
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes, and Integers

with contributions from Dr. Bin Ren, College of William & Mary

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Everything is Bits

 Each bit is 0 or 1

 By encoding/interpreting sets of bits in various ways
▪ Computers determine what to do (instructions)

▪ … and represent and manipulate numbers, sets, strings, etc…

 Why bits? Electronic Implementation
▪ Easy to store with bi-stable elements

▪ Reliably transmitted on noisy and inaccurate wires

0.0V

0.2V

0.9V

1.1V

0 1 0

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Decimal System and Bases

 base 10 (decimal): digits 0-9
▪ e.g., 31610 = 3 × 102 + 1 × 101 + 6 × 100 = 300 + 10 + 6

 in the decimal system, 10 is the base, or radix

 any integer > 1 can be a base

 base 2 has two digits: 0 and 1
▪ bit = binary digit

▪ 10112 = 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 =

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Converting to Decimal

 Base eight (octal): digits 0-7

▪ 4748 =

 Base 16 (hexadecimal): digits 0-9 and A-F

▪ 13C16 =

 Base 2 (binary): digits 0, 1

▪ 1001102 =

 In general, radix r representations use the first r chars in
{0…9, A...Z} and have the form dn-1dn-2…d1d0.

▪ Summing dn-1 rn-1 + dn-2rn-2 + … + d0r0 converts to base 10.

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Converting from Decimal to Binary

 convert 1693 to binary

 use a divisor of 2 to obtain the following sequence of
quotients and remainders

 dividend quotient remainder

 1693 846 1

 846 423 0

 423 211 1

 211 105 1

 105 52 1

 52 26 0

 26 13 0

 13 6 1

 6 3 0

 3 1 1

 1 0 1

▪ read remainders in reverse order 169310 = 110100111012

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More Base Conversion Practice

 convert to base 10 by multiplication of powers
▪ 100125 = ()10

 convert from base 10 by repeated division
▪ 63210 = ()8

 converting base x to base y: convert base x to base 10
then convert base 10 to base y

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More Base Conversion Practice

 Convert from base 10
▪ 12310 = ()3 and check

▪ 123410 = ()16 and check

 Another way to convert from decimal to base n

▪ From LEFT TO RIGHT, ask “how many” and subtract

▪ (219)10 = ()2 = ()16

n8 n7 n6 n5 n4 n3 n2 n1 n0

256 128 64 32 16 8 4 2 1for n = 2

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Converting Between Hex and Binary

 chart of values

 decimal hex binary decimal hex binary

 0 0 0000 8 8 1000

 1 1 0001 9 9 1001

 2 2 0010 10 A 1010

 3 3 0011 11 B 1011

 4 4 0100 12 C 1100

 5 5 0101 13 D 1101

 6 6 0110 14 E 1110

 7 7 0111 15 F 1111

 to convert from binary to hex
▪ start at right of binary number

▪ convert each group of 4 digits into a hex value

▪ e.g., convert 110111011002 to hex

binary: 0110 1110 1100

hex: 6 E C

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Converting Between Hex and Binary

 chart of values

 decimal hex binary decimal hex binary

 0 0 0000 8 8 1000

 1 1 0001 9 9 1001

 2 2 0010 10 A 1010

 3 3 0011 11 B 1011

 4 4 0100 12 C 1100

 5 5 0101 13 D 1101

 6 6 0110 14 E 1110

 7 7 0111 15 F 1111

 to convert from hex to binary
▪ replace each hex digit with its binary equivalent

▪ e.g., convert 8A516 to binary

hex: 8 A 5

binary: 1000 1010 0101

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Octal

 24 = 16 and 23 = 8
▪ power = # of bits per hex/octal digit

 Binary to Hex
▪ every 4 bits = 1 hex digit

 Octal – base 8
▪ digits 0-7

 Binary to Octal
▪ Every 3 bits = 1 octal digit

DEC OCT HEX BIN Notes

0 0 0 -

1 1 1 1 20

2 2 2 10 21

3 3 3 11

4 4 4 100 22

5 5 5 101

6 6 6 110

7 7 7 111

8 10 8 1000 23

9 11 9 1001

10 12 A 1010

11 13 B 1011

12 14 C 1100

13 15 D 1101

14 16 E 1110

15 17 F 1111

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Every Base is Base 10

http://cowbirdsinlove.com/43

In general, 10X = X10

 102 = 2
 103 = 3
 104 = 4
 105 = 5
 106 = 6
 107 = 7
 108 = 8
 109 = 9
 1010 = 10

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Other Binary Numbers

 Base 2 Number Representation
▪ Represent 1521310 as 111011011011012

▪ Represent 1.2010 as 1.0011001100110011[0011]…2

▪ Represent 1.5213 X 104 as 1.11011011011012 X 213

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Byte Values

 Byte = 8 bits
▪ Binary 000000002 to 111111112

▪ Decimal: 010 to 25510

▪ Hexadecimal 0016 to FF16

▪ useful for writing binary values concisely

▪ write FA1D37B16 in C as

– 0xFA1D37B

– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Boolean Algebra

 Developed by George Boole in 19th Century
▪ Algebraic representation of logic

▪ Encode “True” as 1 and “False” as 0

And

◼ A&B = 1 when both A=1 and B=1

Or

◼ A|B = 1 when either A=1 or B=1

Not

◼ ~A = 1 when A=0

Exclusive-Or (Xor)

◼ A^B = 1 when either A=1 or B=1, but not both

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Boolean Algebras

 Operate on Bit Vectors
▪ Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

01101001

& 01010101

 01000001

01101001

| 01010101

 01111101

01101001

^ 01010101

 00111100

~ 01010101

 1010101001000001 01111101 00111100 10101010

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Representing & Manipulating Sets

 Representation
▪ Width w bit vector represents subsets of {0, …, w–1}

▪ aj = 1 if j ∈ A

▪ 01101001 { 0, 3, 5, 6 }

▪ 76543210

▪ 01010101 { 0, 2, 4, 6 }

▪ 76543210

 Operations
▪ & Intersection 01000001 { 0, 6 }

▪ | Union 01111101 { 0, 2, 3, 4, 5, 6 }

▪ ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

▪ ~ Complement 10101010 { 1, 3, 5, 7 }

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bit-Level Operations in C

 Operations &, |, ~, ^ available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

 Examples (char data type)
▪ ~0x41 → 0xBE

▪ ~010000012 → 101111102

▪ ~0x00 → 0xFF

▪ ~000000002 → 111111112

▪ 0x69 & 0x55 → 0x41

▪ 011010012 & 010101012 → 010000012

▪ 0x69 | 0x55 → 0x7D

▪ 011010012 | 010101012 → 011111012

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C

 Contrast to Bit-level Operators
▪ &&, ||, !

▪ View 0 as “false”

▪ Anything nonzero as “true”

▪ Always return 0 or 1

▪ Early termination

 Examples (char data type)
▪ !0x41 → 0x00

▪ !0x00 → 0x01

▪ !!0x41 → 0x01

▪ 0x69 && 0x55 → 0x01

▪ 0x69 || 0x55 → 0x01

▪ p && *p (avoids null pointer access)

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C

 Contrast to Bit-level Operators
▪ &&, ||, !

▪ View 0 as “False”

▪ Anything nonzero as “True”

▪ Always return 0 or 1

▪ Early termination

 Examples (char data type)
▪ !0x41 → 0x00

▪ !0x00 → 0x01

▪ !!0x41 → 0x01

▪ 0x69 && 0x55 → 0x01

▪ 0x69 || 0x55 → 0x01

▪ p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)…

one of the more common oopsies in

C programming

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shift Operations

 Left Shift: x << y

▪ Shift bit-vector x left y positions

– Throw away extra bits on left

▪ Fill with 0’s on right

 Right Shift: x >> y
▪ Shift bit-vector x right y positions

▪ Throw away extra bits on right

▪ Logical shift

▪ Fill with 0’s on left

▪ Arithmetic shift

▪ Replicate most significant bit on left

 Undefined Behavior
▪ Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings

 Summary

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Finite Precision

 the space to store integers in a computer is limited
▪ forced to deal with finite precision

 different machines use a varying number of bits for its
word size, from 4 to 256 bits
▪ nominal size of integer and pointer data

▪ 32 and 64 bits are the current preferred sizes

 in general, we can store 2n different values with n bits
▪ 1 bit: 2 values (0 and 1)

▪ 2 bits: 4 values (00, 01, 10, 11)

▪ 4 bits: 16 values

▪ we’ve seen 0..15, but no negative values

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Number of Values

 Address space depends on
word size → 2word-size-in-#bits

▪ Is it big enough?

▪ 64-bit high-end machines
becoming more prevalent

▪ Portability issues –
insensitive to sizes of
different data types

bytes # bits # of values (2#bits) low high

1 8 256

2 16 65536

3 24 16777216

4 32 4294967296

5 40 1.09951E+12

6 48 2.81475E+14

7 56 7.20576E+16

8 64 1.84467E+19

9 72 4.72237E+21

10 80 1.20893E+24

11 88 3.09485E+26

12 96 7.92282E+28

13 104 2.02824E+31

14 112 5.1923E+33

15 120 1.32923E+36

16 128 3.40282E+38

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Negative Values

 so far, we’ve seen the number of positive integers possible,
but no negative values

 common sense tells us to split the number of bit patterns
into two groups of roughly the same size: one for positive
values and one for negative values
▪ don’t forget 0

 many ways to split these values have been developed over
the years
▪ two’s complement is the most popular

▪ unsigned represents only non-negative values (positive values and 0)

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Integers

short int x = 15213;

 short int y = -15213;

 C short 2 bytes long

 Sign Bit
▪ For 2’s complement, most significant bit indicates sign

▪ 0 for nonnegative

▪ 1 for negative

B2T(X) = −xw−1 2
w−1

+ xi 2
i

i=0

w−2

B2U(X) = xi 2
i

i=0

w−1

Unsigned Two’s Complement

Sign
Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

y -15213 C4 93 11000100 10010011

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement Encoding Example (Cont.)
x = 15213: 00111011 01101101

 y = -15213: 11000100 10010011

Weight 15213 -15213

1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two’s Complement – Simple Conversion

 conversion from positive to negative using a two-step process
▪ reverse the bits of the positive representation

▪ add 1 to the result

▪ e.g.,

00001001 9

11110110 reverse all bits

11110111 add 1 = -9

 only one representation for 0
 00000000

 11111111 + 1 = 00000000

 one more negative number than positive number

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two’s Complement – Alternate Conversion

 alternate conversion using a two-step process
▪ reading from right to left, copy all values up to and including the

first 1

▪ reverse the remainder of the bits

▪ e.g.,

00011100 28

11100100 -28

▪ positive numbers do not need conversion

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Numeric Ranges
 Unsigned Values

▪ UMin = 0

000…0

▪ UMax = 2w – 1

111…1

 Two’s Complement Values

▪ TMin = –2w–1

100…0

▪ TMax = 2w–1 – 1

011…1

 Other Values

▪ Minus 1

111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111

TMax 32767 7F FF 01111111 11111111

TMin -32768 80 00 10000000 00000000

-1 -1 FF FF 11111111 11111111

0 0 00 00 00000000 00000000

Values for W = 16

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Values for Different Word Sizes

 Observations
▪ |TMin | = TMax + 1

▪ Asymmetric range

▪ UMax = 2 * TMax + 1

 W

 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615

TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807

TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

 C Programming
▪ #include <limits.h>

▪ Declares constants, e.g.,

▪ ULONG_MAX

▪ LONG_MAX

▪ LONG_MIN

▪ Values are platform-specific

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned & Signed Numeric Values
 Equivalence

▪ Same encodings for nonnegative
values

 Uniqueness
▪ Every bit pattern represents

unique integer value

▪ Each representable integer has
unique bit encoding

 Can Invert Mappings
▪ U2B(x) = B2U-1(x)

▪ Bit pattern for unsigned
integer

▪ T2B(x) = B2T-1(x)

▪ Bit pattern for two’s comp
integer

X B2T(X)B2U(X)

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

–88

–79

–610

–511

–412

–313

–214

–115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Mapping Between Signed & Unsigned

U2T

U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

 Mappings between unsigned and two’s complement numbers:
 Keep bit representations and reinterpret

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T

T2U

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

+ + + + + +• • •

- + + + + +• • •

ux

x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized

 2’s Comp. → Unsigned
▪ Ordering Inversion

▪ Negative → Big Positive

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed vs. Unsigned in C

 Constants
▪ By default are considered to be signed integers

▪ Unsigned if have “U” as suffix

0U, 4294967259U

 Casting
▪ Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

▪ Implicit casting also occurs via assignments and procedure calls

tx = ux;

uy = ty;

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0 0U == unsigned

 -1 0 < signed

 -1 0U > unsigned

 2147483647 -2147483648 > signed

 2147483647U -2147483648 < unsigned

 -1 -2 > signed

 (unsigned) -1 -2 > unsigned

 2147483647 2147483648U < unsigned

 2147483647 (int) 2147483648U > signed

Casting Surprises
 Expression Evaluation

▪ If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

▪ Including comparison operations <, >, ==, <=, >=

▪ Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation

 0 0U

 -1 0

 -1 0U

 2147483647 -2147483647-1

 2147483647U -2147483647-1

 -1 -2

 (unsigned)-1 -2

 2147483647 2147483648U

 2147483647 (int) 2147483648U

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
Casting Signed Unsigned: Basic Rules

 Bit pattern is maintained

 But reinterpreted

 Can have unexpected effects: adding or subtracting 2w

 Expression containing signed and unsigned int
▪ int is cast to unsigned!!

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension

 Task:
▪ Given w-bit signed integer x

▪ Convert it to w+k-bit integer with same value

 Rule:
▪ Make k copies of sign bit:

▪ X = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X • • • • • •

• • •

w

wk

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension Example

 Converting from smaller to larger integer data type

 C automatically performs sign extension

short int x = 15213;

 int ix = (int) x;

 short int y = -15213;

 int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101

ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary:
Expanding, Truncating: Basic Rules

 Expanding (e.g., short int to int)
▪ Unsigned: zeros added

▪ Signed: sign extension

▪ Both yield expected result

 Truncating (e.g., unsigned to unsigned short)
▪ Unsigned/signed: bits are truncated

▪ Result reinterpreted

▪ Unsigned: mod operation

▪ Signed: similar to mod

▪ For small numbers yields expected behavior

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings

 Summary

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Addition

 Standard Addition Function
▪ Ignores carry output

 Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer Addition

 Integer Addition
▪ 4-bit integers u, v

▪ Compute true sum
Add4(u , v)

▪ Values increase linearly
with u and v

▪ Forms planar surface

Add4(u , v)

u

v

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

 Wraps Around
▪ If true sum ≥ 2w

▪ At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level Behavior
▪ Signed vs. unsigned addition in C:

 int s, t, u, v;

 s = (int) ((unsigned) u + (unsigned) v);

 t = u + v

▪ Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TAdd Overflow

 Functionality
▪ True sum requires w+1

bits

▪ Drop off MSB

▪ Treat remaining bits as
2’s comp. integer

–2w –1

–2w

0

2w –1–1

2w–1

True Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

 Values
▪ 4-bit two’s comp.

▪ Range from -8 to +7

 Wraps Around

▪ If sum 2w–1

▪ Becomes negative

▪ At most once

▪ If sum < –2w–1

▪ Becomes positive

▪ At most once

TAdd4(u , v)

u

v

PosOver

NegOver

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Binary Addition

 Goal: compute sum of w-bit numbers x, y
▪ Either signed or unsigned

 Binary Addition Basics

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Binary Addition

 Examples

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Binary Addition

 Using 6 bits we can represent values from -32 to 31, so what
happens when we try to add 19 plus 14 or -19 and -14

19
+14
 33

010011
+001110
 100001

we have added two positive
numbers and gotten a negative
result – this is positive overflow

-19
-14
-33

101101
+110010
 011111

we have added two negative
numbers and gotten a positive
result – this is negative overflow

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Binary Addition

 8-bit binary addition

1111 0101
+ 1101 1011
1 1101 0000
left bit discarded
no overflow

0111 0101
+ 1101 1011
1 0101 0000
left bit discarded
no overflow

0101 0101
+ 0001 1001
 0110 1110
no left bit discarded
no overflow

0111 0101
+ 0101 1011
 1101 0000
no left bit discarded
positive overflow

1111 0101
+ 1000 0011
1 0111 1000
left bit discarded
negative overflow

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiplication

 Goal: Computing Product of w-bit numbers x, y
▪ Either signed or unsigned

 But, exact results can be bigger than w bits
▪ Unsigned: up to 2w bits

▪ Result range: 0 ≤ x * y ≤ (2w – 1) 2 = 22w – 2w+1 + 1

▪ Two’s complement min (negative): Up to 2w-1 bits

▪ Result range: x * y ≥ (–2w–1)*(2w–1–1) = –22w–2 + 2w–1

▪ Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

▪ Result range: x * y ≤ (–2w–1) 2 = 22w–2

 So, maintaining exact results…
▪ would need to keep expanding word size with each product computed

▪ is done in software, if needed

▪ e.g., by “arbitrary precision” arithmetic packages

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Multiplication in C

 Standard Multiplication Function
▪ Ignores high order w bits

 Implements Modular Arithmetic
UMultw(u , v) = u · v mod 2w

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed Multiplication in C

 Standard Multiplication Function
▪ Ignores high order w bits

▪ Some of which are different for signed
vs. unsigned multiplication

▪ Lower bits are the same

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Binary Multiplication

 8-bit binary multiplication

 truncated: 0100 1101

01010101
x 00011001
 01010101

01010101
01010101
100001001101

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Power-of-2 Multiply with Shift

 Operation
▪ u << k gives u * 2k

▪ Both signed and unsigned

 Examples
▪ u << 3 == u * 8

▪ (u << 5) – (u << 3) == u * 24

▪ Most machines shift and add faster than multiply

▪ Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)

0 0 0••••••

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Power-of-2 Divide with Shift

 Quotient of Unsigned by Power of 2
▪ u >> k gives u / 2k

▪ Uses logical shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101

x >> 1 7606.5 7606 1D B6 00011101 10110110

x >> 4 950.8125 950 03 B6 00000011 10110110

x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u

2k/

u / 2kDivision:

Operands:
•••

k
••• •••

•••0 0 0••• •••

 u / 2k •••Result:

.

Binary Point

0

0 0 0•••0

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shifting and Overflow

 since an arithmetic left shift is the same as multiplying by 2,
we may run out of space, resulting in overflow
▪ ex., 8-bit unsigned: 0010 1110 << 3 = 0111 0000 (46 * 8 = 368, not 112)

▪ ex., 8-bit signed: 0010 1110 << 2 = 1011 1000 (46 * 4 = 184, not -72)

▪ ex., 8-bit signed: 1110 1110 << 3 = 0111 0000 (-18 * 8 = -144, not 112)

▪ ex., 8-bit signed: 1110 1110 << 2 = 1011 1000 (-18 * 4 = -72 OK)

 overflow limitations
▪ not valid with logical shifts

▪ not possible using right shifts

▪ determined by 1 bits shifting off left

▪ if 1 bits used for sign extension, no overflow unless sign change

▪ can also occur by 0 bits shifting off left

▪ change sign of result

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic: Basic Rules

 Addition:
▪ Unsigned/signed: Normal addition followed by truncate,

same operation on bit level

▪ Unsigned: addition mod 2w

▪ Mathematical addition + possible subtraction of 2w

▪ Signed: modified addition mod 2w (result in proper range)

▪ Mathematical addition + possible addition or subtraction of 2w

 Multiplication:
▪ Unsigned/signed: Normal multiplication followed by truncate,

same operation on bit level

▪ Unsigned: multiplication mod 2w

▪ Signed: modified multiplication mod 2w (result in proper range)

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Should I Use Unsigned?

 Don’t use without understanding implications
▪ Easy to make mistakes

unsigned i;

for (i = cnt-2; i >= 0; i--)

 a[i] += a[i+1];

▪ Can be very subtle

#define DELTA sizeof(int)

int i;

for (i = CNT; i-DELTA >= 0; i-= DELTA)

 . . .

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Counting Down with Unsigned

 Proper way to use unsigned as loop index
unsigned i;

for (i = cnt-2; i < cnt; i--)

 a[i] += a[i+1];

 See Robert Seacord, Secure Coding in C and C++
▪ C Standard guarantees that unsigned addition will behave like modular

arithmetic

▪ 0 – 1 → UMax

 Even better
size_t i;

for (i = cnt-2; i < cnt; i--)

 a[i] += a[i+1];

▪ Data type size_t defined as unsigned value with length = word size

▪ Code will work even if cnt = UMax

▪ What if cnt is signed and < 0?

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Should I Use Unsigned? (cont.)

 Do Use When Performing Modular Arithmetic
▪ Multiprecision arithmetic

 Do Use When Using Bits to Represent Sets
▪ Logical right shift, no sign extension

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte-Oriented Memory Organization

 Programs refer to data by address
▪ Conceptually, envision it as a very large array of bytes

▪ In reality, it’s not, but can think of it that way

▪ An address is like an index into that array

▪ and, a pointer variable stores an address

 Note: system provides private address spaces to each “process”
▪ Think of a process as a program being executed

▪ So, a program can clobber its own data, but not that of others

• • •

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine Words

 Any given computer has a “Word Size”
▪ Nominal size of integer-valued data

▪ and of addresses

▪ Until recently, most machines used 32 bits (4 bytes) as word size

▪ Limits addresses to 4GB (232 bytes)

▪ Increasingly, machines have 64-bit word size

▪ Potentially, could have 18 EB (exabytes) of addressable memory

▪ That’s 18.4 X 1018

▪ Machines still support multiple data formats

▪ Fractions or multiples of word size

▪ Always integral number of bytes

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Word-Oriented Memory Organization

 Addresses Specify Byte
Locations
▪ Address of first byte in word

▪ Addresses of successive words differ
by 4 (32-bit) or 8 (64-bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit

Words
Bytes Addr.

0012

0013

0014

0015

64-bit

Words

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

0000

0004

0008

0012

0000

0008

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8

76Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering

 So, how are the bytes within a multi-byte word ordered in
memory?

 Conventions
▪ Big Endian: Sun, PPC Mac, Internet

▪ Least significant byte has highest address

▪ Little Endian: x86, ARM processors running Android, iOS, and
Windows

▪ Least significant byte has lowest address

77Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Example

 Example
▪ Variable x has 4-byte value of 0x01234567

▪ Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

78Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D

3B

00

00

IA32, x86-64

3B

6D

00

00

Sun

int A = 15213;

93

C4

FF

FF

IA32, x86-64

C4

93

FF

FF

Sun

Two’s complement representation

int B = -15213;

long int C = 15213;

00

00

00

00

6D

3B

00

00

x86-64

3B

6D

00

00

Sun

6D

3B

00

00

IA32

79Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Examining Data Representations

 Code to Print Byte Representation of Data
▪ Casting pointer to unsigned char * allows treatment as a byte array

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){

 size_t i;

 for (i = 0; i < len; i++)

 printf(”%p\t0x%.2x\n",start+i, start[i]);

 printf("\n");

}

80Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

show_bytes Execution Example

int a = 15213;

printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):

int a = 15213;

0x7fffb7f71dbc 6d

0x7fffb7f71dbd 3b

0x7fffb7f71dbe 00

0x7fffb7f71dbf 00

81Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing Pointers

Different compilers & machines assign different locations to objects

Even get different results each time run program

int B = -15213;

int *P = &B;

x86-64Sun IA32

EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00

82Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char S[6] = "18213";

Representing Strings

 Strings in C
▪ Represented by array of characters

▪ Each character encoded in ASCII format

▪ Standard 7-bit encoding of character set

▪ Character “0” has code 0x30

– Digit i has code 0x30+i

▪ String should be null-terminated

▪ Final character = 0

 Compatibility
▪ Byte ordering not an issue

IA32 Sun

31

38

32

31

33

00

31

38

32

31

33

00

	Slide 1: Bits, Bytes, and Integers
	Slide 2: Bits, Bytes, and Integers
	Slide 3: Everything is Bits
	Slide 4: The Decimal System and Bases
	Slide 5: Converting to Decimal
	Slide 6: Converting from Decimal to Binary
	Slide 7: More Base Conversion Practice
	Slide 8: More Base Conversion Practice
	Slide 9: Converting Between Hex and Binary
	Slide 10: Converting Between Hex and Binary
	Slide 11: Octal
	Slide 12: Every Base is Base 10
	Slide 13: Other Binary Numbers
	Slide 14: Encoding Byte Values
	Slide 15: Example Data Representations
	Slide 16: Bits, Bytes, and Integers
	Slide 17: Boolean Algebra
	Slide 18: General Boolean Algebras
	Slide 19: Example: Representing & Manipulating Sets
	Slide 20: Bit-Level Operations in C
	Slide 21: Contrast: Logic Operations in C
	Slide 22: Contrast: Logic Operations in C
	Slide 23: Shift Operations
	Slide 24: Bits, Bytes, and Integers
	Slide 25: Finite Precision
	Slide 26: Number of Values
	Slide 27: Negative Values
	Slide 28: Encoding Integers
	Slide 29: Two-complement Encoding Example (Cont.)
	Slide 30: Two’s Complement – Simple Conversion
	Slide 31: Two’s Complement – Alternate Conversion
	Slide 32: Numeric Ranges
	Slide 33: Values for Different Word Sizes
	Slide 34: Unsigned & Signed Numeric Values
	Slide 35: Bits, Bytes, and Integers
	Slide 36: Mapping Between Signed & Unsigned
	Slide 37: Mapping Signed Unsigned
	Slide 38: Mapping Signed Unsigned
	Slide 39: Relation between Signed & Unsigned
	Slide 40: Conversion Visualized
	Slide 41: Signed vs. Unsigned in C
	Slide 42: Casting Surprises
	Slide 43: Summary Casting Signed ↔ Unsigned: Basic Rules
	Slide 44: Bits, Bytes, and Integers
	Slide 45: Sign Extension
	Slide 46: Sign Extension Example
	Slide 47: Summary: Expanding, Truncating: Basic Rules
	Slide 48: Bits, Bytes, and Integers
	Slide 49: Unsigned Addition
	Slide 50: Visualizing (Mathematical) Integer Addition
	Slide 51: Visualizing Unsigned Addition
	Slide 52: Two’s Complement Addition
	Slide 53: TAdd Overflow
	Slide 54: Visualizing 2’s Complement Addition
	Slide 55: Binary Addition
	Slide 56: Binary Addition
	Slide 57: Binary Addition
	Slide 58: Binary Addition
	Slide 59: Multiplication
	Slide 60: Unsigned Multiplication in C
	Slide 61: Signed Multiplication in C
	Slide 62: Binary Multiplication
	Slide 63: Power-of-2 Multiply with Shift
	Slide 64: Unsigned Power-of-2 Divide with Shift
	Slide 65: Shifting and Overflow
	Slide 66: Bits, Bytes, and Integers
	Slide 67: Arithmetic: Basic Rules
	Slide 68: Why Should I Use Unsigned?
	Slide 69: Counting Down with Unsigned
	Slide 70: Why Should I Use Unsigned? (cont.)
	Slide 71: Bits, Bytes, and Integers
	Slide 72: Byte-Oriented Memory Organization
	Slide 73: Machine Words
	Slide 74: Word-Oriented Memory Organization
	Slide 75: Example Data Representations
	Slide 76: Byte Ordering
	Slide 77: Byte Ordering Example
	Slide 78: Representing Integers
	Slide 79: Examining Data Representations
	Slide 80: show_bytes Execution Example
	Slide 81: Representing Pointers
	Slide 82: Representing Strings

