Chapter 3

Machine-Level Programming Il
(Sections 3.4 - 3.9)

with material from Dr. Bin Ren, College of William & Mary

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

Introduction of IA32

IA32 operations
Data movement operations
Stack operations and function calls

Arithmetic and logic operations
Compare and jump operations

Instruction encoding format
Array and structures allocation and access

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RISC instruction sets

m Reduced Instruction Set Computer
m Internal project at IBM, later popularized by Hennessy

(Stanford) and Patterson (Berkeley)
Fewer, simpler instructions

m Might take more to get given task done
m Can execute them with small and fast hardware

Register-oriented instruction set
m Many more (typically 32) registers
m Use for arguments, return pointer, temporaries

Only load and store instructions can access memory
m Similar to Y86 mrmovl and rmmovl

No Condition codes
m Test instructions return 0/1 in register

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CISC instruction sets

m Complex Instruction Set Computer
m Dominant style through mid-80’s

Stack-oriented instruction set
m Use stack to pass arguments, save program counter
m Explicit push and pop instructions

Arithmetic instructions can access memory

B addl 3%eax, 12 (%cbx,%ecx,4)
® requires memory read and write
® Complex address calculation

Condition codes
m Set as side effect of arithmetic and logical instructions

Philosophy

m Add instructions to perform “typical” programming tasks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RISC and CISC

Which is IA32?
CISC

Which is Y86?
Includes attributes of both.
CISC
Condition codes
Variable length instructions
Stack intensive procedure linkages
RISC
Load-store architecture
Regular encoding

Which is better: RISC or CISC?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compare Y86 and I1A32

Y86 is:

Little endian
Load/store
Can only access memory on read/write
On move statements in Y86 (mrmovl/rmmovl)
Combination of CISC and RISC
Word = 4 bytes

IA32 is:
Little endian
NOT load/store
CISC
Byte (1 byte), word (2 bytes), long (4 bytes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C program to IA32 and Y86

Computes the sum of an integer array

int Sum (int *Start, int Count)
{
int sum = 0;
while (Count)
{
sum += *Start;
Start++;
Count--;

ASSEMBLY COMPARISON ON NEXT SLIDE

Why not using array indexing (i.e. subscripting)?
No scaled addressing modes in Y86

Uses stack and frame pointers
For simplicity, does not follow |1A32 convention of

having some registers designated as callee-save
registers (convention so adopt or ignore as we please)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IA32/Y86 comparison

|A32 code

int Sum{int «Start, int Count)
Sum:

pushl %ebp

movl %esp, $ebp

movl B8 (%ebp),%ecx

movl 12 (%ebp),Fedx

xorl %eax, feax

testl %edx, $edx

je .L34
.L35:

addl (%ecx), %eax add «Start to sum

ba

3
4
5
[
7
a
5

=
=]

addl 354,%ecx Start++
decl %edx

jnz .L35 Stop when o
.L34:
movl %ebp, $esp
18 popl %ebp
17 ret

5
&
7
8
9

10
11
1z
13
14
15
16
17
1s
13
20

Y86 code

int Sum({int «Start, int cCount)
Sum:
pushl %ebp
rrmovl %esp, tebp
mrmovl 8 (%ebp), fecx
mrmovl 12 (%ebp), ¥edx
xorl %eax, Feax
andl tedx, Sedx
je End
Loop:
mrmovl (%ecx), fesi
addl %esi, %eax
irmovl 54, Febx
addl %ebx, Fecx
irmovl 5-1, %ebx
addl %ebx, Fedx
jne Loop
End:
rrmovl %ebp, Fesp
popl %ebp
ret

= Start
= Count
m =0

condition codes

get =Start
add to sum

Count--
Stop when 0

Figure 4. 6: Comparison of Y86 and IA32 assembly programs. The Sum function computes the sum of
an integer array. The Y86 code differs from the 1A32 mainly in that it may require multiple instructions to
perform what can be done with a single 1A32 instruction.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CHAPTER 3.2 Program Encodings

GOAL = examine assembly code and map it back to the constructs found in
high-level programming languages

%gcc —01 —m32 -S code.c = code.s

%more code.s
Runs the compiler only
-S options = generates an assembly (.s) file
-O1 is an optimization level
All information about local variables names or data types have been stripped away
Still see global variable “accum”
Compiler has not yet determined where in memory this variable will be stored

%gcc —01 —c —m32 code.c 2 code.o

%o0bjdump —d code.o
-c compiles and assembles the code
Generates an object-code file (.0) = binary format
DISASSEMBLER — re-engineers the object code back into assembly language
%uname —p
-m32 is a gcc option to run/build 32-bit applications on a 64-bit machine

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine code vs C code

Program Counter (PC)
Register %eip (X86-64)
Address in memory of the next instruction to be executed

Integer Register File
Contains eight named locations for storing 32-bit values
Can hold addresses (C pointers) or integer data
Have other special duties

Condition Code registers
Hold status information
About arithmetic or logical instruction executed
CF (carry flag)
OF (overflow flag)
SF (sign flag)
ZF (zero flag)

Floating point registers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine Instruction Example

C code
Add two signed integers int t=x+y;

Assembly

Add 2 4-byte integers addl 8(%ebp),%eax

Operands
X: register %eax
Y: memory M[%ebp+8]
T: register %eax
Return function value in %eax

Object code 034508

3 byte instruction

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IA32 — Intel Architecture

32-bit address bus

normal physical address space of 4 GBytes (232bytes)
addresses ranging continuously from O to OxFFFFFFFF

Complex instruction set (CISC) machine

Data formats 2> C Declaration Name | Size
Primitive data types of C char BYTE 8 bits

Single byte suffix short WORD 16 bits

denotes size of operand

int LONG 32 bits
No aggregate types
Arrays, structures char * (pointer) LONG 32 bits

Registers float SINGLE | 32 hits
six (almost) general purpose 32-bit registers:
%eax, %ebx, %ecx, %edx, %esi, %edi

two specialty = stack pointer and base/frame pointer:
%esp, %ebp

Float values are in different registers (later)
a floating-point processing unit (FPU) with eight 80-bit wide registers: st(0) to st(7)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

Introduction of IA32

IA32 operations
Data movement operations
Stack operations and function calls

Arithmetic and logic operations
Compare and jump operations

Instruction encoding format
Array and structures allocation and access

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Operand Specifiers

Source operand

Constants, registers, or memory

Destination operand

Registers or memory

CANNOT DO MEMORY-MEMORY TRANSFER WITH A
SINGLE INSTRUCTION

3 types of operands
Immediate — for constant values
Register
Memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Operand Combinations example

Source Dest Src,Dest” C analog

Immediate Register movl $0x4, %eax temp = 0x4;

Immediate Memory movl $-147, (%eax) [p =-147;

Register Register movl %eax, %edx temp2 = temp1;

Register ~ Memory movl %eax, (%oedx) [p =temp;

Memory Register |movl (%eax), %edx temp = *p;

« Each statement should be viewed separately.

« REMINDER: cannot do memory-memory transfer with a single instruction.

» The parentheses around the register tell the assembler to use the register as a
pointer.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Addressing Modes

Examples on next slide

An addressing mode is a mechanism for specifying an address.
Immediate
Register
Memory
Absolute
specify the address of the data
Indirect
use register to calculate address
Base + displacement
use register plus absolute address to calculate address
Indexed
Indexed
Add contents of an index register
Scaled index
Add contents of an index register scaled by a constant

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Operand addressing example

Address

Value

0x100

OxFF

Operand

Value [Comment

0x104

0xAB

%eax

0x100

Register

0x108

0x13

0x104

OxAB

Absolute Address - memory

0x10C

Ox11

$0x108

0x108

Immediate

(%eax)

OxFF

Address 0x100 - indirect

Register

Value

4(%eax)

0XAB

Address 0x104 - base+displacement

%eax

0x100

9(%eax,%edx)

0X11

Address 0x10C - indexed

%ecx

Ox1

260(%ecx,%edx)

0X13

Address 0x108 - indexed

%edx

0x3

OxFC(,%ecx,4)

OXFF

Address 0x100 - scaled index*

(%eax,%edx,4)

0X11

Address 0x10C - scaled index*

First two columns on left are given as is the Operand
FYI: 260 decimal = 0x104
*scaled index multiplies the 2" argument by the scaled value (the 3 argument) which must
be a value of 1, 2, 4 or 8 (sizes of the primitive data types)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Operand addressing example EXPLAINED

Address Malue Operand Value [Comment
0x100 |OxFF Ooeax 0x100 |Value is in the register

0x104 OxAB 0x104 O0XAB |Value is at the address

0x108 0x13 Value is the value (S says “I’'m an
0x10C 10x11 $0x108 0x108 |immediate, i.e. constant, value”)
VValue is at the address stored in the

Register MValue (Yo2ax) OxFF [register > GTV@(reg)

%eax__ x100 | pLocax) OXAB _|GTV@ (4+ reg)

05ecx 0x1 9(%eax,%edx) 0X11 GTV@(9 + reg + reg)

%edx 0x3 260(%ecx,%edx) 0X13 [Same as above; be careful, in decimal
OxFC(,%ecx,4) OXFF |GTV@(OxFC + 0 + reg*4)
(%eax,%edx,4) 0X11 |GTV@(reg + reg*4)

In red are memory types of operands which is why you get the value at the address; because you are
accessing memory

FYI: last two, the 3 value in () is the scaling factor which must be 1, 2, 4 or 8

NOTE: Do not put ‘$’ in front of constants when they are addressing indexes, only when they are
literals.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data movement instructions

Move, push and pop
MOVE example

Operands Given %dh = 0xCD and %eax = 0x98765432
source,dest What is in %eax after each instruction?

Fill-in 1. movb %dh, %eal
2. movsbl %dh, %eax

S = sign extend
8 3. movzbl %dh, %eax

Z = zero extend

987654CD
FFFFFFCD
000000CD

b,w,| = byte, word, long
8, 16, 32 bits respectively
Instructions (a sample set)
movb, movw, movli=S 2> D

movsbw, movsbl, movswl| = SignExtend(S) 2 D
movzbw, movzbl, movzwl| = ZeroExtend(S) =2 D

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

Introduction of IA32

IA32 operations
Data movement operations
Stack operations and function calls

Arithmetic and logic operations
Compare and jump operations

Instruction encoding format
Array and structures allocation and access

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack operations

Data movement instructions (cont)

Push and Pop
Stack = LIFO

pushl S
R[%esp] — 4 = R[%esp]... decrement stack ptr
S 2 M[R[%esp]]... store to memory
Order matters!

popl D
M[R[%ESP]] = D... reading from memory
R[%esp] + 4 2 R[%esp]... increment stack ptr
Order matters!

By convention, we draw stacks upside down
“top” of the stack is shown at the bottom

Stack “grows” toward lower addresses (push)
Top element of the stack has the lowest address of all stack elements

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

subl $4, %esp movl (%esp), %edx
Th e stac k movl %eax, (%esp) addl $4, %esp

Initially pushl %eax popl %edx

$eax | 0x123 Seax | 0x123 Seax | 0x123
$edx | O Sedx | O $edx | 0x123
%esp | 0x108 %esp | 0x104 %esp | 0x108

Stack “bottom” Stack “bottom” Stack “bottom”

Increasing
address

Stack “top” 0x123 0x123)
Stack “top” Stack “top”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Procedure calls

The machine uses the stack to
Pass procedure arguments
Store return information
Save registers for later restoration
Local storage

Stack frame
Portion of the stack allocated for a single procedure call
The topmost stack frame is delimited by two pointers
Register %ebp — the frame/base pointer
Register %esp — the stack pointer

Can move while the procedure is executing HENCE

MOST INFORMATION IS ACCESSED RELATIVE TO THE
FRAME/BASE POINTER

Indicates lowest stack address i.e. address of top element

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

in_t P(irlt i(). {
Procedure calls (cont) int 1=y}
return y+z; }

Procedure P (the “caller”) calls procedure
Q (the “callee”) |

Caller stack frame (P) Increasing
address

The arguments to Q are contained within
the stack frame for P +4+4n

The first argument is always positioned at : > Caller's frame
offset 8 relative to %ebp : P

Argument n

Remaining arguments stored in successive +8 Argument 1

bytes (typically 4 bytes each but not
always)... +4+4n is return address plus 4 Frame pointer
bytes for each argument. %ebp —— Saved %ebp

When P calls Q, the return address within P
where the program should resume
execution when it returns from Q is pushed
on to the stack

+4 | Return address

-4

Saved registers,
local variables,
and

Callee stack frame (Q) temporaries
Saved value of the frame pointer

Current frame
Callee Q

Copies of other saved registers Argument

Local variables that cannot all be stored in Stack pointer build area
registers (see next slide) tesp ——s

Stores arguments to any procedures it calls. Stack "top”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Procedure call and return

Call instruction

Has a label which is a target indicating the address of the instruction
where the called procedure (the callee) starts

Direct or indirect label
Push a return address on the stack

the address of the instruction immediately following the call in the
(assembly) program

Jump to the start of the called procedure
Return instruction

Pops an address off the stack

Jumps to this location

FYI: proper use is to have prepared the stack so that the stack pointer
points to the place where the preceding call instruction stored its
return address

Leave instruction is equivalent to:
movl %ebp, %esp
popl %ebp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Procedure call and return

0x080483dc 0x08048354

Oxf££%bc560 OxffSbcS5c

—

0x080483el
LN

(a) Executing call (b) After call

O0x080483el

0xf£fSbc560

(c) After ret

/I Beginning of function sum
08048394 <sum>:
8048394 55 push %ebp

/Ireturn from function sum
80493a4: c3 ret

/I call to sum from main - START HERE!
80483dc: e8 b3 ff ff ff call 8048394 <sum>
80483e1: 83c4 14 add $0x14,%esp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Return address

Callee function

j|. Caller function

Register usage conventions

Program registers are a shared resource '{nt P(int x)

One procedure is active at a given time int y=x"x

Don’t want the callee to overwrite a value the int z=Q(y);
caller planned to use later return y+z;

BY CONVENTION/PROTOCOL }
“Caller-save” registers: %eax, %edx and %ecx

When Q is called by P, it can overwrite these 1. The caller, P, can
registers without destroying any data required by save the value y.
P 2. P can store the

“Callee-save” registers: %ebx, %esi and %edi value in a callee-

Q must save these values on the stack before save register
overwriting them, and restore them before (saved and

returning restored).
%ebp and %esp must be maintained

Register %eax is used for returning the value from any
function that returns an integer or pointer.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

REMINDER: we use pointers so can pass address

Swa p exam p | e since can't pass values back outside of the function

Setup/prologue
. 4 ke e pushl %ebp

void swap(int *xp, int *yp) movl %esp, %ebp }
_{ pushl %ebx

int t0 = *Xp; Body

int t1 = *yp; movl 8(%ebp), %edx edx=xp
*xp = t1; movl 12(%ebp), %ecx ecx=yp
*yp = 10 movl (%edx), %ebx ebx="xp (t0)

yP ’ movl (%ecx), %eax eax="yp (t1)
} llcodeswap.c movl %eax, (%edx) *xp = t1
movl %ebx, (%ecx) *yp=t0

Register Value

%edx Xp
| %eb
Yhocx vp pop Joebx

| %eb
%ebx t0 o oebp }
%eax t1

Finish/epilogue

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Swap

pushl %ebp
movl %esp, %ebp
pushl %ebx

. Move 0x124 to %edx
0x120 . Move 0x120 to %ecx
0x124 . Move 123 to %ebx

Rtn adr . Move 456 to %eax
sepp — 0 | Old7%ebp . Move 456 to M[0x124]
|zebp| ox104 old %hebx . Move 123 to M[0x120]

movl B (zebp), %edx
movl 12 (Zebp), ZFecx

Xp
#
movl %edx), %ebx #
#
#
#

YP popl %ebx
*xp (t0) 0
yp (t1) popl Joebp
tl ret

t0

movl zecx) , %eax
movl Zeax, (%zedx)
movl Zebx, (%ecx)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

caller: swap_add:
pushl %ebp pushl %ebp

Exa m p I e movl %esp, %ebp movl %esp, %ebp

subl $24, %esp pushl %ebx
p rocedure call movl $534,-4(%ebp) movl 8(%ebp), %ebx
movl $1057, -8(%ebp) movl 12(%ebp), %ecx
leal -8(%ebp), Y%eax movl (%ebx), %eax
movl %eax, 4(%esp) movl (%ecx), %edx
leal -4(%ebp), Y%eax movl %edx, (%ebx)
movl %eax, (%esp) movl %eax, (%ecx)
call swap_add leal (%edx,%eax), %eax
movl -4(%ebp), %edx popl %ebx
subl -8(%ebp), %edx popl %ebp
imull %edx, %eax ret
leave
ret

int swap_add(int *xp, int *yp)

{
int x = *xp;
inty="yp;
Xp=Y;
yp =X;
return x+y;

}

int caller()
{
int arg1 = 534;
int arg2 = 1057,
int sum = swap_add(&arg1, &arg2);
int diff = arg1 - arg2;
return sum * diff;
} Il callswap.c and figure 3.23

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack frames for caller and swap _add

Fig 3.24

Frame pointer
Zebp

:+4
esp 0

Stack pointer

Just before call
to swap add

Saved %ebp

argl

argz

>_ Stack frame

Unused forcaller

&arg?2

targl _ +8

"
Frame pointer $ebp =

Stack pointer $esp —»

In body of
swap add

Saved %ebp

argl

arg?z

Unused

&arg?

&argl

Return address

Saved %ebp

Saved %ebx

Stack frame
for
swap add

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recursion

Definition:

In order to understand recursion, you must understand recursion

FasE 3
DEPARTMENT COURSE DESCRIPTON
CCMPUTER CPSC 432 | INTERMEDIATE COMPILER

SCIENCE DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

il il

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack

comment

n=3

return addr

caller

%ebp

%ebx

Caller value

-4 to -16

unused

-20: 2

%ebx=3
%eax=1,2

return address

rfact

%ebp

%ebx =3

rfact value

-4 to -16

unused

-20: 1

%ebx=2
%eax=1,1

return address

rfact

Recursive
procedure

int rfact(intn) {
int result;
if (n <=1)
result =1;
else
result = n * rfact(n-1);
return result; }

CALL =» Pushes the return address
onto the stack (%esp-4 and mov);
RETURN = pops it

%ebp

%ebx = 2

rfact value

-4 to -16

unused

%esp -20:

%ebx=1
%eax=1
jle .L3

POPPING:
%ebx =2, 3
%eax=1,2,6

“multiple of 16 bytes” x86
programming guideline;
including 4 bytes for the old
%ebp and 4 bytes for the
return address, caller uses
32 bytes; alignment issues
(3.9.3)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

rfact:
pushl %ebp
movl %esp, %ebp
pushl %ebx
subl $20, %esp
movl 8(%ebp), %ebx
movl $1, %eax
cmpl $1, %ebx
jle L3
leal -1(%ebx), %eax
movl %eax, (%esp)
call rfact
imull %ebx, %eax
L3:
addl $20, %esp
popl %ebx
popl %ebp
ret

Outline

Introduction of IA32

IA32 operations
Data movement operations
Stack operations and function calls

Arithmetic and logic operations
Compare and jump operations

Instruction encoding format
Array and structures allocation and access

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic and Logical Operations

Instruction

Description

leal

5,0

load effective address

I

increment

DEC

decrement

MES

negate

MOT

complement

A00

add

SUB

subtract

IMALIL

multiply

AOR,

exclusive-or

OR.

ar

AMND

and

SAL

left shift

sHL

k, D

left shift (same as SAL)

SAR

k, D

arithmetic right shift

sHR

k, D

logical right shift

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Watch out for argument
order! see SUB

No distinction between
signed and unsigned int

Notice A/L for arithmetic
and logical right shifts

Operation Groups
Variant of the move
Unary
Binary
Shifts

Reminder: Note the
difference in instruction
between assemble and
disassemble — just like the
movl vs mov

LEA — load effective address

Does not reference memory at all
You don’t get the value at the address... just the address (&x)

Copies the effective address to the destination

Used to generate pointers for later memory references

Can also be used to compactly describe common arithmetic operations
The destination operand must be a register

Example: leal 7 (%edx, %edx, 4) , %eax
Sets register %eax to 5x+7
%edx + %edx*4 + 7

Assume: %eax = x and %ecx=y
INSTRUCTION RESULT
leal 6(%eax), %edx 6+ X
leal (%eax, %ecx), Y%edx Xty
leal (%eax, %ecx, 4), %edx X + 4y
leal 7(%eax, %eax,8), Y%edx 7+ 9x
leal OxA(,%ecx,4),%edx 10 + 4y
leal 9(%eax,%ecx,2), %edx 9+x+2y

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unary and Binary operations

Unary

Single operand serves as both
source and destination

Register or memory location
Similar to C ++ and --
operators

Binary

Second operand is both
source and destination

Thus cannot be an
immediate value

Can be memory or
register

First operand can be
immediate, memory, or
register

Reminder: both cannot be
memory

Similar to C operations such
asx+=y

ADDRESS VALUE

0x100 OxFF

REGISTER VALUE

0x104 0xAB

%eax 0x100

0x108 0x13

%ecx Ox1

0x10C 0x11

Y%edX 0x3

INSTRUCTION

DESTINATION

VALUE

addl %ecx, (%eax)

0x100

0x100

subl %edx, 4(%eax)

0x104

0xA8

imull $16,(%eax, %edx,4)

0x10C

0x110

incl 8(%eax)

0x108

Ox14

decl %ecx

Obecx

0x0

subl %edx, %eax

Obeax

OxFD

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shift operations

Shift amount given in first operand
Coded as a single byte
Only shift amounts between 0 and 31 possible
Only low order 5 bits are considered
Immediate value or in the single byte register element %cl
(unusual!)
Value to shift in second operand

Arithmetic and logical
Left shifts behave the same, though
Zero fill
Right shifts
sign extend (arithmetic)
zero fill (logical)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Discussion

Instructions work for unsigned or two’s complement
arithmetic
Except right shift

Makes 2’s comp arithmetic the preferred way to
implement signed integer arithmetic

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic example

Offset

16

int arith(int x, int y, int z) { iy
inttl=x+y;
: Y; %ebp ¢
intt2=z +t1; AN
intt3 =x +4; N
inttd =y * 48; 00000000 <arith>:
. _ _ 0: 55 push %ebp
!nt to=13+ 24’ 1: 89 e5 mov %esp,%ebp
int rval = t2 * t5; 3: 8b 4d 08 mov 0x8(%ebp),%ecx
return rval; } 6: 8b 55 0c mov 0xc(%ebp),%edx
movl 8 (3ebp) , %ecx 9: 8d 04 52 lea (%edx,%edx,Z),%eax
movl 12 (%ebp), %edx c: c¢1e004 shl $0x4,%eax
leal (%edx,%edx,2), %eax f: 8d440104 lea O0x4(%ecx,%eax,1),%eax
sall $4, %eax 13: 01 ca add %ecx,%edx
leal 4(%ecx,%eax), %eax 15: 035510 add 0x10(%ebp),%edx

UL tecachmy . seds 18: 0f af c2 Imuleedx; fecax
B) 1b: 5d %ebp

imull %edx, %eax Pop
1c: c3 ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

Introduction of IA32

IA32 operations
Data movement operations
Stack operations and function calls

Arithmetic and logic operations
Compare and jump operations

Instruction encoding format
Array and structures allocation and access

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overview of Compare and Jump

Introduction with some examples
Conditional codes & how to set CC
How to use CC

Control structures in assembly code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control structures (in C)

Machine code provides two basic low-level mechanisms for
implementing conditional behavior, tests data values then either
Alters the control flow (conditional statement)
Alters the data flow (conditional expression)

int absdiff(int x, inty) { int absdiff(int X, int y) {
if (x <) return y - x; return X<y ?y —x: x-y;
else returnx-y; } }

int gotodiff(int x, inty) { V: int cmovdiff(int x, inty) {
int result; int tval = y-x;
if (x>=y) goto x_ge_y; int rval = x-y;
result =y —x; inttest =x<vy;
goto done; if (test) rval = tval;
X_ge_y. result=x-vy; return rval;

done: return result; }

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compares and Jumps Example

Using the JMP instruction, we may create a Loop to count %eax from 0 to 5:
simple infinite loop that counts up from zero
using the %eax register: MOVL $0, %eax
loop: INCL %eax

MOVL $0, %eax CMPL $5, %eax
loop: INCL %eax JLE loop

JMP loop /I conditional jump
/I unconditional jump Ilif %eax <= 5 then go to loop

= The jmp label instruction causes the processor to execute the next
instruction at the location given by the label (i.e., the %eip is set to

label).
= Conditional jump instructions will only transfer control if to the target of

the appropriate flags are set.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Condition Code Flags

EXAMPLE: t=a+b
a (=1011) + b (=1000) =1 0011
CF set when: // unsigned overflow
unsigned t < unsigned a
reminder: only positive values
carry-out==1
How about unsigned sub:t=a—-b,a<b, borrow==1

ZF set when: t == // zero
SF set when: t< 0 // negative

OF set when: // signed overflow
(a<0 == b<0) && (t<0 != a<0)
(a<0 && b<0 && t>=0) || (a>0 && b>0 && t<0)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Technically...

Arithmetic and logical operators set the EFLAGS

Instruction

Effect

Description

laal

5,0

&5 --= D

load effective address

IMC

O+1--=D

increment

DEC

D-1--D

decrement

MEG

D-+D

negate

MOT

~0 > D

camplement

ADD

OD+5--=D

add

alB

D-5-»D

subtract

ImALIL

OD*5--=D

rultiply

XOR

DA% D

exclusive-or

OR

D|S-->D

ar

AND

D&S--=D

and

a4l

D=l --=D

left shift

sHL

k, D

D=l --=D

left shift (same as SAL)

AR

k, D

D ==k --

= O

arithmetic right shift

aHR.

k, D

O ==l --

= D

logical right shift

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Leal does not alter any condition codes
(since intended use is address computations
- pg. 420)

Logical operations carry and overflow flags
are set to 0 (ex. XOR pg. 845)

Shift operations, the carry flags is set to the
last bit shifted out; the overflow flag is set to
0 (pg. 741)

INC/DEC set overflow and zero flags; and
leave carry flag unchanged.

* Check ISA manual

Compare instruction

These instructions set the condition codes without
updating any other registers

CMPx S1, S2 - S2-S1

The x can be a b, w or | for byte, word or long

CMP acts like the SUB without updating the destination
ZF setif a ==
SF set if (a-b) <0
CF set if carry out from MSB =1
OF set if 2’s comp overflow
(a>0 && b<0 && (a-b)<0 || (a<0 && b>0 && (a-b)>0)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Test instruction

The TEST operation sets the flags CF and OF to zero. The SF is
set to the MSB of the result of the AND. If the result of the
AND is 0, the ZF is set to 1, otherwise set to 0.

TEST acts like the AND without updating the destination... testx
s1,s2 2> s1&s2

ZF set when a&b ==

SF set when a&b <0

OF/CF are set to 0 (not used)

Example: same operand repeated to see whether the operand is
negative, zero or positive

testl %eax, %eax
sets ZF to 1 if %eax ==

sets SF to 1 if %eax < O (i.e. negative) and O if %eax > 0 (i.e.
positive)

One of the operands is a mask indicating which bits should be tested
testl OxFF, %eax

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

http://en.wikipedia.org/wiki/Sign_flag
http://en.wikipedia.org/wiki/Most_significant_bit
http://en.wikipedia.org/wiki/Bitwise_AND
http://en.wikipedia.org/wiki/Bitwise_AND

Accessing the Condition Codes

3 common ways to use condition codes:
SET

Set a single byte to 0 or 1 depending on some combination of
the condition codes

JMP

Conditionally jump to some other part of the program
CMOV

Conditionally transfer data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Set instructions

Sets a single byte to 0 or 1 based on combinations of
condition codes

Each set instruction has a designated destination:
Byte register

One of 8 addressable byte registers embedded within first 4
integer registers

Does not alter remaining 3 bytes
Typically use movzbl to finish the job
Single-byte memory location

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SET instruction options

Instruction

Condition

Synonym

Description

sete

D & ZF

setz

equal / zero

setne

D € ~ZF

setnz

not equal / not zero

sets

D € SF

negative

setns

D € ~SF

nonnegative

setg

D & ~(SF A OF) & ~ZF

setnle

greater (signed >)

setge

D € ~(SF A OF)

setnl

greater or equal (signed >=)

setl

D € SF A OF

setnge

less (signed <)

setle

D € (SF A OF) | ZF

setng

less or equal (signed <=)

seta

D € ~CF & ~ZF

setnbe

above (unsigned >)

seth

D € CF

sethae

below (unsigned <)

Multiple possible names for the instructions called synonyms.
Compilers and disassemblers make arbitrary choices of which names to use.
Note CF only on unsigned options

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Set instruction examples

Il'isa<Db? FLAGS:
Il a = %edx, b = %eax Ifa=bthenZF =1 - a-b=0

cmpl %eax, %edx //a-bi.e. %edx - %eax If a < b then SF =1 - a-b<0 (#2)
Il flags set by cmpl If a> b then SF =0 - a-b>0

setl %al /ID < SF * OF If a<0, b>0, t>0 then OF=1 (#1)

movzbl %al, %eax // clear high order 3 bytes If a>0, b<0, t<0 then OF=1

Il'if %al has a 1 in it, then the answer is yes If unsigned... CF (not interested)

£ o . .
Il'if %al has a 0 in it, then the answer is no SEAOE S D

notice cmpL and setL are NOT the same thing 0 0

0

1 (see #1 below)
1 (see #2 below)
0

0 1
1 0
/I another example ! 1
movl 12(%ebp), %eax /leax=y
cmpl %eax, 8(%ebp) // compare x:y (x-y) So,a<bwhenD=1
setg %al I al=x>y #1 ais neg, b is pos, tis pos
movzbl %al, %eax Il zero rest of eax #2 a-b<0 means a<b

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Jump instructions

Instruction

Condition

Description

jmp

1

unconditional

je label

ZF

equal

jne label

~ZF

not equal

js label

SF

negative

jns label

~SF

nonnegative

jg label

~(SF * OF) & ~ZF

greater (signed)

jge label

~(SF A OF)

greater or equal (signed)

jl label

SF A OF

less (signed)

jle label

(SF A OF) | ZF

less or equal (signed)

ja label

~CF & ~ZF

above (unsigned)

jb label

CF

below (unsigned)

There are synonyms for jump instructions as well

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The test and cmp
instructions are combined
with the conditional and
unconditional jmp
instructions to implement
most relational and logical
expressions and all control
structures.

Set allows us to know what
the condition evaluates to if
something other than jmp to
be done.

Conditional moves

/I What operation is OP? Fill in the comments to explain how the code works.

#define OP

int arith(int x) { return x OP 4; }

Il x is in %edx... for example, what if x = 167 What if x = -87?
Il temp = x+3
Il test x — sets ZF and SF

leal
testl

3(%edx), %eax
%edx, %edx

cmovns %edx, %eax

sarl

$2, %eax

Il 'ifx>=0, temp = x
Il return temp >>2 = x/4 return value in %eax

Instruction

Synonym

Move condition

Description

cmove
cmovine

Cmova
CnovIlZ

ZF
“ZF

Equal / zero
Not equal / not zero

Cmovs
CmovIls

SF
~SF

Negative
Nonnegative

cmovg
cmovge
cmovl

cmovle

cmovnle
cmovnl
cmovnge
cmovng

“(SF "~ OF) & "ZF
“(SF " OF)
SF ~ OF

(SF "~ OF) | ZF

Greater (signed >)

Greater or equal (signed >=)
Less (signed <)

Less or equal (signed <=)

cmova
cmovae
cmovb

cmovbe

SESECECIISECECECIIECIISE

cmovnbe
cmovnb
cmovnae
cmovna

“CF & “ZF
~CF

CF
CF | ZF

Above (unsigned >)

Above or equal (Unsigned >=)
Below (unsigned <)

below or equal (unsigned <=)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ANSWER:

Divide is the OP
Add 3 because:
If x is negative, it
requires biasing
in order to divide
by 4 i.e.

2k1=3

Since and k = 2

Example
overview

if(a==b)x=1;

cmpla,b /[(b-a) ==

jne skip /Inot equal, so skip

movl $1, x /] sincea==Db,x =1
skip:

nop /I no operation...???

if(a>b)x=1;

cmpl b, a // (a-b) >0
jleskip /I skipifa<=b
movl $1, x

skip:

cmpl a,b
jge skip

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/I Counts the number of bits set to 1
int count = 0;
int loop = 32;
do {
if (x & 1) count++;
x>>=1;
loop--;
} while (loop !1=0)

movl $0, count
movl $32, loop
L2:
movl X, %eax
andl $1, %eax
testl %eax, %eax
je LS
incl count

L5:

sarl x

decl loop
cmpl $0, loop
jne .L2

Conditional branch example

int goto max(int x, int y)
{
int rval = y; C allows “goto” as means
int ok = (x <= y); of transferring control

if (ok) Closerto machine-level

goto done; _
rval = x- programming style

done: Generally considered bad
return rval; coding style

}

movl 8 (%ebp) , tedx = X

movl 12(%ebp) ,%eax =y

cmpl %eax,¥edx :

jle L9 i goto L9

movl %edx,%eax X } Skipped when x

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General “do while” translation

Goto Version

1oop:
O;Ddy Use backward branch to
if (Test) continue looping

goto loop

while (Tes?);

Only take branch when “while”
Body can be any C statement condition holds

Typically compound statement: C Code Goto Version

{
Statement,;

Statement,; (int x)
{

Statement,; int result = 1;
} do {
result *= x;
x = x-1; if (x > 1)
} while (x > 1); goto loop;

raturn resnlt - ratnrn resnlt -

int fact do

Reminder: “Test” is expression
return an integer of 1 when true
and 0 when false

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

“Do While” loop compilation

Goto Version Assembly

int fact.goto fact gotoao:
(int x) pushl %ebp Setup
movl FTesp,#ebp Setup
int result = 1; movl $1,%eax eax = 1
loop: movl & (%ebp) , $edx edx =
result *= x;
x = x-1; L11:
if (x > 1) imull %edx, Feax result *=
goto loop; decl %edx X—-
return result; Gﬂmpare x 1

if > got lﬂﬂp

Finish

Registers onl Finish
Sedx x Finish

¥eax result

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

“While” loop translation

|s this code equivalent to the do-
while version? Must jump out of

Uses same inner loop as do-while version;
guards loop entry with extra test

loop if test fails

C Code

int fact while
(int x)

{

while (x > 1) {
result *= x;
x = x-1;

}:

return result;

Second Goto Version

First Goto Version

int result = 1;

int fact while gntn

(int x)
{
int result = 1;
loop:
if ('(x > 1))
goto done;
result *= x:
x = x-1;
goto Ioop;
done:
return result;

}

int fact while goto2
(int x)
{
int result = 1;
if (1(x > 1))
goto done;
loop:
result *= x;
x = x-1;
if (x > 1)
goto loop;
done:
return result;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

While vs DoWhile

fact_while: fact_dowhile:
pushl %ebp pushl %ebp
movl %esp, %ebp movl %esp, %ebp
movl 8(%ebp), %edx movl 8(%ebp), %edx
movl $1, %eax movl $1, %eax
cmpl $1, %edx
jle L3 imull %edx, %eax
subl $1, %edx
imull %edx, %eax cmpl $1, %edx
subl $1, %edx ig L2
cmpl $1, %edx popl %ebp
jne L6 ret

popl %ebp
ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

“For” loop translation

int result;
for (result = 1;
p !=0;
p = p>>1) {
if (p & Ox1)
result *= x;
= X%X;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Goto Version

Init;
if (!Test)
goto done;
loop:
Body
Update ;
if (Test)
goto loop;
done:

Init

result = 1

result = 1;

if (p == 0)
goto done;

loop:

if (p & 0x1)
result *= x;

X = x*x;

p=p>»>1

if (p 1= 0)

goto loop;
done:

Body

Update

p-p}:‘al

{

}

if (p & 0x1)
result *= x;
X = X*X;

cmov (conditional move) only

“For" Ioop example transfers the data if the

condition is true

. ipwr_for:
/I compute x raised to the pushl %ebp

/I nonnegative power p movl %esp, %ebp
int ipwr_for(int x, unsigned p) pushl %ebx
{ movl 8(%ebp), %ecx Il x
. movl 12(%ebp), %edx I/ p
int result; movl $1, %eax I result
for (result=1; p 1= 0; p = p>>1) testl %edx, %edx Il set cc

{ je L4 Il ZF=1 iff %edx ==

i (p & OX1) movl %eax, %ebx /I temp result in ebx
result *= x; imull %ecx, %ebx I/ new result (* x)

X=X*X; testb $1, %dl Il'lf cond

} cmovne %ebx, %eax [/ ~ZF update result

0,

return result; ?ehrl ./Ezdx

} imull %ecx, %ecx Il x*x

jmp L5

Example walkthrough
x=2, p=4 popl %ebx
’ popl %ebp

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disassembly of ipwr_for

55 push %ebp cmov (conditional
89 e5 mov %esp,%ebp

53 push %ebx move) only

8b 4d 08 mov 0x8(%ebp),%ecx transfers the data
8b 55 0c mov 0xc(%ebp),%edx if the condition is
b8 01 00 00 00 mov $0x1,%eax

85 d2 test %edx,%edx true

7414 je 27 <ipwr_for+0x27>

89 c3 mov %eax,%ebx

0f af d9 imul %ecx,%ebx

f6 c2 01 test $0x1,%dI

0f 45 ¢3 cmovne %ebx,%eax

d1 ea shr %edx

74 05 je 27 <ipwr_for+0x27>

0f af c9 imul %ecx,%ecx

eb ec jmp 13 <ipwr_for+0x13>

5b pop %ebx

5d pop %ebp

c3 ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Switch Statements

Implementation options typedef enum

) . {ADD, MULT, MINUS, DIV, MOD, BAD}
Series of conditionals op type;

Good in few cases char unparse symbol(op type op)
Slow if many Lt
switch (op) {

Jump table case ADD :
return "+ ;

Lookup branch target case MULT:

. .. return "*';
Avoids conditionals cane MINUS:

Possible when cases are small return '-';
integer constants case DIV:

return '/’';

GCC case MOD:

return ‘%’ ;

Picks one based on case case BAD:

structure } return '?’;
Usually should also specify } switchasm.c

“default:” case

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Jump table structure

FYI: Direct jump is an
encoded target as part of
the instruction

Switch Form

switeh(op) {
Block 0

Block 1

Block n—1

case val O:

case val 1:

case val n-1:

Jump Table

jtab: Targl

Targl

Targ2

Targn-1

Approx. Translation

goto

target = JTablop];

*target;

= Indirect jump > *operand

>
>

« Operand is typically a register

*%eax where reg is the target
value; OR

*(%eax) where jump target is
read from memory

Jump Targets

Targ(:

Code Block
0

Code Block
1

Code Block
2

Code Block
n-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

JUMP TABLE:

An array where entry i is
the address of a code
segment implementing
the action the program
should take when the
switch index equals i.

Lookup branch target
Avoids conditionals

Possible when cases are
small integer constants

Switch statement
example

Branching Possibilities

typedef enum
{ADD, MULT, MINUS, DIV, MOD, BAD}
op type;

char unparse symbol (op type op)

Symbolic Labels

{
switch (op) {
L I I

m Labels of form .LXXtranslated into addresses by assembler }

}

Table Structure
m Each target requires 4 bytes
m Base address at .L57

Jumping
jmp .L49%
m Jump target is denoted by label .L49

unparse symbol:

pushl %ebp # Setup

movl %esp, %ebp # Setup

movl 8(%ebp),%eax # eax = op

empl §5, %eax # Compare op : 5
ja .L49 # If > goto done
jmp *.L57(,%eax,4) # goto Table[op]

jmp *.L57 (,%eax, 4)
m Start of jump table denoted by label .L57
m Register %$eax holds op

m Fetch target from effective Address .L57

» Must scale by factor of 4 to get offset into table DIV 3

Enumerated Values
ADD 0
MULT 1
MINUS 2

MOD 4
5

+ op*4 BAD

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sparse “switch” example

/* Beturn x/111 if x is multiple
&& <= 999. -1 otherwise */
int divill (int x)
{
switch (=) {
cagge 0: return

case 111: return

Ty

Ty

case F22Z2: return
case 333: return

Gy

] Gy

case 444: return
case 555: return
case G&66: return

Ty

Ty

case TT7T7: return
case 238: return

Ty

Ty

W 0 -] &M ko

Ty

case 999: return
defaunlt: return -1;

I

Mot practical to use
jump table
Would require 1000
entries

Obwvious translation into
if-then-else would have
max. of 9 tests

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

Introduction of IA32

IA32 operations
Data movement operations
Stack operations and function calls

Arithmetic and logic operations
Compare and jump operations

Instruction encoding format
Array and structures allocation and access

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instruction formats for swap

00000000 <swap>: Displace
ModR/M ment

: 55 push %ebp 55
: 89e5 mov %esp,%ebp 89 11100 101
: 53 push %ebx 53

: 805508 mov 0x8(%ebp),%edx

0000 1000
8b | 01010101

0000 1100
(] o o
: 80450c mov 0Oxc(%ebp),%eax 8b | 01000101

: 8b0a mov (%edx),%ecx 8b 00001 010
c: 8b18 mov (%eax),%ebx 8b 00 011 000
e: 891a mov %ebx,(%edx) 89 00 011 010

: 8908 mov %ecx,(%eax) 89 00 001 000
12: 5b pop %ebx 5b
13: 5d pop %ebp 5d
14: c3 ret c3

http://lwww.cs.princeton.edu/courses/archive/spri1/cos217/reading/ia32vol2.pdf
PUSH pg 701; MOV pg 479; POP pg 637; RET pg 28

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

http://www.cs.princeton.edu/courses/archive/spr11/cos217/reading/ia32vol2.pdf
http://www.cs.princeton.edu/courses/archive/spr11/cos217/reading/ia32vol2.pdf

Instruction Format

All IA-32 instruction encodings are subsets of the general instruction format

shown below, in the given order

Instructions consist of:
optional instruction prefixes (in any order)
1-3 opcode bytes — determines the action of the statement
an addressing-form specifier (if required) consisting of:
the ModR/M byte - addressing modes register/memory
sometimes the SIB (Scale-Index-Base) byte
a displacement (if required)
an immediate data field (if required).

Inﬁg'ﬁiﬂgn Opcode ModR/M SIB Displacement

Immediate

LUp to four 1-, 2-, or 3-byte 1 byte 1 byte Address
prefixes of opcode (if required) (if required) d;sglazc9|ﬂint
of 1,2, or

1 byte each
(optional) / bytes or none

32 4]
R/M I

Immediate
data of

1,2, ord
bytes or none

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ModR/M

ModR/M roi T reas |

2 bits 3 bits 3 bits

Mod=00,
First operand a register, specified by Reg #
Second operand in memory; address stored in a register numbered by R/M.
That is, Memory[Reg[R/M]]
Exceptions:
R/M=100 (SP): SIB needed
R/M=101 (BP): disp32 needed
Mod=01, same as Mod 00 with 8-bit displacement.
Second operand: Memory[disp8+Reg[R/M].
Exception: SIB needed when R/M=100
Mod=10, same as Mod 01 with 32-bit displacement

Mod=11
Second operand is also a register, numbered by R/M.
Do not confuse displacement width with data width.
Data width is specified by the opcode.
For example, the use of disp8 does not imply 8-bit data.
For some opcodes, the reg# is used as an extension of the opcode.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SIB displacement and immediate

SIB

Specify how a memory address is calculated
Address = Reg[base] + Reg[Index] * 2scale
Exceptions:

Scale| Index Base

SP cannot be an index, and

Displacement
Can immediately follow ModR/M byte
1, 2, or 4 bytes

Immediate

Immediate operand value always follows any displacement bytes
1, 2 or 4 bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

Introduction of IA32

IA32 operations
Data movement operations
Stack operations and function calls

Arithmetic and logic operations
Compare and jump operations

Instruction encoding format
Array and structures allocation and access

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Array allocation and access

type array[length]
Contiguously allocated region of length * sizeof(T) bytes
Starting location of array is a pointer (x)

Access array elements using integer index i ranging between 0 and length-
1 (i.e. the subscript)

Array element i will be stored at address X+SiZ€Of(T) i

char string[12];

X

ININENENEEEN
T

x+12

int val[5]; |
[

X
double a[4]:

|

x+4

|
|

x+8

| | |
| | f
x+12 x+16 x+20

[

T

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Total size: 12, 20, & 32
Element i:

X+ 1%

X + 4%

X + 8%
Address of array in %edx and i
stored in %ecx
= movl (%edx,%ecx,4)

Array allocation and access (cont)

Explains why scaled factors are 1, 2,4, and 8
The primitive data types

Problem 3.35 (pg 233)

1A32
A pointer of any kind is 4 bytes long
GCC allocates 12 bytes for the data type long double
4 bytes for float and pointers, 8 bytes for double, 12 bytes for long double

Element Start
Given Array| size |Total Size| address | Elementi

short S[7] S | 2 14 XS | xs+2i
short *T[3] T | 4 12 xt | xtdi
long double V[8] V 12 96 X_V X_V+12i
long double*W[4] | W | 4 16 XW | x w+di

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pointer arithmetic

Reminders...
C allows arithmetic on pointers, where the computed value is scaled according to the size of the data
type referenced by the pointer
So, if p is a pointer to data type T
And, the valueof pisx_p
Then, then p+i has value x_p + L*i
Where, Lis the size of data type T
Thus A[i] == *(A+i)
Example
%edx = starting address of array E
%ecx =2 integer index i

Expression | Type Value Assembly code... result in %eax komment
E int * X_e movl %edx, %eax
E[0] int M[x_e] movl (%edx, %ecx,4), %eax Reference memory
E[i] int M[x_e + 4i] movl (%edx, %ecx,4), %eax Reference memory
&E[2] int * X e+8 leal 8(%edXx), %eax Generate address
E+i-1 int * X e+di-4 leal -4(%edx,%ecx,4), %eax Generate address
*(E+i-3) int * M[x_e +4i-12] |movl -12(%edx, %ecx,4), Y%eax Reference memory
&E[i]-E int i movl %ecx, %eax

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structures

Reminder... the C struct declaration creates a data type
that groups objects of possibly different types into a
single object

Implementation similar to arrays

All components are stored in a contiguous region of memory
A pointer to a structure is the address of its first byte

The compiler maintains information about each structure

type indicating the byte offset of each field

Generates references to structure elements using these offsets as
displacements in memory referencing instructions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure allocation

Concept
m Contiguously-allocated region of memory
m Refer to members within structure by names

s Members may be of different types

struct rec { Memory Layout
int 1;

int a[3];
int *p;

}:
Accessing Structure Member

1 a P

void Assembly
set 1(struct rec *r,

int wval) # %eax = val
%edx = r
val:; movl %eax, (Sedx) # Mem[r] = wval

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure Access

struct rec {
int 1;
int a[3];
int *p;

}:

Generating Pointer to
Array Element
n Offset of each
structure member

determined at compile
time

Generating Ptr tfo Structure Member

|

B

04]‘

16

r 4+ 4 &+ 4*idx

int =
find a
(etruct rec

{

*r, int 1idx)

return &r-=a[idx];

}

F %ecx 1dx
F Redx r
leal 0(,%ecx,.4), %aeax

4*idx

leal 4 (%eax,%edx), %eax # r+d*idx+4

leal 4(%edx, %ecx, 4)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

find_a:
pushl
movl
movl
sall
addl
addl
popl
ret

%ebp

%esp, %ebp
12(%ebp), Y%eax
$2, %eax
8(%ebp), %eax
$4, %eax

%ebp

Il'idx (2" arg)
Il mult by 4
Il ptr to struct (15t arg)

Structure referencing (cont)

C Code

struct reec {
int 1;
int a[3];
int *p;

}:

vold
set p(struct rec *r)

{

r->p =
Er-zalr->1];

represents
the element of
“a” that | want

p” to point to

Element i

%edx = r

movl (%edx),%ecx # r-»1

leal 0(,%ecx,4),%eax # 4*(r->1)
leal 4 (%edx,%eax),%eax # r+d+d4*(r->1)
movl %eax,l6 (%edx) # Update r->p

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data Alignment

Aligned Data

m Primitive data type requires K bytes

m Address must be multiple of K

m Required on some machines; advised on IA32
¢ treated differently by Linux and Windows!

Motivation for Aligning Data

m Memory accessed by (aligned) double or quad-words

® Inefficient to load or store datum that spans quad word
boundaries

® Virtual memory very tricky when datum spans 2 pages
Compiler

m Inserts gaps in structure to ensure correct alignment of

fields

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Specific cases of alignhment

Size of Primitive Data Type:
u bﬂ'E [E.g.l char)

® no restrictions on address

s 2 bytes (e.g., short)
® lowest 1 bit of address must be 0,
s 4 bytes (e.g., int, £loat, char *, efc.)
¢ lowest 2 bits of address must be 00,
m 8 bytes (e.g., double)
® Windows (and most other O5's & instruction sets):
» lowest 3 bits of address must be 000,
® [inux:
» lowest 2 bits of address must be 00,
»i.e., treated the same as a 4-byte primitive data type
m 172 bytes (long double)
® Linux:
lowest 2 bits of address must be 00,
»i.e., treated the same as a 4-byte primitive data type

IA32/LINUX address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2 bytes hex: ends in
even hex digit (0, 2, 4,
6, 81 A’ C7 E)

4 bytes hex: ends in
divisible by 4 hex digit
(0,4,8,C)

8 bytes hex: ends in
divisible by 8 hex digit
(0,8)

Satisfying alignment in structures

Offsets Within Structure

m Must satisfy element’s alignment requirement

Overall Structure Placement

m Each structure has alignment requirement K
® Largest alignment of any element

m Initial address & structure length must be
multiples of K

struct 851 {
char c;
int 1[2];
double v;

i -F

Linux:

m K= 4; double treated like a 4-byte data type

c 1[0] i[1]

v

p+0 pJf-! p+8 p+l2

T Multiple of 4 Multiple of 4
Multiple of 4

p+20

Multiple of 4

Long long treated like 8-byte data type

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Saving space

m Put large data types first

struct 854 {

Total bytes = 8

struct 85 {

int i;
char c;

char d;
} *p;

Total bytes = 12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another Example

char

d:

char
1ng

short

struct a_struct {

struct a_strcut *b;
struct b struct |

i
1;
double * d;
=]
m;

sCruck H_ﬂtIECt

Each block is a byte

a;

[3]) ;

g 1 2] 2 10 11 12 13 14 15
LR LR Ll
| ¢ % X
fm e g g -
| & & X X| a X X X|b B b b

Rl R R L L R D L DR R B LA DL DR DET

—l

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

End IA32

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

