Chapter 3
Machine-Level Programming Il
(Sections 3.4 -3.9)

with material from Dr. Bin Ren, College of William & Mary

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition

RISC instruction sets

= Reduced Instruction Set Computer
= Internal project at IBM, later popularized by Hennessy
(Stanford) and Patterson (Berkeley)
Fewer, simpler instructions
= Might take more to get given task done
= Can execute them with small and fast hardware

Register-oriented instruction set
= Many more (typically 32) registers
= Use for arguments, return pointer, temporaries

Only load and store instructions can access memory
= Similar to Y86 mrmovl and rmmovl

No Condition codes
= Test instructions return 0/1 in register

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition

RISC and CISC

Which is IA32?
CIsc
Which is Y86?
Includes attributes of both.
CIsc
Condition codes
Variable length instructions
Stack intensive procedure linkages
RISC
Load-store architecture
Regular encoding

Which is better: RISC or CISC?

Bryant and O'Hall Sgstems: A Programmer’s Perspective, Third Edition

11/29/2018

Outline

Introduction of 1A32
1A32 operations
Data movement operations
Stack operations and function calls
Arithmetic and logic operations
Compare and jump operations
Instruction encoding format
Array and structures allocation and access

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition

CISC instruction sets

= Complex Instruction Set Computer
= Dominant style through mid-80's

Stack-oriented instruction set
= Use stack to pass arguments, save program counter
= Explicit push and pop instructions
Arithmetic instructions can access memory
m addl %eax, 12 (8ebx, Recx, 4)
® requires memory read and write
® Complex address calculation
Condition codes
= Set as side effect of arithmetic and logical instructions

Philosophy
= Add instructions to perform “typical” programming tasks

B ter Systems: A Progy pective, Third Edition

Compare Y86 and IA32

Y86 is:
Little endian
Load/store
Can only access memory on read/write
On move statements in Y86 (mrmovl/rmmovl)
Combination of CISC and RISC
Word = 4 bytes
1A32 is:
Little endian
NOT load/store
CIsc
Byte (1 byte), word (2 bytes), long (4 bytes)

Bryantand O'Hall Systems: A Programmer's Perspective, Third Edition

C program to IA32 and Y86

Computes the sum of an integer array

int Sum (int *Start, int Count)
{

ASSEMBLY COMPARISON ON NEXT SLIDE

intsum=0: Why not using array indexing (i.e. subscripting)?
while (Cour'ﬂ) No scaled addressing modesin Y86
{ U i
ses stack and frame pointers
sum += *Start; P
Start++; For simplicity, does not follow IA32 convention of
Count--; having some registers designated as callee-save
} registers (convention so adopt or ignore as we please)
}
Bryant and O'Hall: Systems: A Programmer’s Perspective, Third Edition, LA

CHAPTER 3.2 Program Encodings

GOAL = examine assembly code and map it back to the constructs found in
high-level programming languages
%gec—01 -m32 -S code.c > code.s
%more code.s
Runs the compiler only
-S options = generates an assembly (.s) file
-01 is an optimization level
All information about local variables names or data types have been stripped away
Still see global variable “accum”
Compiler has not yet determined where in memory this variable will be stored
%gec—01 —c -m32 code.c > code.o
%objdump —d code.o
-c compiles and assembles the code
Generates an object-code file (.0) = binary format
DISASSEMBLER — re-engineers the object code back into assembly language
%uname —p
-m32 is a gcc option to run/build 32-bit applications on a 64-bit machine

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition 9

Machine Instruction Example

C code

Add two signed integers int t=x+y;
Assembly

Add 2 4-byte integers addl 8(%ebp),%eax
Operands

X: register %eax
Y: memory M[%ebp+8]
T: register %eax
Return function value in %eax
Object code 03 45 08

3 byte instruction

Bryant and O'Hall Sgstems: A Programmer’s Perspective, Third Edition kil

11/29/2018

IA32/Y86 comparison

1A32 code Y86 code

Figure 4.6. Comparison of Y86 and IA32 assembly programs. The Sum function computes the sum of
an integer array. The Y86 code differs from the 1432 mainly in that it may requre multiple instructions to
perform what can be done with a single 1A32 instruction
Bryant and O'Hall Systems: A Programmer’s Perspective, Third Edition 3

Machine code vs C code

Program Counter (PC)
Register %eip (X86-64)
Address in memory of the next instruction to be executed
Integer Register File
Contains eight named locations for storing 32-bit values
Can hold addresses (C pointers) or integer data
Have other special duties
Condition Code registers
Hold status information
About arithmetic or logical instruction executed
CF (carry flag)
OF (overflow flag)
SF (sign flag)
ZF (zero flag)
Floating point registers

Bryant and O'Hall ter Systems: A Programmer's Perspective, Third Edition 10

I1A32 — Intel Architecture

32-bit address bus
normal physical address space of 4 GBytes (232bytes)
addresses ranging continuously from O to OxFFFFFFFF
Complex instruction set (CISC) machine

Data formats > C Declaration Suffix | Name Size
Primitive data types of C char B BYTE 8 bits
Single byte suffix short w WORD | 16 bits

denotes size of operand
int L LONG 32 bits
No aggregate types
Arrays, structures char * (pointer) L LONG 32 bits
Registers float S SINGLE | 32 bits

six (almost) general purpose 32-bit registers:
%eax, %ebx, %ecx, %edx, %esi, %edi
two specialty = stack pointer and base/frame pointer:
%esp, %ebp
Float values are in different registers (later)
a floating-point processing unit (FPU) with eight 80-bit wide registers: st(0) to st(7)

Bryantand O'Hall Systems: A Programmer's Perspective, Third Edition 12

Outline

Introduction of 1A32
1A32 operations
Data movement operations
Stack operations and function calls
Arithmetic and logic operations
Compare and jump operations
Instruction encoding format
Array and structures allocation and access

Bryant and O'Hall Systems: A Programmer’s Perspective, Third Edition 13

Operand Combinations example

‘Source Dest krc,Dest* k analog
‘Immediate Register ‘movl $0x4, %eax emp = 0x4;
Immediate [Memory ‘movl $-147, (%eax) I'p=-147;
Register Register ‘movl %eax, %edx

temp2 = temp1;
Register Memory ‘movl %eax, (%edx) I'p = temp;

Memory Register ‘movl (%eax), %edx temp =*p;

« Each statement should be viewed separately.

+ REMINDER: cannot do memory-memory transfer with a single instruction.

« The parentheses around the register tell the assembler to use the register as a
pointer.

Bryant and O'Hall ter Systems: A Programmer's Perspective, Third Edition 15

Operand addressing example

Address Value Operand Value Comment
0x100 xFF Yocax 0x100 [Register
0x104 OxAB 0x104 0xAB _|Absolute Address - memory
Px108 x13 150x108 0x108 [Immediate
Px10C Px11 Yeax) OxFF__Address 0x100 - indirect
#(%eax) DXAB |Address 0x104 - base+displacement

Register Value 9(%eax,%edx) 0X11_ |Address 0x10C - indexed
%eax 0x100 260(%ecx,%edx) [X13 Address 0x108 - indexed
%ecx Ox1 OxFC(,%ecx,4) PXFF Address 0x100 - scaled index*
%edx Px3 %eax,%edx4) 0X11 |Address 0x10C - scaled index*
First two columns on left are given as is the Operand
FYI: 260 decimal = 0x104
*scaled index multiplies the 2" argument by the scaled value (the 3 argument) which must
be a value of 1, 2, 4 or 8 (sizes of the primitive data types)

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition i

11/29/2018

- |
Operand Specifiers

Source operand
Constants, registers, or memory
Destination operand
Registers or memory
CANNOT DO MEMORY-MEMORY TRANSFER WITH A
SINGLE INSTRUCTION
3 types of operands
Immediate — for constant values
Register
Memory

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition M

Addressing Modes
Examples on next slide

An addressing mode is a mechanism for specifying an address.
Immediate
Register
Memory
Absolute
specify the address of the data
Indirect
use register to calculate address
Base + displacement
use register plus absolute address to calculate address
Indexed
Indexed
Add contents of an index register
Scaled index
Add contents of an index register scaled by a constant

Bryant and O'Hall ter Systems: A Programmer's Perspective, Third Edition 16

Operand addressing example EXPLAINED

Address Value Operand Value |Comment

0x100 OxFF Yoeax x100 _Value is in the register

0x104 0xAB X104 XAB__ |Value is at the address

0x108 [0x13 alue is the value ($ says “I'm an

0x10C [ox11 $0x108 x108 i diate, i.e. constant, value”)

Value is at the address stored in the

gi Value %eax) XFF__[register > GTV@(reg)

%eax l0x100 #(%eax) XAB _|GTV@(4+ reg)

%ecx lox1 B(%eax,%edx) X1 |GTV@(9 + reg + reg)

%edx 0x3 260(%ecx,%edx) X13 [Same as above; be careful, in decimal

XFC(,%ecx.4) XFF_ [GTV@(OXFC + 0 + reg*4)

‘oeax,%edx.4) X1 |GTV@(req + reg*4)

In red are memory types of operands which is why you get the value at the address; because you are
-accessing memory

FYI: last two, the 3% value in () is the scaling factor which must be 1, 2, 4 or 8

NOTE: Do not put ‘§’ in front of constants when they are addressing indexes, only when they are
literals.

Bryantand O'Hall Systems: A Programmer's Perspective, Third Edition 18

Data movement instructions

Move, push and pop

MOVE example

Operands Given %dh = 0xCD and %eax = 0x98765432
source,dest What is in %eax after each instruction?

Fill-in 1. movb %dh, %al 987654CD

2. movsbhl %dh, %eax FFFFFFCD

S=si tend
sign exten 3. movzbl %dh, %eax 000000CD

Z = zero extend
b,w,| = byte, word, long
8, 16, 32 bits respectively
Instructions (a sample set)
movb, movw, movl=S > D
movsbw, movsbl, movswl = SignExtend(S) = D
movzbw, movzbl, movzwl = ZeroExtend(S) = D

Bryantand O'Hall Systems: A Programmer's Perspective, Third Edition 19

e
Stack operations

Data movement instructions (cont)

Push and Pop

Stack = LIFO

pushl S
R[%esp] — 4 - R[%esp]... decrement stack ptr
S > M[R[%esp]]... store to memory
Order matters!

popl D
M[R[%ESP]] > D... reading from memory
R[%esp] + 4 > R[%esp]... increment stack ptr
Order matters!

By convention, we draw stacks upside down
“top” of the stack is shown at the bottom

Stack “grows” toward lower addresses (push)
Top element of the stack has the lowest address of all stack elements

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition 2

Procedure calls

The machine uses the stack to
Pass procedure arguments
Store return information
Save registers for later restoration
Local storage
Stack frame
Portion of the stack allocated for a single procedure call
The topmost stack frame is delimited by two pointers
Register %ebp — the frame/base pointer
Register %esp — the stack pointer
Can move while the procedure is executing HENCE

MOST INFORMATION IS ACCESSED RELATIVE TO THE
FRAME/BASE POINTER

Indicates lowest stack address i.e. address of top element

Bryant and O'Hall Sgstems: A Programmer’s Perspective, Third Edition 2

11/29/2018

Outline

Introduction of 1A32
1A32 operations
Data movement operations
Stack operations and function calls
Arithmetic and logic operations
Compare and jump operations
Instruction encoding format
Array and structures allocation and access

Bryant and O'al Systems: A Programmer' Perspective, Third Edtion k)
subl $4, %esp movl (%esp), %edx
The StaCk movl %eax, (%esp) addl $4, %esp
Initially pushl %eax popl $edx

%eax | 0x123 %eax | 0x123 %eax | 0x123
Sedx | 0 $edx | 0 $edx | 0x123
$esp | 0x108 %esp | 0x104 %esp | 0x108
Stack “bottom” Stack “bottom” Stack “bottom”

|

Increasing
address

0x108 0x108 0x108
Stack “top” 0x104 0x123 0x123
Stack “top” Stack “top”
o Aprog pecive, Thrd Edtion 2
intP(intx) {
inty=xx;
Procedure calls (cont) int =y}
returny+z; }

Procedure P (the “caller”) calls procedure
Q (the “callee”) |

Caller stack frame (P) Increasing
The arguments to Q are contained within 2ddress Wp—
the stack frame for P +asan | M8
The first argument is always positioned at - Caller's frame
: P

offset 8 relative to %ebp
Remaining arguments stored in successive
bytes (typically 4 bytes each but not

always)... +4+4n is return address plus 4 Frame pointer
bytes for each argument. serp
When P calls Q, the return address within P

sa | Argument 1
+4 | Retum adaress

—| Saved tetp

-
where the program should resume Saved regist
execution when it returns from Q is pushed aved registers,
Iocal variables,
on to the stack and
Callee stack frame (Q) temporaries C”!T ':’“3
allee
Saved value of the frame pointer
Copies of other saved registers P
Local variables that cannot all be stored in | Stack pointer build area
registers (see next slide) sesp —f
Stores arguments to any it calls. Stack “top”

Bryantand O'Hall Systems: A Programmer's Perspective, Third Edition 2

Procedure call and return

Call instruction
Has a label which is a target indicating the address of the instruction
where the called procedure (the callee) starts
Direct or indirect label
Push a return address on the stack
the address of the instruction immediately following the call in the
(assembly) program
Jump to the start of the called procedure
Return instruction
Pops an address off the stack
Jumps to this location
FYI: proper use is to have prepared the stack so that the stack pointer
points to the place where the preceding call instruction stored its
return address
Leave instruction is equivalent to:
movl %ebp, %esp
popl %ebp

Bryant and O'Hall Systems: A Programmer’s Perspective, Third Edition 2

Register usage conventions

int P(int x)

Program registers are a shared resource
One procedure is active at a given time

Don’t want the callee to overwrite a value the
caller planned to use later return y+z;
BY CONVENTION/PROTOCOL
“Caller-save” registers: %eax, %edx and %ecx
When Qis called by P, it can overwrite these

1. The caller, P, can

registers without destroying any data required by save the value y.
P 2. Pcanstore the
“Callee-save” registers: %ebx, %esi and %edi value in a callee-
Q must save these values on the stack before save register
overwriting them, and restore them before (saved and
returning restored).

%ebp and %esp must be maintained
Register %eax is used for returning the value from any
function that returns an integer or pointer.

Bryant and O'Hall ter Systems: A Programmer's Perspective, Third Edition 7

Understanding Swap
Address
teax| 456 456|123 0x124 pushl %ebp
sedx| 0x124 123|456 0x120 movl %esp, %ebp
secx] 0x120 Oxlle pushl %ebx
seba] 12 0x118
5 off.
eal 123 e 0x114 | 1. Move 0x124 to %edx
Sesi ve 12 10x120 | ox110 2. Move 0x120 to %ecx
Zedi *» 8 10x12d | ox10c 3. Move 123 to %ebx
= 4 |Rmodr | ox108 4. Move 456 to %eax
sabp — 0 | O f'hv ox104 | 5. Move 456 to M[0x124]

ot o] -4 [old%ebx | 100 | 6. Move 123 to M[0x120]

movl B8(%ebp), *edx # edx = xp

movl 12(%ebp), Secx # ecx = yp popl %ebx

movl (bedx), tebx # ebx = *xp (t0) | %eb

movl (%ecx), feax # eax = *yp (tl) pop! ebp

movl %eax, (edx) # *xp = £l ret

movl fhebx, (teck) # *yp = 0

Bryant and O'Hall: Systems: A Programmer’s Perspective, Third Edition 2

11/29/2018

Procedure call and return

{8} Executing call (c) After ret

Return address

11 Beginning of function sum
08048394 <sum>:

8048394: 55 push %ebp
JIreturn from function sum
80493a4: c3 ret
i/.ca\l to sum from main - START HERE!
80483dc: e8 b3 ff ff ff call 8048394 <sum>
80483e1: 83c4 14 add $0x14,%esp
Bryant and O'al Systems: A Programmer's Prspective,Third Edition %

REMINDER: we use pointers so can pass address
since can't pass values back outside of the function

Swap example

swap: Setup/prologue
pushl %ebp
movl %esp, %ebp }

pushl %ebx

void swap(int *xp, int *yp)
{

int t0 = *xp; Body

In mov| oebp), oedx edx=xp

int t1 = *yp; I 8(%ebp), %ed d

xp=t1; movl 12(%ebp), %ecx | ecx=yp

*yp =t0; movl (%edx), %ebx ebx=*xp (t0)

y i movl (%ecx), %eax eax="yp (t1)
[lcodeswap.c movl %eax, (%edx) *xp =t
Register Value movl %ebx, (%ecx) *yp=t0
:;a::: ;E popl %ebx Finish/epilogue
y | %eb
%ebx 10 oL e
%eax t1

srjantand ol ser Systems: A rogrammer'sperspectie Third Edtion »

caller: swap_add:
pushl %ebp pushl %ebp
Example movl %esp, %ebp movl %esp, %ebp
subl $24, %esp pushl %ebx
proced ure call movl $534, -4(%ebp) movl 8(%ebp), %ebx
movl $1057, -8(%ebp) movl 12(%ebp), %ecx
leal -8(%ebp), %eax movl (%ebx), %eax
- PP movl %eax, 4(%esp) movl (%ecx), %edx
int swap_add(int xp, int*yp) leal -4(%ebp) %eax | movl kedx, (%ebx)
intx = *xp; movl %eax, (%esp) movl Y%eax, (%ecx)
" call swap_add leal (%edx,%eax), %eax
movl -4(%ebp), %edx popl %ebx
WpEX; subl -8(%ebp), %edx popl %ebp
return ;(+y- imull %edx, %eax ret
) ! leave
ret
int caller()
int arg1 = 534;
int arg2 = 1057;
int sum = swap_add(&arg1, &arg2);
int diff = arg1 - arg2;
return sum * diff;
}l callswap.c and figure 3.23
Bryantand O'al Systems: A programmer's perspective,Third Editon k)

Stack frames for caller and swap_add

Fig 3.24

Just before call In body of

. 1o swap_add swap_add
Frame pointer = -

Fabp —— 9 Saved sabp Saved tebp
I: -4 argl argl
-8 arg? arg2
Stack frame
Unused for caller Unused
+4 » |+12 carg2
N Stack frame
kesp | +8 sargl
Stack pointer +4 | Retun address | swap_add
Frame pointer 5ebp —— g | Saved Sebp
Stack pointer esp —— Saved tebx
Brjant and O'Hal: Systems: A Programmer's Perspective, Third Eition 3t

addr Stack comment CALL = Pushes the return address
hesp n=3 Recursive onto the stack (%esp-4 and mov);
%esp | _retum addr caller RETURN 9 pops it
%esp X
i procedure |[ract:
%esp %ebx Caller value pushl %ebp
-4t0-16 unused movl %esp, %eb
o int rfact(intn) { Joesp, oebp
. o ") pushl %ebx
%esp 20: 2 %eax=1,2 int result; o
S%esp | return address rfact if (n <=1) subl $20, %esp
%hesp result=1; movl 8(%ebp), %ebx
esp | e | ° movl $1, %eax
4to-18] result = n * rfact(n-1); cmpl $1, %ebx
Yoebx=2 returnresult; } jle L3
'//:“" -zn:dl "’“‘:‘“"1 leal -1(%ebx), %eax
%esp | return address fact "
Yhesp “multiple of 16 bytes” x86 movl %eax, (%esp)
Shebp Y%ebp ing guideline; call rfact
%esp %ebx =2 rfact value including 4 bytes for the old imull %ebx, %eax
-410-16 unused %ebp and 4 bytes for the L3:
ebct return address, caller uses o
Yoeax=1 °85, addl $20, %esp
hesp 20: jle L3 332{%(55; alignment issues popl %ebx
POPPING: (393 popl %ebp
3 ret
,2,6
Sryant and O'hall tor Systems: A Programmer's erspective, Third Edition n

Arithmetic and Logical Operations

11/29/2018

Recursion

Definition:
In order to understand recursion, you must understand recursion

PAGE 3
DEPARTMENT COURSE DESCRIPTION PREREGS
COMPUTER (PSC W32 | INTERMEDIATE COMPLER CPSC 432
SCIENCE DESIGN, WITH A FOCUS ON

DEPENDENCY RESOLUTION. Q
Bryant and O'Hall Systems: A Programmer’s Perspective, Third Edition 32
Outline

Introduction of 1A32
IA32 operations
Data movement operations
Stack operations and function calls
Arithmetic and logic operations
Compare and jump operations
Instruction encoding format
Array and structures allocation and access

Bryant and O'Hall

ter Systems: A Programmer's Perspective, Third Edition 3

LEA - load effective address

Bryant and O'Hall

Sgstems: A Programmer’s Perspective, Third Edition

Instruction |Effect Description Watch out for argument
leal [0 285>0 |load effective address order! see SUB
No distinction between
'DNECC S B*ii ">DD ‘d””E'"E”‘t signed and unsigned int
1o ecrement . " :
NG o 0D negate Notice A/L for arithmetic
NoT 1o 0D loomplement and Iogllcal right shifts
Operation Groups
ADD |5 D D+5-->D |add Variant of the move
sUB D D-5->D |subtract Unary
IMUL |5, D D*S5->D |multiply Binary
XoR [s,D DAS->D [exelusive-ar Shifts
OR 5D D|5-->D or
AND 5D D&S-->D |and Note the
AL |, D [D<<k->D |ieftshift difference in msHuctn;n
SHL kD D <<k -->D_|left shift (same as SAL) » ble — just Iiakne the
saR [k D D>k, D [arithmetic right shift movl vs mov I
SHR kD D >> k --» D |logical right shift

Bryantand O'Hall

Does not reference memory at all

You don’t get the value at the address... just the address (&x)
Copies the effective address to the destination
Used to generate pointers for later memory references
Can also be used to compactly describe common arithmetic operations
The destination operand must be a register

Example: leal 7 (%edx, %edx, 4) , %eax

Sets register %eax to 5x+7
%edx + %edx*4 + 7

Assume: %eax = x and ¥
NSTRUCTION

ecxX=y
RESULT

leal 6(%eax), %edx

leal (%eax, %ecx), %edx

6+x
Xty

leal (%eax, %ecx, 4), %edx

x+4dy

leal 7(%eax, %eax,8), %edx

leal OxA(,%ecx,4),%edx 10 +4y
leal 9(%eax,%ecx.2), %edx 9+x+2y

Systems: A Programmer's Perspective, Third Edition

7+9x

Unary and Binary operations

Unary
Single opedre&nd serves as both DA[;[[:(?ESS XAFLI:JE REGISTER |VALUE
source and destination X Xl
Register or memory location 0x104 I0XAB loeax 0x100
Similar to C ++ and -- bx108 [ox13 Joecx ox1
_ operators Dx10C___Joxt1 %edx___ Px3
Binary
Second operand_ is b_oth
5°”’°Teha"d destination INsTRUCTION DESTINATION VALUE
us cannot be an
immediate value Eddl %ecx, (%eax) 0x100 [0x100
Can be memory or ubl %edx, 4(%eax) 0x104

register
First operand can be
immediate, memory, or

0x10C

register @

Reminder: both cannot be ecl Soecx
memory ubl %edx, %eax
Similar to C operations such

asx+=y

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition

Discussion

Instructions work for unsigned or two’s complement
arithmetic

Except right shift
Makes 2’s comp arithmetic the preferred way to
implement signed integer arithmetic

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition

Outline

Introduction of 1A32
1A32 operations
Data movement operations
Stack operations and function calls
Arithmetic and logic operations
Compare and jump operations
Instruction encoding format
Array and structures allocation and access

Bryant and O'Hall Sgstems: A Programmer’s Perspective, Third Edition

11/29/2018

Shift operations

Shift amount given in first operand
Coded as a single byte

Only low order 5 bits are considered

(unusual!)
Value to shift in second operand
Arithmetic and logical
Left shifts behave the same, though
Zero fill
Right shifts
sign extend (arithmetic)
zero fill (logical)

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition

Only shift amounts between 0 and 31 possible

Immediate value or in the single byte register element %cl

Arithmetic example
int arith(intx, inty, int) {
intt1=x+y;
intt2=z+t1;
intt3=x+4;
inttd=y *48; 00000000 <arith>:
hoha , : 55
!ntt5—t3+t4, 1: 895
intrval = t2 * t5; 3: 8b4d 08
returnrval; } 6: 8b550c
movl B (%ebp), %ecx 9: 8d 0452
movl 12 (%ebp), %edx c: c1e004
leal (%edx,%edx,2), %eax f: 84440104
sall 54, %eax 13:01ca
leal 4(%ecx,teax), teax 15: 03 5510
addl %eex, hedx 18: 0f af c2
addl 16(%ebp), bedx 1bs 5d
imull %edx, %eax :
L 1c:cd
sryantand O'al tor Sytems: A rogrammer's erspective, Third dition

Offset o

y
%ebp x

1 |Rtn Addr

0ld %ebp

push %ebp
mov %esp,%ebp
mov 0x8(%ebp),%ecx
mov 0xc(%ebp),%edx
lea (%edx,%edx,2),%eax
shl $0x4,%eax
lea 0x4(%ecx,%eax,1),%eax
add %ecx,%edx
add 0x10(%ebp),%edx
imul %edx,%eax
pop %ebp
ret

Introduction with some examples
Conditional codes & how to set CC
How to use CC

Control structures in assembly code

Bryantand O'Hall Systems: A Programmer's Perspective, Third Edition

Overview of Compare and Jump

Control structures (in C)

Machine code provides two basic low-level mechanisms for

Alters the control flow (conditional statement)
Alters the data flow (conditional expression)

implementing conditional behavior, tests data values then either

int absdiff(int x, inty) {

int absdiff(int x, int y) {
if (x<y) retuny -x;

retumx <y ?y-x:xy;

else retumx-y; } }
int gotodiff(int x, inty) { VS int cmovdiff(int x, inty) {
int result; int tval = y-x;
if (x>=y) gotox_ge_y; int val = x-y;
result =y -x; inttest=x<y;
goto done; if (test) rval = tval;
x_ge_y: result=x-y; retumn rval;
done: return result; } }
Sryant and 'l Systems; A programmer'sPerspective, Thid Eition

Condition Code Flags

EXAMPLE: t=a+b

a(=1011) + b (= 1000) = 1 0011
CF set when:

unsigned t < unsigned a

// unsigned overflow

reminder: only positive values

carry-out ==

How about unsigned sub: t =a—b, a < b, borrow ==
ZF set when: t == // zero

SF set when: t< 0 // negative

OF set when: // signed overflow
(a<0 == b<0) && (t<0 !=a<0)

(a<0 && b<0 && t>=0) || (a>0 && b>0 && t<0)

Bryant and O'Hall ter Systems: A Programmer's Perspective, Third Edition

11/29/2018

Compares and Jumps Example

Using the JMP instruction, we may create a
simple infinite loop that counts up from zero
using the %eax register:

Loop to count %eax from 0 to 5:

MOVL $0, %eax
loop: INCL %eax

MOVL $0, %eax CMPL $5, %eax
loop: INCL %eax JLE loop

JMP loop Il conditional jump
Il unconditional jump Iif %eax <= 5 then go to loop

= The jmp /abel instruction causes the processor to execute the next
instruction at the location given by the label (i.e., the %eip is set to
label).

= Conditional jump instructions will only transfer control if to the target of
the appropriate flags are set.

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition

Technically...

Arithmetic and logical operators set the EFLAGS

Instruction |Effect Description
leal |50 &5 ->D Ioad effective address | Leal does not alter any condition codes
(since intended use is address computations

ne o D+L->D _|increment pg. 420)

DEC 8] D-1-->D decrement

NEG _ |D D->D negate . .

NoT|D “D->D complement Logical operations carry and overflow flags

are set to 0 (ex. XOR pg. 845)

ADD |5, D D+5-->0 |add

SUB__ |5 D D-5->D |subtract

Shift operations, the carry flags is set to the
IMUL [5, D0 D*S->D |multiply

last bit shifted out; the overflow flag is set to
XOR 50 D"5-->D |exclusive-or

orR [sD0 [D[5->D |or 0 (pg. 741)

AND |5, D D&S->D |and

INC/DEC set overflow and zero flags; and

Compare instruction

These instructions set the condition codes without
updating any other registers
CMPx S1, S2 > S2-51
The x can be a b, w or | for byte, word or long
CMP acts like the SUB without updating the destination
ZF setifa==
SFset if (a-b) <0
CF set if carry out from MSB = 1
OF set if 2’s comp overflow
(a>0 && b<0 && (a-b)<0 | | (a<0 && b>0 && (a-b)>0)

Bryant and O'Hall Sgstems: A Programmer’s Perspective, Third Edition

SAL_ kD |D<<k->D |lefeshift leave carry flag unchanged.
SHL |k D |D<<k->D |left shift (same as SAL)
SR |k D |D>>k-->,D [anithmetic right shift * Check ISA manual
SHR |k D |D»» k- D |logical right shift
Bryant ang O'Hal e Systems: A rogrammer's erspective,Third Editon “®

Test instruction

s1,52>s1&s2
ZF set when a&b ==
SF set when a&b <0
OF/CF are set to 0 (not used)

negative, zero or positive
testl %eax, %eax
sets ZF to 1 if %eax ==

positive)

testl OXFF, %eax

Bryantand O'Hall Systems: A Programmer's Perspective, Third Edition

The TEST operation sets the flags CF and OF to zero. The SF is
set to the MSB of the result of the AND. If the result of the
AND is 0, the ZF is set to 1, otherwise set to 0.

TEST acts like the AND without updating the destination... testx

Example: same operand repeated to see whether the operand is

sets SF to 1 if %eax < O (i.e. negative) and 0 if %eax > 0 (i.e.

One of the operands is a mask indicating which bits should be tested

http://en.wikipedia.org/wiki/Sign_flag
http://en.wikipedia.org/wiki/Most_significant_bit
http://en.wikipedia.org/wiki/Bitwise_AND
http://en.wikipedia.org/wiki/Bitwise_AND

|
Accessing the Condition Codes

3 common ways to use condition codes:

SET
Set a single byte to 0 or 1 depending on some combination of
the condition codes

Jmp
Conditionally jump to some other part of the program

cMov
Conditionally transfer data

Bryant and O'Hall Systems: A Programmer’s Perspective, Third Edition)

SET instruction options

Instruction | Condition Synonym Description

sete D€ZF setz equal / zero

setne D €-~ZF setnz not equal / not zero

sets D €SF negative

setns D € ~SF i

setg D € ~(SFAOF)&~ZF | setnle greater (signed >)

setge D € ~(SF A OF) setnl greater or equal (signed >=)
setl D € SF*OF setnge less (signed <)

setle D & (SF A OF) | ZF setng less or equal (signed <=)
seta D €~CF & ~ZF setnbe above (unsi >)

seth D €&CF setnae below (unsigned <)

Multiple possible names for the instructions called synonyms.
Compilers and disassemblers make arbitrary choices of which names to use.
Note CF only on unsigned options

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition st

Jump instructions

Instruction | Condition Description The testand cmp
jmp 1 ti instructions are combined
e label ZF equal with the.t,:ondltlonal and
ne label 7 " unconditional jmp
Ine fabe’ not equal instructions to implement
js label SF negative most relational and logical
jns label ~SF nonnegative expressions and all control
g label ~(SF A OF) &~ZF | greater (signed) structures.
jge label ~(SF A OF) greater or equal (signed) Set allows us to know what
jl label SFAOF less (signed) the condition evaluates to if
jle label (SF A OF) | ZF less or equal (signed) something other than jmp to
a label ~CF & ~ZF above be done.
jb label CF below
There are synonyms for jump instructions as well
Bryantand O'Hall: Systems: A Programmer’s Perspective, Third Edition 5

11/29/2018

=
Set instructions

Sets a single byte to 0 or 1 based on combinations of

condition codes

Each set instruction has a designated destination:
Byte register

One of 8 addressable byte registers embedded within first 4
integer registers

Does not alter remaining 3 bytes
Typically use movzbl to finish the job
Single-byte memory location

Bryant and O'Hall Systems: A Programmer’s Perspective, Third Edition L]

Set instruction examples

Ilisa<b? FLAGS:
Il'a=%edx, b= %eax lfa=bthenZF =1 > a-b=0
cmpl %eax, %edx Il a-bi.e. %edx- %eax If a<b then SF =1 > a-b<0 (#2)
Il flags set by cmpl Ifa>b then SF=0 > a-b>0
setl %al /ID € SFAOF If a<0, b>0, t>0 then OF=1 (#1)
movzbl %al, %eax /I clear high order 3 bytes If a>0, b<0, t<0 then OF=1
Il'if %alhas a 1in it, then the answer is yes If unsigned... CF (not interested)
Ilif %al has a 0 in it, then the answer is no SFAOF > D

notice cmpL and setL are NOT the same thing 0 0

I/ another example (see #2 below)

movl 12(%ebp), %eax //eax=y
cmpl %eax, 8(%ebp) // compare x:y (x-y)

0
0 1 1 (see #1 below)
1 0 1
1 1 0

So,a<bwhenD=1

setg %al Il al=x>y #1 ais neg, bis pos, tis pos
movzbl %al, %eax Il zero rest of eax #2 a-b<0 means a<b
sryantand O'al tor Sytems: A rogrammer's erspective, Third dition P

HH #define OP
condltlonal moves inta:'i(h(in(x){ return x OP 4; }

I What operation is OP? Fill in the comments to explain how the code works.

Il xis in %edx... for example, what if x = 16? What if x = -8?

leal 3(%edx), %eax Il temp = x+3

testl %edx, %edx II test x — sets ZF and SF

cmovns %edx, %eax II'if x>= 0, temp =x

sarl $2, %eax Il return temp >>2 = x/4 return value in %eax

Instruction Synonym | Move condition Description
e S5.D | cmovz Equal / zero ANSWER:

5.D Not equal / not zero Divide is the OP
5D Add 3 because:
: ﬁ If x is negative, it
50 o equl (sgmed »-) | | Fequires biasing
$.D ned <) in order to divide
5.0 Less or equal (signed <=) bydie.
5.D Above (wisigned ») kq=3
5.0 Above or equal (Unsigned »=) | | @ _
5D Below (unsigncd <) Sinceand k=2
5,0 | cwovna | cF | 2F below or equal (unsigned <=)

Bryantand O'Hall Systems: A Programmer's Perspective, Third Edition]

/I Counts the number of bits set to 1

Example int count = 0;
. int loop = 32;
overview do{
if (x & 1) count++;
if(a==b)x=1; x>>=1;
loop--;
cmpla,b /f (b-a)== }while (loop 1=0)
jne skip IInot equal, so skip
! o movl $0, count
ski:w' $1,x Il sincea==b,x=1 movl $32, loop
y L2
nop II'no operation...??? movl X, %eax
andl $1, %eax
i -1 testl %eax, %eax
if(a>b)x=1; jo L5
cmplb, a // (a-b) >0 e
jleskip /lskipifa<=b Tsarx
'movl $1,x decl loop
skip: cmpl $0, loop
cmplab jne L2
jge skip
Sryant and 'l Systems; A programmer'sPerspective, Thid Eition 5

General “do while” translation

Body can be any C statement

C Code Goto Version
daswy 13'53;, Use backward branch to
while (Tes if (Tesn continue looping
goto Joop

condition holds

Only take branch when “while”

Typicallycompound statement: [¢ Code Goto Version
{
Statement,; int fact do int fact goto(int x)
Statement,; (int x) {
. (int result = 1;
Statement,; int result = 1; loop:
) do (result *= x;
i1t = x; x = x1;
ot = x1; if (x> 1)
Reminder: “Test" is expression Sty b
i ; goto loop;
return an integer of 1 when true b S (@2 T m“ ¢ wP”.
and 0 when false raturn rasnlt: raturn rasnlt
} }

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition

11/29/2018

Conditional branch example

Bryant and O'Hall

C allows “goto” as means
of transferring control
Closer to machine-level
programming style
Generally considered bad
coding style

gote LI
x } Skippedwhenx y

Systems: A Programmer's Perspective, Third Edition

“Do While” loop compilation

Goto Version
int fact.coto
(int x)
€
int result = 1;
1oop:
result #*= x;

Assembly
fact.gota:
pushl %ebp # Setup
movl %esp,%ebp # Setup
movl $1,%eax #eax = 1
movl 8(%ebp),tedx # edx = x

Is this code equivalent to the do-
while version? Must jump out of
loop if test fails

C Code

int fact while
int x)

“While” loop translation

Uses same inner loop as do-while version;
guards loop entry with extra test

Second Goto Version

faot_while goto?
JaaE

{ First Goto Version

int result = 1;

int result = 1;
whils (x > 1) {
result *= x;
x = x1; 1
V: int result - 1;
return result; dgop:
) if (1(x > 1))
goto done;
result *- x;
x = x-1;
gote loop;

{int

n result;

return result;

Bryant and O'Hall Sgstems: A Programmer’s Perspective, Third Edition

L11:
imull %edx, feax # Tresult *= x
goto loop; decl %edx # x—
return result; cmpl $1, %edx # Compare x : 1
} g L1l # if > goto loop
. movl %ebp,%esp # Finish
Registers popl %ebp # Finish
%edx x ret # Finish
%eax result
o s Systems: A Prog pective, Third Edtion £}

fact_while:
pushl %ebp
movl %oesp, %ebp
movl 8(%ebp), %edx
movl $1, %eax
cmpl $1, %edx
jle L3

L6:
imull %edx, %eax
subl $1, %edx
cmpl $1, %edx
jne L6

L3
popl %ebp
ret

fact_dowhile:
push
movl
movl
movl

L2
imull
subl
cmpl
ig
popl
ret

| %ebp
%esp, %ebp
8(%ebp), %edx
$1, %eax

%edx, %eax
$1, %edx
$1, %edx
L2

%ebp

Bryantand O'Hall

Systems: A Programmer's Perspective, Third Edition

While vs DoWhile

10

“For” loop translation

—_— if (p & 0x1)

int result;
for (result 1; N
p1=0; Goto Version
p = p>>1) { =
if (p & Ox1) i)
T Co £ if (1Test)
x = x0% goto done;
loop:
} Body
Update ;
if (Test)
goto loop;
done:
Init Test
Update

result = 1;
if (p == 0)
goto done;
Ioop:

result *= x;
x = x*x;
p=p> 1
if (p 1= 0)
goto loop;
done:

Body

{
if (p & 0x1)
result *= x;
x = xox;

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition

“For” loop example

11/29/2018

Il compute X raised to the fpur.for:

/I nonnegative power p
intipwr_for(int x, unsigned p)

int result;
for (result=1;p = 0; p = p>>1)
{ .
if (p & 0x1) e
result *= x;
X=x*x

return result;

}

Example walkthrough L4:
x=2, p=4

Disassembly of ipwr_for

0: 55 push %ebp

1 89e5 mov %esp,%ebp

3 53 push %ebx

4: 8b 4d 08 mov 0x8(%ebp),%ecx
T 8b 55 0c mov Oxc(%ebp),%edx
a b8 0100 00 00 mov $0x1,%eax

f: 85d2 test %edx,%edx

1: 7414 je 27 <ipwr_for+0x27>
13: 89c3 mov %eax,%ebx

15: 0f af d9 imul %ecx,%ebx

18: 6¢201 test $0x1,%d

1b: 0f45¢3 cmovne %ebx,%eax

le: dlea shr %edx

20: 7405 je 27 <ipwr_for+0x27>
22: 0f af c9 imul %ecx,%ecx

25: ebec jmp 13 <ipwr_for+0x13>
21 5b pop %ebx

28: 5d pop %ebp

29: c3 ret

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition

cmov (conditional
move) only
transfers the data
if the condition is
true

Jump table structure

FYI: Direct jump is an
encoded target as part of
the instruction

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition

cmov (conditional move) only
transfers the data if the
condition is true
pushl %ebp
movl Y%esp, %ebp
pushl %ebx
movl 8(%ebp), %ecx I x
movl 12(%ebp), %edx 1/ p
movl $1, %eax Il result
test! %edx, %edx Il setcc
je L4 1 ZF=1iff %edx ==
movl %eax, %ebx Il temp result in ebx
imull %ecx, %ebx Il new result (* x)
testb $1, %d| I1'ff cond
cmovne %ebx, %eax // ~ZF update result
shrl %edx
je L4
imull %ecx, %ecx Il x*x
jmp L5
popl %ebx
popl %ebp
ret
&

Switch Statements

Implementation options
Series of conditionals
Good in few cases
Slow if many
Jump table
Lookup branch target
Avoids conditionals
Possible when cases are small
integer constants
GCC
Picks one based on case
structure
Usually should also specify
“default:” case

B ter Systems: A Progy pective, Third Edition

typedef enum
{ADD, MULT, MINUS, DIV, MOD, BAD}
op_type;

char unparse symbol(op_type op)
{

switch (op) {
case ADD :
return "4';

switchasm.c

Switch statement

Branching Possibilities

Jump Targets | JUMP TABLE:

An array where entry i is
the address of a code

Approx. Translation
target « JTablop];
goto “target;

= Indirect jump -> *operand

Targn-1

Switch Form Jump Table
switch(op) { jtab: Targd Targl: | coge Block
case val 0: Taral 0
Biock 0
case val 1: Tary2 Targl:
Biock 1 .
case val_a-1: .
; Biock n-1 o Targ2

segmentimplementing
the action the program
should take when the
switch index equals i.

Lookup branch target
Avoids conditionals

Possible when cases are
small integer constants

=~ Operandis typically a register

> *%eaxwhere regis the target
value;
*(%eax) where jump target is
read from memory

>

Bryant and O'Hall Sgstems: A Programmer’s Perspective, Third Edition

= Base address at .L57
Jumping
jmp .L49
w Jump target is dencted by label 143

typedat amm
{ADD, WULT, MINUS, DIV, NOD, BAD)
example o troe
ehar uzparse synbol{op type op}
Symbolic Labels i sl
» Labels of form .Lxx into by)
Table Structure unparse_symbol:
w Each target requires 4 bytes pushl %ebp # Setup
movl %esp, %ebp # Setup

movl 8(%ebp),%eax # eax = op

cmpl §5, %eax # Compare op : 5
ja .L49 # If > goto done
jmp *.L57(,%eax,4) # goto Table[op]

jmp *.L57(,%eax, 4)
= Start of jump table denoted by label .L57

Enumerated Values
ADD

woLT 1
u Register %eax holds op wms 2
= Must scale by factor of 4 to get offset into table DIV 3
= Fetch target from effective Address .L57 + op*4 :g :

Bryantand O'Hall

Systems: A Programmer's Perspective, Third Edition

11

Sparse “switch” example

/* Return /111 if x is multiple Mot practical to use

&& <= 399 -1 otherwise */ jump table
ipb divillting x) Would require 1000
i .] entries
anlichl returmn Obvious translation into

il-then-else would have
max. of 9 tests

case 111: return
case 222: return
case 333: return
case 444: return
case 555: return
case 666 return
case T77: return
case B888: return
case 933%: return
defanlt: return -1;
Ik

[P - R O

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition

Instruction formats for swap

’00000000 <swap>: Displace | Imme
code | ModR/M SIB ment diate
0: 55 push %ebp 55
1: 89e5 mov %esp,%ebp 89 11100 101
3: 53 push %ebx 53
4: 805508 mov 0x8(%ebp),%edx 8b | 01010101 Lo00pote
7: 80450c mov Oxc(%ebp),%eax 8b 01000101 000100
a: 8b0a mov (%edx),%ecx 8b 00 001 010
c: 8b18 mov (%eax),%ebx 8b. 00011 000
e: 891a mov %ebx,(%edx) 89 00011010
10: 89 08 mov %ecx,(%eax) 89 00001 000
12: 5b pop %ebx 5b
13: 5d pop _%ebp 5d
14: ¢3 ret c3

http:/lwww.cs.princeton.edu/courses/archive/spri1/cos217/readinglia32vol2.pdf
PUSH pg 701; MOV pg 479; POP pg 637; RET pg 28

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition

ModRM

Reg#

ModR/M

Mod=00,
First operand a register, specified by Reg #
Second operand in memory; address stored in a register numbered by R/M.
That is, Memory[Reg[R/M]]
Exceptions:
R/M=100 (SP): SIB needed
R/M=101 (BP): disp32 needed
Mod=01, same as Mod 00 with 8-bit displacement.
Second operand: Memory[disp8+Reg[R/M].
Exception: SIB needed when R/M=100
Mod=10, same as Mod 01 with 32-bit displacement
Mod=11
Second operand is also a register, numbered by R/M.
Do not confuse displacement width with data width.
Data width is specified by the opcode.
For example, the use of disp8 does not imply 8-bit data.
For some opcodes, the reg# is used as an extension of the opcode.

Bryant and O'Hall Sgstems: A Programmer’s Perspective, Third Edition

11/29/2018

Outline

Introduction of 1A32
1A32 operations
Data movement operations
Stack operations and function calls
Arithmetic and logic operations
Compare and jump operations
Instruction encoding format
Array and structures allocation and access

Bryant and O'Hall Systems: A Programmer’s Perspective, Third Edition L]

|
Instruction Format

All 1A-32 instruction encodings are subsets of the general instruction format
shown below, in the given order
Instructions consist of:
optional instruction prefixes (in any order)
1-3 opcode bytes — determines the action of the statement
an addressing-form specifier (if required) consisting of:
the ModR/M byte - addressing modes register/memory
sometimes the SIB (Scale-Index-Base) byte
a displacement (if required)
an immediate data field (if required).

| i | Opcode | MadRiM | Bl ‘ Displacement | Immediate |
Up ta 1-, 2 or byle 1 Dye 1 byte Immediate
prafixes of opicode (if required) (I requ - data of
1 byte sach Zord i:2 o 4
toptional) / \\ bytes or nona bylas or nane
7 s az o 7 65 3z o
Reg/ iy N -
IHoa ‘WW ‘ RM I |m\=‘ index | Base
Bryant and O'Hal ter Systems: A rogrammer's Perspective Third Edition)

=]
SIB displacement and immediate
SIB

Specify how a memory address is calculated
Address = Reg[base] + Reg[Index] * 2scale

Exceptions:
SP cannot be an index, and
BP cannot be a base 2Dits 3bits 3 bits
Displacement

Can immediately follow ModR/M byte
1, 2, or 4 bytes
Immediate
Immediate operand value always follows any displacement bytes
1, 2 or 4 bytes

Bryantand O'Hall Systems: A Programmer's Perspective, Third Edition 7

12

http://www.cs.princeton.edu/courses/archive/spr11/cos217/reading/ia32vol2.pdf
http://www.cs.princeton.edu/courses/archive/spr11/cos217/reading/ia32vol2.pdf

11/29/2018

e e
Outline Array allocation and access
Introduction of IA32 type array[length]

Contiguously allocated region of length * sizeof(T) bytes
Starting location of array is a pointer (x)

Access array elements using integer index i ranging between 0 and length-
Stack operations and function calls 1 (i.e. the subscript)

Arithmetic and logic operations

1A32 operations
Data movement operations

Array element i will be stored at address x+sizeof(T) *i
Compare and jump operations

Instruction encoding format char string(121; ;::::::m‘ Total size: 12, 20, & 32
Elementi:
. 1z
Array and structures allocation and access st vargsts | T T X+ 1
x+4%
R X x+4 x+B x+12 x+16 x+20 x+8‘\‘
I I I I | Address of array in %edxand i
T T T T 1 stored in %ecx
x x+8 x+lb x+24 x+32 | 3 movl (%edx,%ecx4)
Bryant and O’Hall: Systems: A Programmer’s Perspective, Third Edition 73 Bryantand O'Hall Systems: A Programmer’s Perspective, Third Edition 7
| [
Array allocation and access (cont) Pointer arithmetic
Reminders...
. call h , where th d val led accord h f the d
Explains why scaled factors are 1, 2, 4, and 8 W;eur\g’sez;z:‘:g:z\::);e;;c;?;teer: where the computed value is scaled according to the size of the data
The primitive data types So, if pis a pointer to data type T
Problem 3.35 (pg 233) And, the value of p is x_p
Then, then p+i has value x_p + L*i
1A32 Where, Lis the size of data type T
A pointer of any kind is 4 bytes long Thus Ali] == *(A+i)
GCC allocates 12 bytes for the data type long double Example
4 bytes for float and pointers, 8 bytes for double, 12 bytes for long double Yedx -> starting address of array E
%ecx = integer index i
Element Start Expression | Type Value
. q . 0 E int*
Given Array| size |Total Size| address | Elementi E0] int
short S[7] S 2 14 X_S X_s+2i E[i] int
short *T[3] T| 4 12 xt | xt+di i :
N Eti-1 int* x e+di-4 |leal -4(%edx,%ecx,4), %eax Generate address
long double V[8 v 12 96 Xv | xv+12i “(E+i3) | int* | Wix_e+4i-12] movi-12(%edx, %ecx), %eax __|Reference memor
long double *W[4] w 4 16 X W X_W+4i | BEfi-E | int i Imovl %ecx, %eax
Bryant and O'Hall: iter Systems: A Programmer’s Perspective, Third Edition. 75 Bryant and O'Hall: iter Systems: A Programmer’s Perspective, Third Edition 76
I I
Structures Structure allocation
Reminder... the C struct declaration creates a data type c .
that groups objects of possibly different types into a oneept
ingle object u Contiguously-allocated region of memory
single objec u Refer to members within structure by names
Implementation similar to arrays = Members may be of different types
All components are stored in a contiguous region of memory struct rec { Memory Layout
A pointer to a structure is the address of its first byte EE
ler maintain : i
The compiler maintains information about each structure ; int *p; =
type indicating the byte offset of each field —
. Accessing Structure Member
Generates references to structure elements using these offsets as bl
" N S . vold Assem
displacements in memory referencing instructions TR G BT O Y
int val) # %eax = val
{ # %edx =
r->1 = val; movl %eax, (kedx) # Mem[r] = val
3
Bryantand O'Hall: Systems: A Programmer’s Perspective, Third Edition Ll Bryantand O'Hall Systems: A Programmer’s Perspective, Third Edition il

13

11/29/2018

Structure Access Structure referencing (cont)
Generating Ptr fo Structure Member C Code
struct reo { | o "
tnt 1; n . T " represents
R L I 1% s iz: i the element of
b Tad s detax int a(31: a thatl.want
Genenating Pointer to int = int *p; p” to point to
Array Element Hlatruct reo o, 12t 100 b
u Offset of each « Element 1
structure member return &r-zalidx);
determined at compile) veid
time. sat_p(struct rec *r)
" e 1ax find_a: {
eax # 4tidx B B e = :cjfdy({%;d;) kecx # r-»1
4 | %esp, %ebj _ - n ’ -
1001 4 (hoax: b5 haax & redeidees T SRR)) el leal 0(,%ecx,4),%eax # 4*(r->1)
sall $2, %eax /I mult by 4 leal 4(%edx,%eax),%eax # r+d+d*(r->i)
«
leal 4(%edx, %ecx, 4) 0 SElED RSO movl Seax, 16 (Sedx) # Update r->p
popl %ebp
ret
eryontand Ol Sitems: A programmer'sperspective Third Edition n bt and Ol Systems: A programmer's perspective Thir Eition]
T — I —
Data Alignment Specific cases of alighment
: Size of Primitive Data Type:
Aligned Data = 1byte (e.q., char] IA32/LINUX address
u Primitive data type requires K bytes ® no restrictions on address
m Address must be multiple of K = 2 bytes (e.g., short) 2bytes hex: ends in
. 3 X ® lowest 1 bit of address must be 0, even hex digit (0, 2, 4,
m Required on some machines: advised on IA32 = 4 bytes (e.g., int, £loat, char *, etc.) 6,8,A,C,E)
® treated differently by Linux and Windows! ® lowest 2 bits of address must be 00,
. . — = 8 bytes (e.g., double) 4 bytes hex: ends in
Metivation for A|Ignln9 Data ® Windows (and most other OS's & instruction sets): divisible by 4 hex digit
u Memery accessed by (aligned) double or quad-words »lowest 3 bits of address must be 000, 048C)
® Tnefficient to load or store datum that spans quad word ® Linue
boundaries »lowest 2 bits of address must be 00, hex: .
Virtual memory very tricky when datum spans 2 " »ie.. treated the same as a 4-byte primitive data type | O DYteS hex endsin
Ty very P page: .l es (long double) divisible by 8 hex digit
Compi]gr s Linux: 08)
) . »lowest 2 bits of address must be 00,
u ?sle;rf: gaps in structure to ensure correct alignment of »i.e.. treated the same as a 4-byte primitive data type
lelds
ryantand o Systems: A rogranmer's perspective Third Eition o . Aprog pective Third Eiton 2

Satisfying alignment in structures Saving space
Offsets Within Structure m Put large data types first
® Must satisfy element’s alignment requirement stract 81 { E—
Overall Structure Placement ‘:h:':[;] int i
u Each structure has alignment requirement K dzuble ,, char c;
® Largest alignment of any element } *ps char d;
= Tnitial address & structure length must be }rpi
multiples of K
Linux:
m K= 4; double freated like a 4-byte data type
[e] T YV v] |c| | Bl |d| | Total bytes = 12
p+0 pid p+8 pe12 p+20
Multiple of 4 Multiple of 4 -
Multiple of 4 Multiple of 4 Total bytes =8

Long long treated like 8-byte data type

Bryant and O'Hall Systems: A Programmer’s Perspective, Third Edition [Snjantand O'all Systems: A Programmer's Perspective, Third Edition L]

14

11/29/2018

Another Example End IA32

Each block is a byte

struct b_

c
int i;
double * d;
short el3);
STIrUCt a_struct m;

Bryant and O'Hall Systems: A Programmer's Perspective, Third Edition 8

Bryant and O'Hall Systems: A Programmer’s Perspective, Third Edition L]

15

