 = 0

▪ NaNs problematic

▪ Will be greater than any other values

▪ What should comparison yield?

▪ Otherwise OK

▪ Denorm vs. normalized

▪ Normalized vs. infinity

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Floating Point Operations: Basic Idea

 x +f y = Round(x + y)

 x f y = Round(x  y)

 Basic idea

▪ First compute exact result

▪ Make it fit into desired precision

▪ Possibly overflow if exponent too large

▪ Possibly round to fit into frac

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Rounding

 Rounding Modes (illustrate with $ rounding)

 $1.40 $1.60 $1.50 $2.50 –$1.50

▪ Towards zero $1 $1 $1 $2 –$1

▪ Round down (−) $1 $1 $1 $2 –$2

▪ Round up (+) $2 $2 $2 $3 –$1

▪ Nearest Even (default) $1 $2 $2 $2 –$2

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Closer Look at Round-To-Even
 Default Rounding Mode

▪ Hard to get any other kind without dropping into assembly

▪ All others are statistically biased

▪ Sum of set of positive numbers will consistently be over- or under-
estimated

 Applying to Other Decimal Places / Bit Positions

▪ When exactly halfway between two possible values

▪ Round so that least significant digit is even

▪ E.g., round to nearest hundredth

 7.8949999 7.89 (Less than half way)

 7.8950001 7.90 (Greater than half way)

 7.8950000 7.90 (Half way—round up)

 7.8850000 7.88 (Half way—round down)

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Rounding Binary Numbers

 Binary Fractional Numbers
▪ “Even” when least significant bit is 0

▪ “Half way” when bits to right of rounding position = 100…2

 Examples
▪ Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded Action Rounded Value

2 3/32 10.000112 10.002 (<1/2—down) 2

2 3/16 10.001102 10.012 (>1/2—up) 2 1/4

2 7/8 10.111002 11.002 (1/2—up) 3

2 5/8 10.101002 10.102 (1/2—down) 2 1/2

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Rounding

 Round up conditions

▪ Round = 1, Sticky = 1 ➙ > 0.5

▪ Guard = 1, Round = 1, Sticky = 0 ➙ Round to even

Value Fraction GRS Incr? Rounded

 128 1.0000000 000 N 1.000

 13 1.1010000 100 N 1.101

 17 1.0001000 010 N 1.000

 19 1.0011000 110 Y 1.010

 142 1.0001110 011 Y 1.001

 63 1.1111100 111 Y 10.000

1.BBGRXXX

Guard bit: LSB of result

Round bit: 1st bit removed
Sticky bit: OR of remaining bits

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Postnormalize

 Issue

▪ Rounding may have caused overflow

▪ Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result

 128 1.000 7 128

 13 1.101 3 13

 17 1.000 4 16

 19 1.010 4 20

 142 1.001 7 144

 63 10.000 5 1.000/6 64

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

FP Multiplication

 (–1)s1 M1 2E1 x (–1)s2 M2 2E2

 Exact Result: (–1)s M 2E

▪ Sign s: s1 ^ s2

▪ Significand M: M1 x M2

▪ Exponent E: E1 + E2

 Fixing

▪ If M ≥ 2, shift M right, increment E

▪ If E out of range, overflow

▪ Round M to fit frac precision

 Implementation

▪ Biggest chore is multiplying significands

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

FP Multiplication Example

s exp frac

1.110
x 1.011

1 110
11 100

+ 1110 000
10.011 010

= 1.001101 x 21

 What is the product of the following?

 1 10011100 11000000000000000000000

 1 11110000 01100000000000000000000

 Sign
▪ 1^1 = 0

 Exponent
E1 = 156 - 127= 29 E2 = 240 - 127= 113

E = 29 + 113 + 1 = 143 + 127 = 270 (1 0000 1110 - overflow)

 Significand
frac = 001101000000000000000002

 Result:

 0 00001110 00110100000000000000000

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Floating Point Addition

 (–1)s1 M1 2E1 + (-1)s2 M2 2E2

▪Assume E1 > E2

 Exact Result: (–1)s M 2E

▪Sign s, significand M:

▪ Result of signed align & add

▪Exponent E: E1

 Fixing
▪If M ≥ 2, shift M right, increment E

▪if M < 1, shift M left k positions, decrement E by k

▪Overflow if E out of range

▪Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+

(–1)s M

Get binary points lined up

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

FP Addition Example

s exp frac

.01 0000 0000 0000 0000 0011 000
+ 111 .00 0000 0000 0000 0000 0000 000

111 .01 0000 0000 0000 0000 0011 000
= 1.1101 0000 0000 0000 0000 0011 x 22

= 1.1101 0000 0000 0000 0000 010 x 22

 What is the sum of the following?

 0 01111101 00000000000000000011000

 0 10000001 11000000000000000000000

 Sign
▪ sign with larger exp = 0

 Exponent
E1 = 125 – 127 = -2 E2 = 129 – 127 = 2

E = 1000 0001 (E2, or 2 + 127 = 129)

 Significand
frac = 1101 0000 0000 0000 0000 0102 (after round to even)

 Result:

 0 10000001 11010000000000000000010

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Floating Point in C
 C Guarantees Two Levels

▪ float single precision

▪ double double precision

 Conversions/Casting
▪ Casting between int, float, and double changes bit representation

▪ int → float

▪ Cannot overflow; will round according to rounding mode

▪ int/float → double

▪ Exact conversion, as long as int has ≤ 53 bit word size

▪ float/double → int

▪ Truncates fractional part; like rounding toward zero

▪ Not defined when out of range or NaN: Generally sets to TMin

▪ double → float

▪ Can overflow (range smaller); may be rounded (precision smaller)

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Floating Point Puzzles

 For each of the following C expressions, either:

▪ Argue that it is true for all argument values

▪ Explain why not true
• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (double)(float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ⇒ ((d*2) < 0.0)

• d > f ⇒ -f > -d

• d * d >= 0.0

• (d+f)-d == f

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NaN

F

T

T

F

T

F

T

T

T

F

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Summary

 IEEE Floating Point has clear mathematical properties

 Represents numbers of form M x 2E

 One can reason about operations independent of
implementation

▪ As if computed with perfect precision and then rounded

 Not the same as real arithmetic
▪ Violates associativity/distributivity

▪ Makes life difficult for compilers & serious numerical applications
programmers

	Slide 1: Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science)
	Slide 2: Floating Point
	Slide 3: Fractional Binary Numbers
	Slide 4: Fractional binary numbers
	Slide 5: Fractional Binary Numbers: Examples
	Slide 6: Representable Numbers
	Slide 7: Representable Numbers
	Slide 8: Practice
	Slide 9: Floating Point
	Slide 10: IEEE Floating Point
	Slide 11: Floating Point Representation
	Slide 12: Precision options
	Slide 13: Normalized Values
	Slide 14: Bias Notes
	Slide 15: Significand Notes
	Slide 16: Normalized Encoding Example
	Slide 17: Normalized Encoding Example 2
	Slide 18: Normalized Encoding Practice
	Slide 19: Denormalized Values
	Slide 20: Denormalized Values
	Slide 21: Denormalized Values
	Slide 22: Denormalized Decoding Example
	Slide 23: Denormalized Encoding Example
	Slide 24: Special Values
	Slide 25: Visualization: Floating Point Encodings
	Slide 26: Interesting Numbers
	Slide 27: Floating Point
	Slide 28: Tiny Floating Point Example
	Slide 29: Normalize
	Slide 30: Dynamic Range (Positive Only)
	Slide 31: Distribution of Values
	Slide 32: Distribution of Values (close-up view)
	Slide 33: Special Properties of the IEEE Encoding
	Slide 34: Floating Point
	Slide 35: Floating Point Operations: Basic Idea
	Slide 36: Rounding
	Slide 37: Closer Look at Round-To-Even
	Slide 38: Rounding Binary Numbers
	Slide 39: Rounding
	Slide 40: Postnormalize
	Slide 41: FP Multiplication
	Slide 42: FP Multiplication Example
	Slide 43: Floating Point Addition
	Slide 44: FP Addition Example
	Slide 45: Floating Point
	Slide 46: Floating Point in C
	Slide 47: Floating Point Puzzles
	Slide 48: Summary

