Bits, Bytes, and Integers

with contributions from Dr. Bin Ren, College of William & Mary

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Bits, Bytes, and Integers

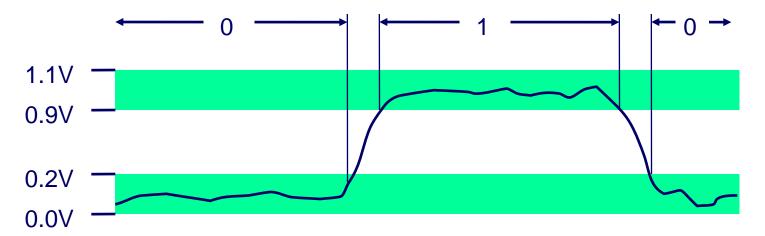
- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Everything is Bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...

Why bits? Electronic Implementation

- Easy to store with bi-stable elements
- Reliably transmitted on noisy and inaccurate wires



The Decimal System and Bases

- base 10 (decimal): digits 0-9
 - e.g., $316_{10} = 3 \times 10^2 + 1 \times 10^1 + 6 \times 10^0 = 300 + 10 + 6$
- in the decimal system, 10 is the base, or radix
- any integer > 1 can be a base
- base 2 has two digits: 0 and 1
 - bit = binary digit
 - $1011_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 =$

Converting to Decimal

- Base eight (octal): digits 0-7
 - **474**₈ =
- Base 16 (hexadecimal): digits 0-9 and A-F
 - $-13C_{16} =$
- Base 2 (binary): digits 0, 1
 - $-100110_2 =$
- In general, radix r representations use the first r chars in {0...9, A...Z} and have the form d_{n-1}d_{n-2}...d₁d₀.
 - Summing $d_{n-1} \times r^{n-1} + d_{n-2} \times r^{n-2} + \dots + d_0 \times r^0$ converts to base 10.

Converting from Decimal to Binary

- convert 1693 to binary
- use a divisor of 2 to obtain the following sequence of quotients and remainders

dividend	quotient	remainder
1693	846	1
846	423	0
423	211	1
211	105	1
105	52	1
52	26	0
26	13	0
13	6	1
6	3	0
3	1	1
1	0	1

• read remainders in reverse order $1693_{10} = 11010011101_2$

More Base Conversion Practice

- convert to base 10 by multiplication of powers
 - $10012_5 = ()_{10}$
- convert from base 10 by repeated division
 - $632_{10} = ()_8$
- converting base x to base y: convert base x to base 10 then convert base 10 to base y

More Base Conversion Practice

Convert from base 10

- $123_{10} = ()_3$ and check
- $1234_{10} = ()_{16}$ and check

Another way to convert from decimal to base n

	n ⁸	n ⁷	n ⁶	n ⁵	n ⁴	n ³	n²	n¹	n ⁰
for n = 2	256	128	64	32	16	8	4	2	1

From LEFT TO RIGHT, ask "how many" and subtract

•
$$(219)_{10} = ($$
 $)_2 = ($ $)_{16}$

Converting Between Hex and Binary

chart of values

decimal	hex	binary	decimal	hex	binary
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	10	А	1010
3	3	0011	11	В	1011
4	4	0100	12	C	1100
5	5	0101	13	D	1101
6	6	0110	14	E	1110
7	7	0111	15	F	1111

to convert from binary to hex

- start at right of binary number
- convert each group of 4 digits into a hex value
- e.g., convert 11011101100₂ to hex

binary:	0110	1110	1100
hex:	6	Е	С

Converting Between Hex and Binary

chart of values

decimal	hex	binary	decimal	hex	binary
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	10	А	1010
3	3	0011	11	В	1011
4	4	0100	12	C	1100
5	5	0101	13	D	1101
6	6	0110	14	E	1110
7	7	0111	15	F	1111

to convert from hex to binary

- replace each hex digit with its binary equivalent
- e.g., convert 8A5₁₆ to binary

hex:	8	А	5
binary:	1000	1010	0101

Octal

2⁴ = 16 and 2³ = 8

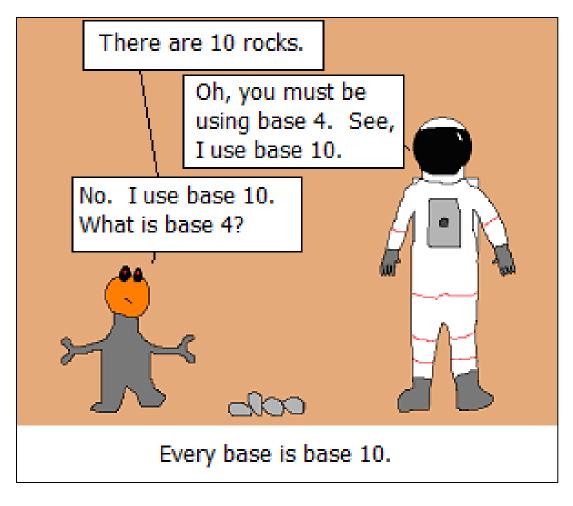
power = # of bits per hex/octal digit

Binary to Hex

- every 4 bits = 1 hex digit
- Octal base 8
 - digits 0-7
- Binary to Octal
 - Every 3 bits = 1 octal digit

DEC	OCT	HEX	BIN	Notes
	0	0	0	-
1	1	1	1	20
2	2	2	10	21
3	3	3	11	
4	4	4	100	2^2
5	5	5	101	
6	6	6	110	
7	7	7	111	
8	10	8	1000	2^3
9	11	9	1001	
10	12	Α	1010	
11	13	B	1011	
12	14	С	1100	
13	15	D	1101	
14	16	E	1110	
15	17	F	1111	

Every Base is Base 10



In general, $10_x = X_{10}$ $10_2 = 2$ $10_3 = 3$ $10_4 = 4$ $10_5 = 5$ $10_6 = 6$ $10_7 = 7$ $10_8 = 8$ $10_{9} = 9$ $10_{10} = 10$

http://cowbirdsinlove.com/43

Other Binary Numbers

Base 2 Number Representation

- Represent 15213₁₀ as 11101101101₂
- Represent 1.20₁₀ as 1.001100110011[0011]...2
- Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

Encoding Byte Values

Byte = 8 bits

- Binary 00000002 to 11111112
- Decimal: 0₁₀ to 255₁₀
- Hexadecimal 00₁₆ to FF₁₆
 - useful for writing binary values concisely
 - write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

0 1 2 3 4 5	+ Der	zimal Binary
0	0	0000
1	1 2 3 4 5	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6 7	6 7	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
B	11	1011
C	12	1100
D	13	1101
Ε	14	1110
F	15	1111

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Bits, Bytes, and Integers

Representing information as bits

Bit-level manipulations

- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

Or

A&B = 1 when both A=1 and B=1

Not

~A = 1 when A=0

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

General Boolean Algebras

Operate on Bit Vectors

Operations applied bitwise

	01101001	01101001	01101001	
&	01010101	01010101	<u>^ 01010101</u>	<u>~ 01010101</u>
	01000001	01111101	00111100	10101010

All of the Properties of Boolean Algebra Apply

Example: Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- a_j = 1 if j ∈ A
 - 01101001 { 0, 3, 5, 6 }
 - 7<u>65</u>4<u>3</u>210
 - 01010101 { 0, 2, 4, 6 }
 - 7<u>6</u>5<u>4</u>3<u>2</u>10

Operations

{0,6} ጲ Intersection 01000001 01111101 {0, 2, 3, 4, 5, 6} Union Symmetric difference 00111100 { 2, 3, 4, 5 } $\{1, 3, 5, 7\}$ Complement 10101010 ~

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Bit-Level Operations in C

Operations &, |, ~, ^ available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (char data type)

- ~0x41 → 0xBE
 - $\sim 01000001_2 \rightarrow 10111110_2$
- $\sim 0x00 \rightarrow 0xFF$
 - \sim 000000002 \rightarrow 111111112
- 0x69 & 0x55 → 0x41
 - 01101001₂ & 01010101₂ \rightarrow 01000001₂
- 0x69 | 0x55 → 0x7D
 - $01101001_2 \mid 01010101_2 \rightarrow 01111101_2$

Contrast: Logic Operations in C

Contrast to Bit-level Operators

- &&, ||, !
 - View 0 as "false"
 - Anything nonzero as "true"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- IOx41 → 0x00
- $!0x00 \rightarrow 0x01$
- !!0x41 → 0x01
- Ox69 && Ox55 → Ox01
- Ox69 || 0x55 → 0x01
- p && *p (avoids null pointer access)

Contrast: Logic Operations in C

Contrast to Bit-level Operators

- &&, ||, !
 - View 0 as "Fall
 - Anything popzo
 - Alway
 - Early Watch out for && vs. & (and || vs. |)...
- **Example** • !0x41 →
- one of the more common oopsies in
- !0x00 → C programming
- !!0x41 →
- $0x69 \&\& 0x55 \rightarrow 0x01$
- 0x69 || 0x55 → 0x01
- p && *p (avoids null pointer access)

Shift Operations

Left Shift: x << y</p>

- Shift bit-vector **x** left **y** positions
 - Throw away extra bits on left
 - Fill with 0's on right

Right Shift: x >> y

- Shift bit-vector x right y positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0's on left
- Arithmetic shift
 - Replicate most significant bit on left

Undefined Behavior

Shift amount < 0 or ≥ word size</p>

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 011000
Arith. >> 2	<i>00</i> 011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
- Summary

Finite Precision

the space to store integers in a computer is limited

- forced to deal with finite precision
- different machines use a varying number of bits for its word size, from 4 to 256 bits
 - nominal size of integer and pointer data
 - 32 and 64 bits are the current preferred sizes

in general, we can store 2ⁿ different values with n bits

- 1 bit: 2 values (0 and 1)
- 2 bits: 4 values (00, 01, 10, 11)
- 4 bits: 16 values
 - we've seen 0..15, but no negative values

Number of Values

■ Address space depends on word size → 2^{word-size-in-#bits}

- Is it big enough?
 - 64-bit high-end machines becoming more prevalent
 - Portability issues insensitive to sizes of different data types

# bytes	# bits	# of values (2 ^{#bits)}	low	high
1	8	256		
2	16	65536		
3	24	16777216		
4	32	4294967296		
5	40	1.09951E+12		
6	48	2.81475E+14		
7	56	7.20576E+16		
8	64	1.84467E+19		
9	72	4.72237E+21		
10	80	1.20893E+24		
11	88	3.09485E+26		
12	96	7.92282E+28		
13	104	2.02824E+31		
14	112	5.1923E+33		
15	120	1.32923E+36		
16	128	3.40282E+38		

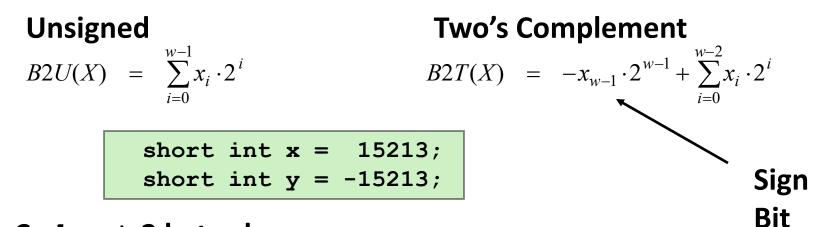
Negative Values

- so far, we've seen the number of positive integers possible, but no negative values
- common sense tells us to split the number of bit patterns into two groups of roughly the same size: one for positive values and one for negative values
 - don't forget 0

many ways to split these values have been developed over the years

- two's complement is the most popular
- unsigned represents only non-negative values (positive values and 0)

Encoding Integers



C short 2 bytes long

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Two-complement Encoding Example (Cont.)

x =	15213:	00111011	01101101
у =	-15213:	11000100	10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		15213		-15213

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Two's Complement – Simple Conversion

conversion from positive to negative using a two-step process

- reverse the bits of the positive representation
- add 1 to the result
- e.g.,

00001001	9
11110110	reverse all bits
11110111	add 1 = -9

only one representation for 0

00000000 11111111 + 1 = 00000000

one more negative number than positive number

Two's Complement – Alternate Conversion

alternate conversion using a two-step process

- reading from right to left, copy all values up to and including the first 1
- reverse the remainder of the bits
- e.g.,

00011100	28
11100100	-28

positive numbers do not need conversion

Numeric Ranges

Unsigned Values

- *UMin* = 0 000...0
- $UMax = 2^w 1$

111...1

Two's Complement Values

- $TMin = -2^{w-1}$ 100...0
- $TMax = 2^{w-1} 1$

011...1

Other Values

Minus 1

111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	1000000 0000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	0000000 0000000

Values for Different Word Sizes

			W	
	8	16	32	64
UMax	255	65 <i>,</i> 535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- ITMin | = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include <limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values are platform-specific

Unsigned & Signed Numeric Values

X	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

 Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

\Rightarrow Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- **T2B(x) = B2T^{-1}(x)**
 - Bit pattern for two's comp integer

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

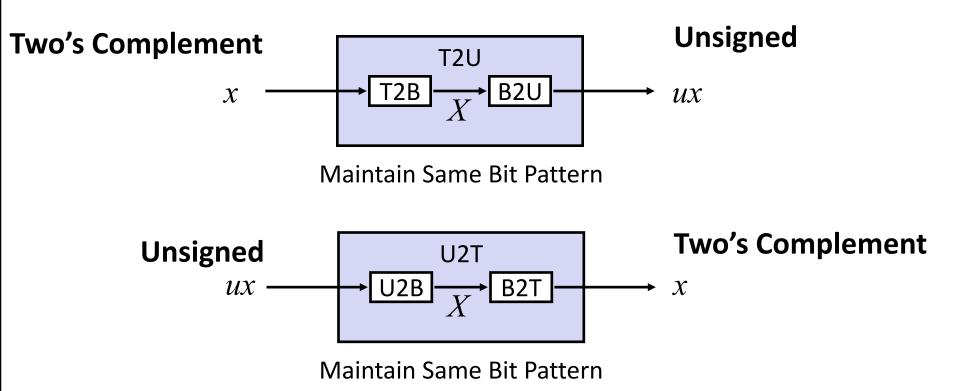
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Mapping Between Signed & Unsigned

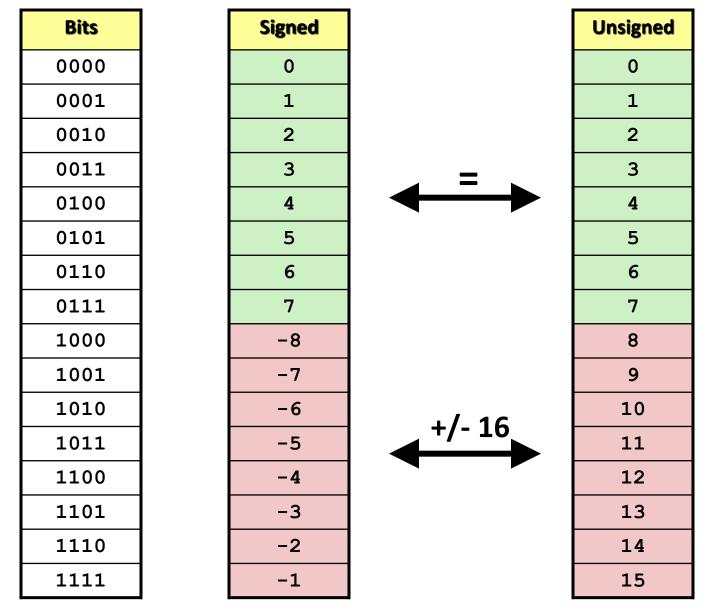


Mappings between unsigned and two's complement numbers: Keep bit representations and reinterpret

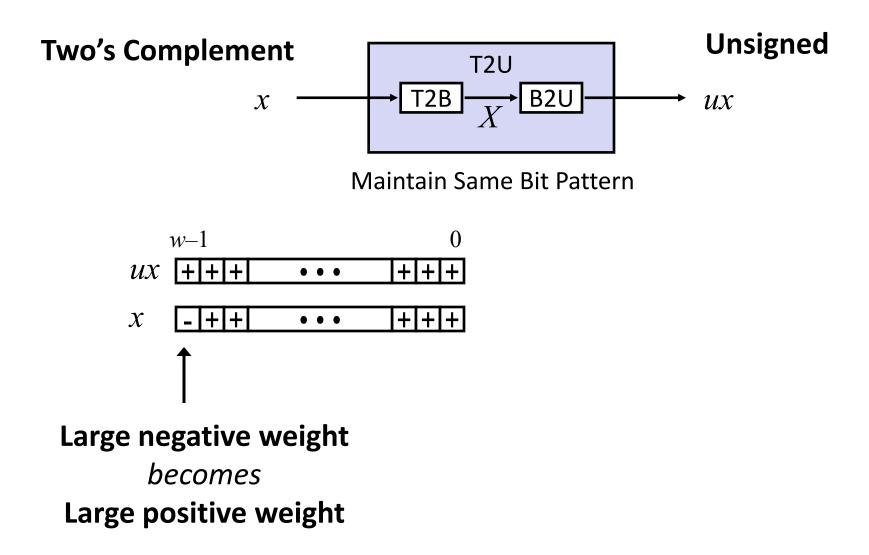
Mapping Signed ↔ Unsigned

Bits	Signed		Unsigned
0000	0		0
0001	1		1
0010	2		2
0011	3		3
0100	4		4
0101	5	—→T2U—→	5
0110	6		6
0111	7	← U2T ←	7
1000	-8		8
1001	-7		9
1010	-6		10
1011	-5		11
1100	-4		12
1101	-3		13
1110	-2		14
1111	-1		15

Mapping Signed ↔ Unsigned

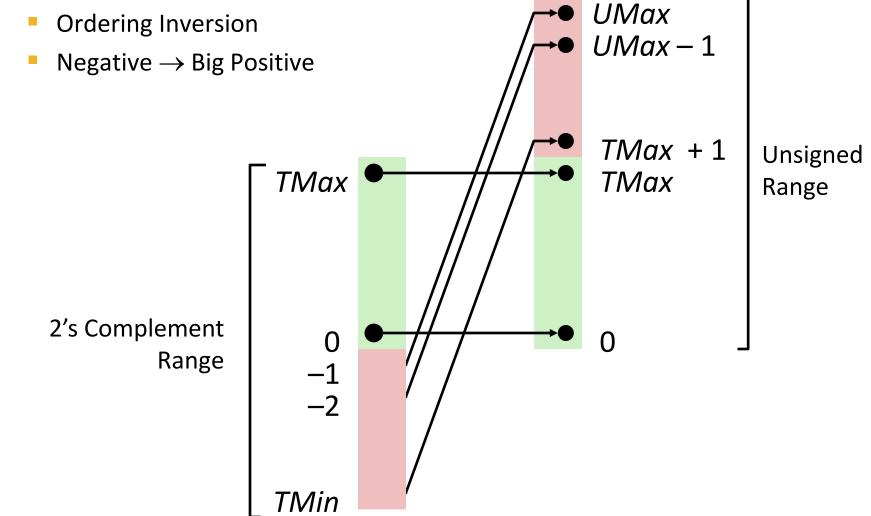


Relation between Signed & Unsigned



Conversion Visualized

■ 2's Comp. → Unsigned



Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix

OU, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty; unsigned ux, uy; tx = (int) ux; uy = (unsigned) ty;

Implicit casting also occurs via assignments and procedure calls

tx = ux;

uy = ty;

Casting Surprises

Expression Evaluation

If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned

- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Summary

Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers

- Representation: unsigned and signed
- Conversion, casting

Expanding, truncating

- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Sign Extension

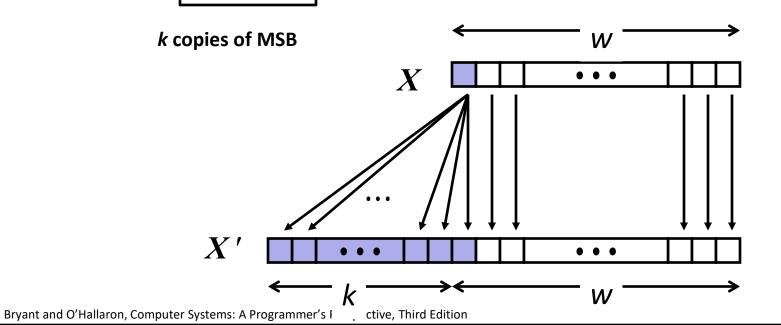
Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

Make k copies of sign bit:

•
$$X' = x_{w-1}, ..., x_{w-1}, x_{w-1}, x_{w-2}, ..., x_0$$



Sign Extension Example

short int x = 15213; int ix = (int) x; short int y = -15213; int iy = (int) y;

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	0000000 0000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 1111111 11000100 10010011

Converting from smaller to larger integer data type

C automatically performs sign extension

Summary: Expanding, Truncating: Basic Rules

Expanding (e.g., short int to int)

- Unsigned: zeros added
- Signed: sign extension
- Both yield expected result

Truncating (e.g., unsigned to unsigned short)

- Unsigned/signed: bits are truncated
- Result reinterpreted
- Unsigned: mod operation
- Signed: similar to mod
- For small numbers yields expected behavior

Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

Unsigned Addition

Operands: w bitsuTrue Sum: w+1 bits+ vDiscard Carry: w bitsUAdd_w(u, v)

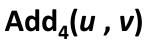
Standard Addition Function

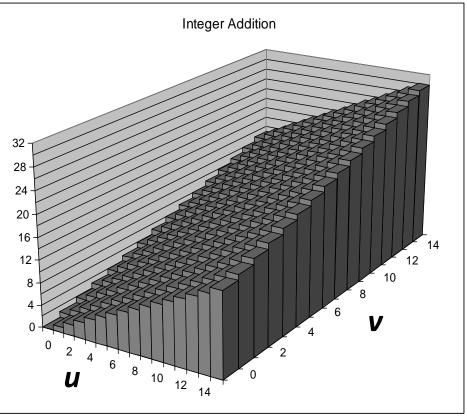
- Ignores carry output
- Implements Modular Arithmetic
 - $s = UAdd_w(u, v) = u + v \mod 2^w$

Visualizing (Mathematical) Integer Addition

Integer Addition

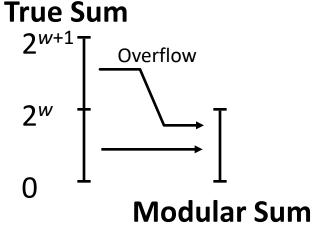
- 4-bit integers u, v
- Compute true sum
 Add₄(*u*, *v*)
- Values increase linearly with *u* and *v*
- Forms planar surface

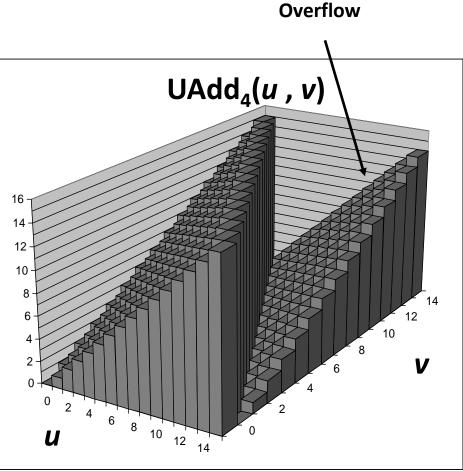




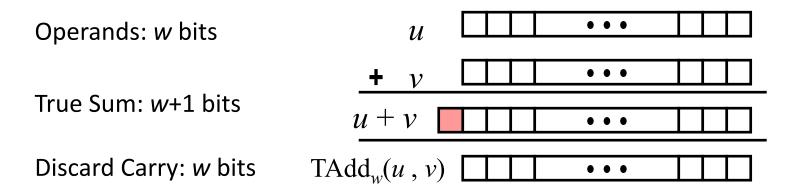
Visualizing Unsigned Addition

Wraps Around If true sum ≥ 2^w At most once





Two's Complement Addition

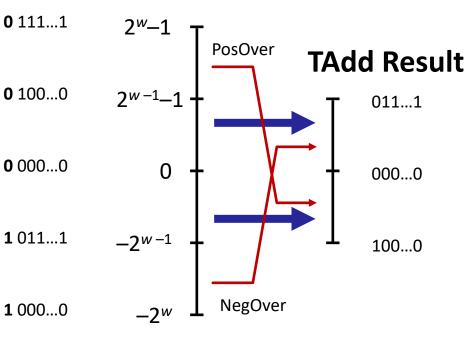


TAdd and UAdd have Identical Bit-Level Behavior

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer



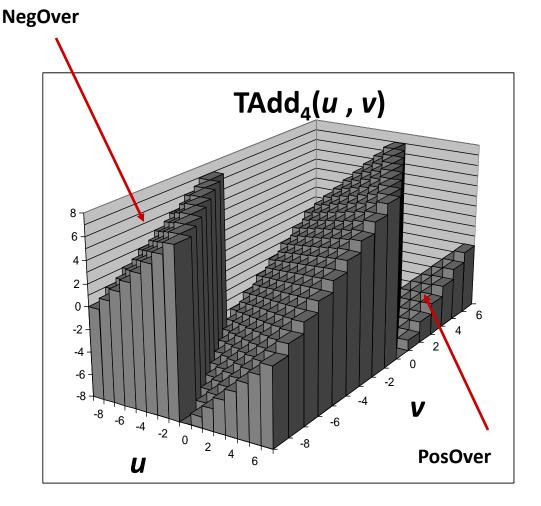
Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum < -2^{w-1}
 - Becomes positive
 - At most once



Goal: compute sum of *w***-bit numbers** *x*, *y*

Either signed or unsigned

Binary Addition Basics

$$\begin{array}{cccccc} 0 & 1 & 0 & 1 \\ +0 & +0 & +1 & +1 \\ \hline 0 & 1 & 1 & 10 \end{array}$$

Examples

Problem in base ten		oblem in o's complem	nswer in ase ten
3 + 2	-	$ \begin{array}{r} 0011 \\ + 0010 \\ 0101 \end{array} $	 5
-3 +-2	-	$ \begin{array}{r} 1101 \\ + 1110 \\ 1011 \end{array} $	 -5
7 <u>+ -5</u>	-	$ \begin{array}{r} 0111 \\ + 1011 \\ 0010 \end{array} $	 2

Using 6 bits we can represent values from -32 to 31, so what happens when we try to add 19 plus 14 or -19 and -14

19	010011	we have added two positive
<u>+14</u>	+001110	numbers and gotten a negative
33	100001	result – this is positive overflow
-19	101101	we have added two negative
<u>-14</u>	<u>+110010</u>	numbers and gotten a positive
-33	011111	result – this is negative overflow

8-bit binary addition

0101 0101 + 0001 1001 0110 1110 no left bit discarded no overflow

0111 0101 + 0101 1011 1101 0000 no left bit discarded positive overflow 1111 0101 + 1101 1011 1 1101 0000 left bit discarded no overflow

1111 0101 + 1000 0011 1 0111 1000 left bit discarded negative overflow

0111 0101 + 1101 1011 1 0101 0000 left bit discarded no overflow

Multiplication

Goal: Computing Product of w-bit numbers x, y

Either signed or unsigned

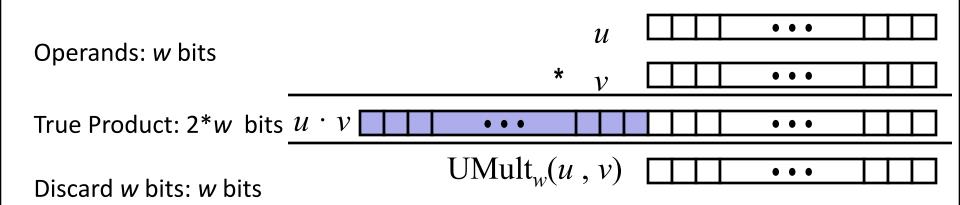
But, exact results can be bigger than w bits

- Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
- Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2}+2^{w-1}$
- Two's complement max (positive): Up to 2w bits, but only for (TMin_w)²
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$

So, maintaining exact results...

- would need to keep expanding word size with each product computed
- is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C



Standard Multiplication Function

Ignores high order w bits

Implements Modular Arithmetic

 $UMult_w(u, v) = u \cdot v \mod 2^w$

Signed Multiplication in C

Operands: <i>w</i> bits	*	5	u v				••		
True Product: 2^*w bits $u \cdot v$	• • •					•	••		
Discard w bits: w bits	TMult _w (U	, v)		•	••		

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Binary Multiplication

8-bit binary multiplication

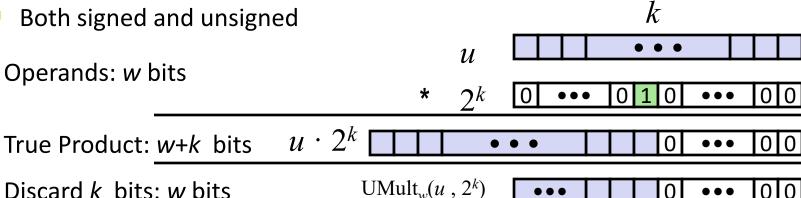
01010101 <u>x 00011001</u> 01010101 01010101 <u>01010101</u> 100001001101

truncated: 0100 1101

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} \ast \mathbf{2}^{k}$
- Both signed and unsigned



 $\mathrm{TMult}_{w}(u, 2^{k})$

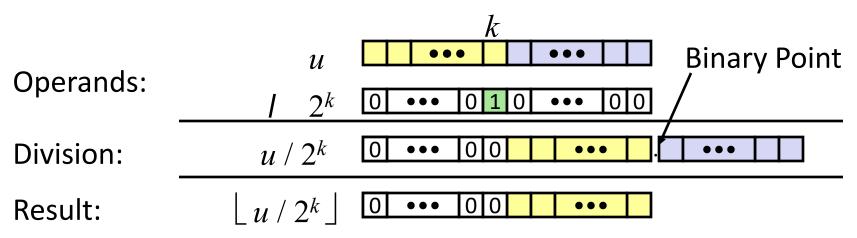
Examples

- 11 << 3 8 == 11
- (u << 5) (u << 3) ==u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
- Uses logical shift



	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	0000000 00111011

Shifting and Overflow

- since an arithmetic left shift is the same as multiplying by 2, we may run out of space, resulting in overflow
 - ex., 8-bit unsigned: 0010 1110 << 3 = 0111 0000 (46 * 8 = 368, not 112)</pre>
 - ex., 8-bit signed: 0010 1110 << 2 = 1011 1000 (46 * 4 = 184, not -72)</pre>
 - ex., 8-bit signed: 1110 1110 << 3 = 0111 0000 (-18 * 8 = -144, not 112)</pre>
 - ex., 8-bit signed: 1110 1110 << 2 = 1011 1000 (-18 * 4 = -72 OK)</pre>

overflow limitations

- not valid with logical shifts
- not possible using right shifts
- determined by 1 bits shifting off left
 - if 1 bits used for sign extension, no overflow unless sign change
- can also occur by 0 bits shifting off left
 - change sign of result

Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting

Summary

Representations in memory, pointers, strings

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned?

Don't use without understanding implications

```
Easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

```
Can be very subtle
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
. . .
```

Counting Down with Unsigned

Proper way to use unsigned as loop index

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
a[i] += a[i+1];
```

See Robert Seacord, Secure Coding in C and C++

- C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0-1 \rightarrow UMax$

Even better

```
size_t i;
for (i = cnt-2; i < cnt; i--)</pre>
```

a[i] += a[i+1];

- Data type size_t defined as unsigned value with length = word size
- Code will work even if cnt = UMax
- What if cnt is signed and < 0?</p>

Why Should I Use Unsigned? (cont.)

Do Use When Performing Modular Arithmetic

Multiprecision arithmetic

Do Use When Using Bits to Represent Sets

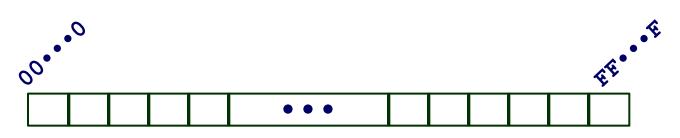
Logical right shift, no sign extension

Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary

Representations in memory, pointers, strings

Byte-Oriented Memory Organization



Programs refer to data by address

- Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
- An address is like an index into that array
 - and, a pointer variable stores an address

Note: system provides private address spaces to each "process"

- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others

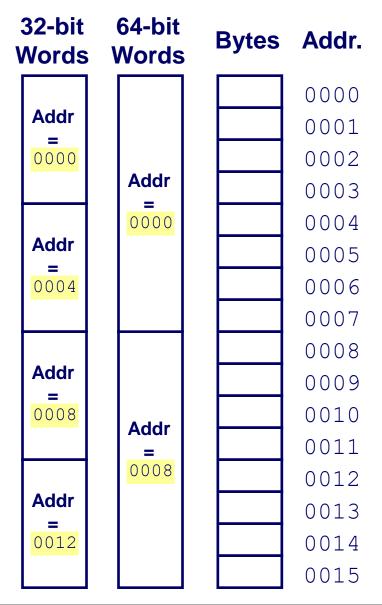
Machine Words

Any given computer has a "Word Size"

- Nominal size of integer-valued data
 - and of addresses
- Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
- Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 10¹⁸
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)



Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Byte Ordering

So, how are the bytes within a multi-byte word ordered in memory?

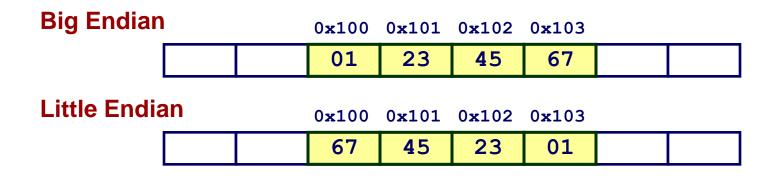
Conventions

- Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
- Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address

Byte Ordering Example

Example

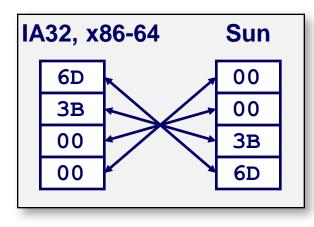
- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100



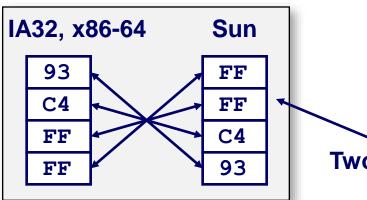
Representing Integers

Decimal:	15213	3		
Binary:	0011	1011	0110	1101
Hex:	3	В	6	D

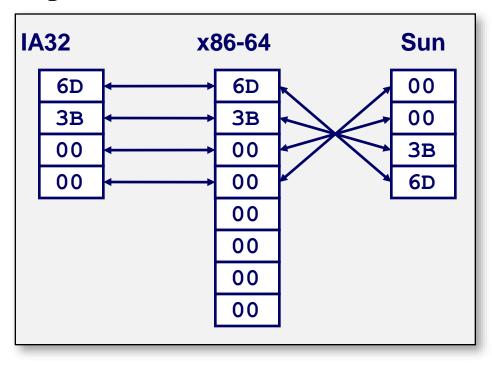
int A = 15213;



int B = -15213;



long int C = 15213;



Two's complement representation

Examining Data Representations

Code to Print Byte Representation of Data

Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;
void show_bytes(pointer start, size_t len){
  size_t i;
  for (i = 0; i < len; i++)
    printf("%p\t0x%.2x\n",start+i, start[i]);
  printf("\n");
}
```

Printf directives:

%p :	Print pointer
%x:	Print Hexadecimal

show_bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

Representing Pointers

int	B = -15213;
int	*P = &B

Sun **IA32 x86-64 3C** AC EF 28 **1B** FF **F**5 FB FE **2C** 82 FF FD **7F** 00

00

Different compilers & machines assign different locations to objects

Even get different results each time run program Bryant and O'Hanaron, Computer Systems: A Programmer's Perspective, Third Edition

Representing Strings

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit *i* has code 0x30+*i*
- String should be null-terminated
 - Final character = 0

Compatibility

Byte ordering not an issue

