
11/29/2018

1

1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Chapter 3
Machine-Level Programming II
(Sections 3.4 – 3.9)

with material from Dr. Bin Ren, College of William & Mary

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Introduction of IA32

 IA32 operations
 Data movement operations

 Stack operations and function calls

 Arithmetic and logic operations

 Compare and jump operations

 Instruction encoding format

 Array and structures allocation and access

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RISC instruction sets

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CISC instruction sets

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RISC and CISC

 Which is IA32?
 CISC

 Which is Y86?
 Includes attributes of both.

 CISC

 Condition codes

 Variable length instructions

 Stack intensive procedure linkages

 RISC

 Load-store architecture

 Regular encoding

 Which is better: RISC or CISC?

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compare Y86 and IA32

 Y86 is:
 Little endian

 Load/store

 Can only access memory on read/write

 On move statements in Y86 (mrmovl/rmmovl)

 Combination of CISC and RISC

 Word = 4 bytes

 IA32 is:
 Little endian

 NOT load/store

 CISC

 Byte (1 byte), word (2 bytes), long (4 bytes)

11/29/2018

2

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C program to IA32 and Y86

 Computes the sum of an integer array

int Sum (int *Start, int Count)

{

 int sum = 0;

 while (Count)

 {

 sum += *Start;

 Start++;

 Count--;

 }

}

ASSEMBLY COMPARISON ON NEXT SLIDE

Why not using array indexing (i.e. subscripting)?

No scaled addressing modes in Y86

Uses stack and frame pointers

For simplicity, does not follow IA32 convention of

having some registers designated as callee-save

registers (convention so adopt or ignore as we please)

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IA32/Y86 comparison

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CHAPTER 3.2 Program Encodings

 GOAL examine assembly code and map it back to the constructs found in
high-level programming languages

 %gcc –O1 –m32 –S code.c code.s

 %more code.s

 Runs the compiler only

 -S options = generates an assembly (.s) file

 -O1 is an optimization level

 All information about local variables names or data types have been stripped away

 Still see global variable “accum”

 Compiler has not yet determined where in memory this variable will be stored

 %gcc –O1 –c –m32 code.c code.o

 %objdump –d code.o

 -c compiles and assembles the code

 Generates an object-code file (.o) = binary format

 DISASSEMBLER – re-engineers the object code back into assembly language

 %uname –p

 -m32 is a gcc option to run/build 32-bit applications on a 64-bit machine

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine code vs C code

 Program Counter (PC)
 Register %eip (X86-64)
 Address in memory of the next instruction to be executed

 Integer Register File
 Contains eight named locations for storing 32-bit values

 Can hold addresses (C pointers) or integer data
 Have other special duties

 Condition Code registers
 Hold status information

 About arithmetic or logical instruction executed
– CF (carry flag)
– OF (overflow flag)
– SF (sign flag)
– ZF (zero flag)

 Floating point registers

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine Instruction Example

 C code
 Add two signed integers

 Assembly
 Add 2 4-byte integers

 Operands
 X: register %eax

 Y: memory M[%ebp+8]

 T: register %eax

 Return function value in %eax

 Object code
 3 byte instruction

 Stored at address: 0x????????

int t = x + y;

addl 8(%ebp),%eax

03 45 08

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IA32 – Intel Architecture

 32-bit address bus
 normal physical address space of 4 GBytes (232

 bytes)

 addresses ranging continuously from 0 to 0xFFFFFFFF

 Complex instruction set (CISC) machine

 Data formats
 Primitive data types of C

 Single byte suffix

 denotes size of operand

 No aggregate types

 Arrays, structures

 Registers
 six (almost) general purpose 32-bit registers:

 %eax, %ebx, %ecx, %edx, %esi, %edi

 two specialty stack pointer and base/frame pointer:

 %esp, %ebp

 Float values are in different registers (later)

 a floating-point processing unit (FPU) with eight 80-bit wide registers: st(0) to st(7)

C Declaration Suffix Name Size

char B BYTE 8 bits

short W WORD 16 bits

int L LONG 32 bits

char * (pointer) L LONG 32 bits

float S SINGLE 32 bits

11/29/2018

3

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Introduction of IA32

 IA32 operations
 Data movement operations

 Stack operations and function calls

 Arithmetic and logic operations

 Compare and jump operations

 Instruction encoding format

 Array and structures allocation and access

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Operand Specifiers

 Source operand
 Constants, registers, or memory

 Destination operand
 Registers or memory

 CANNOT DO MEMORY-MEMORY TRANSFER WITH A
SINGLE INSTRUCTION

 3 types of operands
 Immediate – for constant values

 Register

 Memory

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Operand Combinations example

Source Dest Src,Dest* C analog

Immediate Register movl $0x4, %eax temp = 0x4;

Immediate Memory movl $-147, (%eax) *p = -147;

Register Register movl %eax, %edx temp2 = temp1;

Register Memory movl %eax, (%edx) *p = temp;

Memory Register movl (%eax), %edx temp = *p;

• Each statement should be viewed separately.

• REMINDER: cannot do memory-memory transfer with a single instruction.

• The parentheses around the register tell the assembler to use the register as a

pointer.

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Addressing Modes

 An addressing mode is a mechanism for specifying an address.
 Immediate
 Register
 Memory

 Absolute
– specify the address of the data

 Indirect
– use register to calculate address

 Base + displacement
– use register plus absolute address to calculate address

 Indexed
– Indexed

» Add contents of an index register
– Scaled index

» Add contents of an index register scaled by a constant

Examples on next slide

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Operand addressing example

Operand Value Comment
%eax 0x100 Register
0x104 0xAB Absolute Address - memory
$0x108 0x108 Immediate
(%eax) 0xFF Address 0x100 - indirect
4(%eax) 0XAB Address 0x104 - base+displacement
9(%eax,%edx) 0X11 Address 0x10C - indexed
260(%ecx,%edx) 0X13 Address 0x108 - indexed
0xFC(,%ecx,4) 0XFF Address 0x100 - scaled index*
(%eax,%edx,4) 0X11 Address 0x10C - scaled index*

First two columns on left are given as is the Operand

FYI: 260 decimal = 0x104

*scaled index multiplies the 2nd argument by the scaled value (the 3rd argument) which must

be a value of 1, 2, 4 or 8 (sizes of the primitive data types)

Address Value
0x100 0xFF
0x104 0xAB
0x108 0x13
0x10C 0x11

Register Value
%eax 0x100
%ecx 0x1
%edx 0x3

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Operand addressing example EXPLAINED

Operand Value Comment

%eax 0x100 Value is in the register

0x104 0xAB Value is at the address

$0x108 0x108
Value is the value ($ says “I’m an
immediate, i.e. constant, value”)

(%eax) 0xFF
Value is at the address stored in the
register GTV@(reg)

4(%eax) 0XAB GTV@(4+ reg)

9(%eax,%edx) 0X11 GTV@(9 + reg + reg)

260(%ecx,%edx) 0X13 Same as above; be careful, in decimal

0xFC(,%ecx,4) 0XFF GTV@(0xFC + 0 + reg*4)

(%eax,%edx,4) 0X11 GTV@(reg + reg*4)

In red are memory types of operands which is why you get the value at the address; because you are

accessing memory

FYI: last two, the 3rd value in () is the scaling factor which must be 1, 2, 4 or 8

NOTE: Do not put ‘$’ in front of constants when they are addressing indexes, only when they are

literals.

Address Value
0x100 0xFF
0x104 0xAB
0x108 0x13
0x10C 0x11

Register Value
%eax 0x100
%ecx 0x1
%edx 0x3

11/29/2018

4

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data movement instructions

 Move, push and pop

 MOVE example

 Operands
 source,dest

 Fill-in
 S = sign extend

 Z = zero extend

 b,w,l = byte, word, long
 8, 16, 32 bits respectively

 Instructions (a sample set)
 movb, movw, movl = S D

 movsbw, movsbl, movswl = SignExtend(S) D

 movzbw, movzbl, movzwl = ZeroExtend(S) D

Given %dh = 0xCD and %eax = 0x98765432

What is in %eax after each instruction?

1. movb %dh, %al 987654CD

2. movsbl %dh, %eax FFFFFFCD

3. movzbl %dh, %eax 000000CD

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Introduction of IA32

 IA32 operations
 Data movement operations

 Stack operations and function calls

 Arithmetic and logic operations

 Compare and jump operations

 Instruction encoding format

 Array and structures allocation and access

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack operations
Data movement instructions (cont)
 Push and Pop

 Stack = LIFO

 pushl S
 R[%esp] – 4 R[%esp]… decrement stack ptr

 S M[R[%esp]]… store to memory

 Order matters!

 popl D
 M[R[%ESP]] D… reading from memory

 R[%esp] + 4 R[%esp]… increment stack ptr

 Order matters!

 By convention, we draw stacks upside down
 “top” of the stack is shown at the bottom

 Stack “grows” toward lower addresses (push)
 Top element of the stack has the lowest address of all stack elements

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The stack

Increasing

address

•

•
•

Stack “top”

Stack “bottom”

0x108

•

•
•

Stack “top”

Stack “bottom”

0x104

•

•
•

Stack “top”

Stack “bottom”

0x108

0x123

0x123

0

0x108

%eax

%edx

%esp

Initially

0x123

0

0x104

%eax

%edx

%esp

pushl %eax

0x123

0x123

0x108

%eax

%edx

%esp

popl %edx

0x123
0x108

subl $4, %esp

movl %eax, (%esp)

movl (%esp), %edx

addl $4, %esp

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Procedure calls

 The machine uses the stack to
 Pass procedure arguments

 Store return information

 Save registers for later restoration

 Local storage

 Stack frame
 Portion of the stack allocated for a single procedure call

 The topmost stack frame is delimited by two pointers

 Register %ebp – the frame/base pointer

 Register %esp – the stack pointer

– Can move while the procedure is executing HENCE

– MOST INFORMATION IS ACCESSED RELATIVE TO THE
FRAME/BASE POINTER

– Indicates lowest stack address i.e. address of top element

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Procedure calls (cont)
 Procedure P (the “caller”) calls procedure

Q (the “callee”)

 Caller stack frame (P)

 The arguments to Q are contained within
the stack frame for P

 The first argument is always positioned at
offset 8 relative to %ebp

 Remaining arguments stored in successive
bytes (typically 4 bytes each but not
always)… +4+4n is return address plus 4
bytes for each argument.

 When P calls Q, the return address within P
where the program should resume
execution when it returns from Q is pushed
on to the stack

 Callee stack frame (Q)

 Saved value of the frame pointer

 Copies of other saved registers

 Local variables that cannot all be stored in
registers (see next slide)

 Stores arguments to any procedures it calls.

P

Callee Q

int P(int x) {

 int y=x*x;

 int z=Q(y);
 return y+z; }

11/29/2018

5

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Procedure call and return

 Call instruction
 Has a label which is a target indicating the address of the instruction

where the called procedure (the callee) starts
 Direct or indirect label
 Push a return address on the stack

 the address of the instruction immediately following the call in the
(assembly) program

 Jump to the start of the called procedure

 Return instruction
 Pops an address off the stack
 Jumps to this location
 FYI: proper use is to have prepared the stack so that the stack pointer

points to the place where the preceding call instruction stored its
return address

 Leave instruction is equivalent to:
 movl %ebp, %esp
 popl %ebp

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Procedure call and return

// Beginning of function sum

08048394 <sum>:

 8048394: 55 push %ebp

…

//return from function sum

 80493a4: c3 ret

…

// call to sum from main - START HERE!

 80483dc: e8 b3 ff ff ff call 8048394 <sum>

 80483e1: 83 c4 14 add $0x14,%esp

Return address

Callee function

Caller function

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register usage conventions

 Program registers are a shared resource
 One procedure is active at a given time
 Don’t want the callee to overwrite a value the

caller planned to use later
 BY CONVENTION/PROTOCOL

 “Caller-save” registers: %eax, %edx and %ecx
 When Q is called by P, it can overwrite these

registers without destroying any data required by
P

 “Callee-save” registers: %ebx, %esi and %edi
 Q must save these values on the stack before

overwriting them, and restore them before
returning

 %ebp and %esp must be maintained
 Register %eax is used for returning the value from any

function that returns an integer or pointer.

int P(int x)

{

 int y=x*x;

 int z=Q(y);

 return y+z;

}

1. The caller, P, can

save the value y.

2. P can store the

value in a callee-

save register

(saved and

restored).

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Swap example

 swap:

 pushl %ebp

 movl %esp, %ebp

 pushl %ebx

 movl 8(%ebp), %edx edx=xp

 movl 12(%ebp), %ecx ecx=yp

 movl (%edx), %ebx ebx=*xp (t0)

 movl (%ecx), %eax eax=*yp (t1)

 movl %eax, (%edx) *xp = t1

 movl %ebx, (%ecx) *yp=t0

 popl %ebx

 popl %ebp

 ret

void swap(int *xp, int *yp)

{

int t0 = *xp;

int t1 = *yp;

*xp = t1;

*yp = t0;

} //codeswap.c

REMINDER: we use pointers so can pass address

since can’t pass values back outside of the function

Setup/prologue

Body

Finish/epilogue
Register Value

%edx xp

%ecx yp

%ebx t0

%eax t1

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Swap

1. Move 0x124 to %edx

2. Move 0x120 to %ecx

3. Move 123 to %ebx

4. Move 456 to %eax

5. Move 456 to M[0x124]

6. Move 123 to M[0x120]

pushl %ebp

movl %esp, %ebp

pushl %ebx

popl %ebx

popl %ebp

ret

0x124

0x120

123

456

old %ebp

old %ebx

456

123

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example
procedure call

int swap_add(int *xp, int *yp)

{

 int x = *xp;

 int y = *yp;

 *xp = y;

 *yp = x;

 return x+y;

}

int caller()

{

 int arg1 = 534;

 int arg2 = 1057;

 int sum = swap_add(&arg1, &arg2);

 int diff = arg1 - arg2;

 return sum * diff;

} // callswap.c and figure 3.23

caller:

 pushl %ebp

 movl %esp, %ebp

 subl $24, %esp

 movl $534, -4(%ebp)

 movl $1057, -8(%ebp)

 leal -8(%ebp), %eax

 movl %eax, 4(%esp)

 leal -4(%ebp), %eax

 movl %eax, (%esp)

 call swap_add

 movl -4(%ebp), %edx

 subl -8(%ebp), %edx

 imull %edx, %eax

 leave

 ret

swap_add:

 pushl %ebp

 movl %esp, %ebp

 pushl %ebx

 movl 8(%ebp), %ebx

 movl 12(%ebp), %ecx

 movl (%ebx), %eax

 movl (%ecx), %edx

 movl %edx, (%ebx)

 movl %eax, (%ecx)

 leal (%edx,%eax), %eax

 popl %ebx

 popl %ebp

 ret

11/29/2018

6

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack frames for caller and swap_add

Fig 3.24

32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recursion

 Definition:
 In order to understand recursion, you must understand recursion

33 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recursive
procedure rfact:

 pushl %ebp

 movl %esp, %ebp

 pushl %ebx

 subl $20, %esp

 movl 8(%ebp), %ebx

 movl $1, %eax

 cmpl $1, %ebx

 jle .L3

 leal -1(%ebx), %eax

 movl %eax, (%esp)

 call rfact

 imull %ebx, %eax

.L3:

 addl $20, %esp

 popl %ebx

 popl %ebp

 ret

int rfact(int n) {

 int result;

 if (n <=1)

 result = 1;

 else

 result = n * rfact(n-1);

return result; }

addr Stack comment

%esp n = 3

%esp return addr caller
%esp
%ebp %ebp

%esp %ebx Caller value

-4 to -16 unused

%esp -20: 2
%ebx=3

%eax=1,2

%esp return address rfact

%esp

%ebp %ebp

%esp %ebx = 3 rfact value

-4 to -16 unused

%esp -20: 1
%ebx=2

%eax=1,1

%esp return address rfact

%esp

%ebp %ebp

%esp %ebx = 2 rfact value

-4 to -16 unused

%esp -20:

%ebx=1

%eax=1

jle .L3

“multiple of 16 bytes” x86

programming guideline;

including 4 bytes for the old

%ebp and 4 bytes for the

return address, caller uses

32 bytes; alignment issues

(3.9.3)

CALL Pushes the return address

onto the stack (%esp-4 and mov);
RETURN pops it

POPPING:

%ebx = 2, 3

%eax = 1, 2, 6

34 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Introduction of IA32

 IA32 operations
 Data movement operations

 Stack operations and function calls

 Arithmetic and logic operations

 Compare and jump operations

 Instruction encoding format

 Array and structures allocation and access

35 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic and Logical Operations

 Watch out for argument
order! see SUB

 No distinction between
signed and unsigned int

 Notice A/L for arithmetic
and logical right shifts

 Operation Groups
 Variant of the move
 Unary
 Binary
 Shifts

 Reminder: Note the

difference in instruction
between assemble and
disassemble – just like the
movl vs mov

36 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

LEA – load effective address

 Does not reference memory at all
 You don’t get the value at the address… just the address (&x)

 Copies the effective address to the destination
 Used to generate pointers for later memory references
 Can also be used to compactly describe common arithmetic operations
 The destination operand must be a register

Example: leal 7 (%edx, %edx, 4) , %eax
Sets register %eax to 5x+7
%edx + %edx*4 + 7 Assume: %eax = x and %ecx= y

INSTRUCTION RESULT
 leal 6(%eax), %edx 6 + x
 leal (%eax, %ecx), %edx x + y
 leal (%eax, %ecx, 4), %edx x + 4y
 leal 7(%eax, %eax,8), %edx 7 + 9x
 leal 0xA(,%ecx,4),%edx 10 + 4y
 leal 9(%eax,%ecx,2), %edx 9 + x + 2y

11/29/2018

7

37 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unary and Binary operations

 Unary
 Single operand serves as both

source and destination
 Register or memory location
 Similar to C ++ and --

operators

 Binary
 Second operand is both

source and destination
 Thus cannot be an

immediate value
 Can be memory or

register
 First operand can be

immediate, memory, or
register

 Reminder: both cannot be
memory

 Similar to C operations such
as x += y

INSTRUCTION DESTINATION VALUE

addl %ecx, (%eax) 0x100 0x100

subl %edx, 4(%eax) 0x104 0xA8

imull $16,(%eax,%edx,4) 0x10C 0x110

incl 8(%eax) 0x108 0x14

decl %ecx %ecx 0x0

subl %edx, %eax %eax 0xFD

ADDRESS VALUE
0x100 0xFF
0x104 0xAB
0x108 0x13
0x10C 0x11

REGISTER VALUE

%eax 0x100

%ecx 0x1

%edx 0x3

38 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shift operations

 Shift amount given in first operand
 Coded as a single byte

 Only shift amounts between 0 and 31 possible

 Only low order 5 bits are considered

 Immediate value or in the single byte register element %cl
(unusual!)

 Value to shift in second operand

 Arithmetic and logical
 Left shifts behave the same, though

 Zero fill

 Right shifts

 sign extend (arithmetic)

 zero fill (logical)

39 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Discussion

 Instructions work for unsigned or two’s complement
arithmetic

 Except right shift

 Makes 2’s comp arithmetic the preferred way to
implement signed integer arithmetic

40 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic example

%ebp

00000000 <arith>:

 0: 55 push %ebp

 1: 89 e5 mov %esp,%ebp

 3: 8b 4d 08 mov 0x8(%ebp),%ecx

 6: 8b 55 0c mov 0xc(%ebp),%edx

 9: 8d 04 52 lea (%edx,%edx,2),%eax

 c: c1 e0 04 shl $0x4,%eax

 f: 8d 44 01 04 lea 0x4(%ecx,%eax,1),%eax

 13: 01 ca add %ecx,%edx

 15: 03 55 10 add 0x10(%ebp),%edx

 18: 0f af c2 imul %edx,%eax

 1b: 5d pop %ebp

 1c: c3 ret

int arith(int x, int y, int z) {

 int t1 = x + y;

 int t2 = z + t1;

 int t3 = x + 4;

 int t4 = y * 48;

 int t5 = t3 + t4;

 int rval = t2 * t5;

 return rval; }

41 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Introduction of IA32

 IA32 operations
 Data movement operations

 Stack operations and function calls

 Arithmetic and logic operations

 Compare and jump operations

 Instruction encoding format

 Array and structures allocation and access

42 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overview of Compare and Jump

 Introduction with some examples

 Conditional codes & how to set CC

 How to use CC

 Control structures in assembly code

11/29/2018

8

43 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control structures (in C)

 Machine code provides two basic low-level mechanisms for
implementing conditional behavior, tests data values then either

 Alters the control flow (conditional statement)

 Alters the data flow (conditional expression)

int absdiff(int x, int y) {

 if (x < y) return y – x;

 else return x – y; }

int absdiff(int x, int y) {

 return x < y ? y – x : x-y;

}

int gotodiff(int x, int y) {

 int result;

 if (x >= y) goto x_ge_y;

 result = y – x;

 goto done;

x_ge_y: result = x – y;

done: return result; }

int cmovdiff(int x, int y) {

 int tval = y-x;

 int rval = x-y;

 int test = x < y;

 if (test) rval = tval;

 return rval;

}

44 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compares and Jumps Example

Using the JMP instruction, we may create a

simple infinite loop that counts up from zero

using the %eax register:

 MOVL $0, %eax

loop: INCL %eax

 JMP loop

// unconditional jump

Loop to count %eax from 0 to 5:

 MOVL $0, %eax

loop: INCL %eax

 CMPL $5, %eax

 JLE loop

// conditional jump

//if %eax <= 5 then go to loop

The jmp label instruction causes the processor to execute the next

instruction at the location given by the label (i.e., the %eip is set to

label).

Conditional jump instructions will only transfer control if to the target of

the appropriate flags are set.

45 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Condition Code Flags

 EXAMPLE: t = a + b
 a (= 1011) + b (= 1000) = 1 0011

 CF set when: // unsigned overflow
 unsigned t < unsigned a

 reminder: only positive values

 carry-out == 1

 How about unsigned sub: t = a – b, a < b, borrow == 1

 ZF set when: t == 0 // zero

 SF set when: t < 0 // negative

 OF set when: // signed overflow
 (a<0 == b<0) && (t<0 != a<0)

 (a<0 && b<0 && t>=0) || (a>0 && b>0 && t<0)

46 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Technically…

 Arithmetic and logical operators set the EFLAGS

Leal does not alter any condition codes

(since intended use is address computations

– pg. 420)

Logical operations carry and overflow flags

are set to 0 (ex. XOR pg. 845)

Shift operations, the carry flags is set to the

last bit shifted out; the overflow flag is set to

0 (pg. 741)

INC/DEC set overflow and zero flags; and

leave carry flag unchanged.

* Check ISA manual

47 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Compare instruction

 These instructions set the condition codes without
updating any other registers

 CMPx S1, S2 S2-S1
 The x can be a b, w or l for byte, word or long

 CMP acts like the SUB without updating the destination
 ZF set if a == b

 SF set if (a-b) < 0

 CF set if carry out from MSB = 1

 OF set if 2’s comp overflow

 (a>0 && b<0 && (a-b)<0 || (a<0 && b>0 && (a-b)>0)

48 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Test instruction

 The TEST operation sets the flags CF and OF to zero. The SF is
set to the MSB of the result of the AND. If the result of the
AND is 0, the ZF is set to 1, otherwise set to 0.

 TEST acts like the AND without updating the destination… testx
s1, s2 s1 & s2
 ZF set when a&b == 0
 SF set when a&b < 0
 OF/CF are set to 0 (not used)
 Example: same operand repeated to see whether the operand is

negative, zero or positive
 testl %eax, %eax

– sets ZF to 1 if %eax == 0
– sets SF to 1 if %eax < 0 (i.e. negative) and 0 if %eax > 0 (i.e.

positive)
 One of the operands is a mask indicating which bits should be tested

 testl 0xFF, %eax

http://en.wikipedia.org/wiki/Sign_flag
http://en.wikipedia.org/wiki/Most_significant_bit
http://en.wikipedia.org/wiki/Bitwise_AND
http://en.wikipedia.org/wiki/Bitwise_AND

11/29/2018

9

49 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing the Condition Codes

 3 common ways to use condition codes:
 SET

 Set a single byte to 0 or 1 depending on some combination of
the condition codes

 JMP

 Conditionally jump to some other part of the program

 CMOV

 Conditionally transfer data

50 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Set instructions

 Sets a single byte to 0 or 1 based on combinations of
condition codes

 Each set instruction has a designated destination:
 Byte register

 One of 8 addressable byte registers embedded within first 4
integer registers

 Does not alter remaining 3 bytes

 Typically use movzbl to finish the job

 Single-byte memory location

51 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SET instruction options

Instruction Condition Synonym Description

sete D ZF setz equal / zero

setne D ~ZF setnz not equal / not zero

sets D SF negative

setns D ~SF nonnegative

setg D ~(SF ^ OF) & ~ZF setnle greater (signed >)

setge D ~(SF ^ OF) setnl greater or equal (signed >=)

setl D SF ^ OF setnge less (signed <)

setle D (SF ^ OF) | ZF setng less or equal (signed <=)

seta D ~CF & ~ZF setnbe above (unsigned >)

setb D CF setnae below (unsigned <)

Multiple possible names for the instructions called synonyms.

Compilers and disassemblers make arbitrary choices of which names to use.

Note CF only on unsigned options

52 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Set instruction examples

// is a < b?

 // a = %edx, b = %eax

cmpl %eax, %edx // a-b i.e. %edx - %eax

 // flags set by cmpl

setl %al // D SF ^ OF

movzbl %al, %eax // clear high order 3 bytes

// if %al has a 1 in it, then the answer is yes

// if %al has a 0 in it, then the answer is no

// another example

movl 12(%ebp), %eax // eax = y

cmpl %eax, 8(%ebp) // compare x:y (x-y)

setg %al // al = x > y

movzbl %al, %eax // zero rest of eax

FLAGS:

If a = b then ZF = 1 a-b=0

If a < b then SF = 1 a-b<0 (#2)

If a > b then SF = 0 a-b>0

If a<0, b>0, t>0 then OF=1 (#1)

If a>0, b<0, t<0 then OF=1

If unsigned… CF (not interested)

SF ^ OF D

0 0 = 0

0 1 = 1 (see #1 below)

1 0 = 1 (see #2 below)

1 1 = 0

So, a < b when D = 1

#1 a is neg, b is pos, t is pos

#2 a-b<0 means a<b

notice cmpL and setL are NOT the same thing

53 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Jump instructions

Instruction Condition Description

jmp 1 unconditional

je label ZF equal

jne label ~ZF not equal

js label SF negative

jns label ~SF nonnegative

jg label ~(SF ^ OF) & ~ZF greater (signed)

jge label ~(SF ^ OF) greater or equal (signed)

jl label SF ^ OF less (signed)

jle label (SF ^ OF) | ZF less or equal (signed)

ja label ~CF & ~ZF above (unsigned)

jb label CF below (unsigned)

The test and cmp

instructions are combined

with the conditional and

unconditional jmp

instructions to implement

most relational and logical

expressions and all control

structures.

Set allows us to know what

the condition evaluates to if

something other than jmp to

be done.

There are synonyms for jump instructions as well

54 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conditional moves

// What operation is OP? Fill in the comments to explain how the code works.

// x is in %edx… for example, what if x = 16? What if x = -8?

leal 3(%edx), %eax // temp = x+3

testl %edx, %edx // test x – sets ZF and SF

cmovns %edx, %eax // if x >= 0, temp = x

sarl $2, %eax // return temp >> 2 = x/4 return value in %eax

#define OP _______

int arith(int x) { return x OP 4; }

ANSWER:

Divide is the OP

Add 3 because:

If x is negative, it

requires biasing

in order to divide

by 4 i.e.

2k-1 = 3

Since and k = 2

11/29/2018

10

55 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example
overview

if (a == b) x = 1;

 cmpl a, b // (b-a) == 0

 jne skip //not equal, so skip

 movl $1, x // since a == b, x = 1

skip:

 nop // no operation…???

if (a > b) x = 1;

 cmpl b, a // (a-b) > 0

 jle skip // skip if a <= b

 movl $1, x

skip:

// Counts the number of bits set to 1

int count = 0;

int loop = 32;

do {

 if (x & 1) count++;

 x >>= 1;

 loop--;

} while (loop != 0)

 movl $0, count

 movl $32, loop

.L2:

 movl x, %eax

 andl $1, %eax

 testl %eax, %eax

 je .L5

 incl count

.L5:

 sarl x

 decl loop

 cmpl $0, loop

 jne .L2 cmpl a,b

jge skip

56 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conditional branch example

<=

57 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General “do while” translation

Reminder: “Test” is expression

return an integer of 1 when true

and 0 when false

Use backward branch to

continue looping

Only take branch when “while”

condition holds

58 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

“Do While” loop compilation

59 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

“While” loop translation

Is this code equivalent to the do-

while version? Must jump out of

loop if test fails

Uses same inner loop as do-while version;

guards loop entry with extra test

60 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

While vs DoWhile

fact_while:

 pushl %ebp

 movl %esp, %ebp

 movl 8(%ebp), %edx

 movl $1, %eax

 cmpl $1, %edx

 jle .L3

.L6:

 imull %edx, %eax

 subl $1, %edx

 cmpl $1, %edx

 jne .L6

.L3:

 popl %ebp

 ret

fact_dowhile:

 pushl %ebp

 movl %esp, %ebp

 movl 8(%ebp), %edx

 movl $1, %eax

.L2:

 imull %edx, %eax

 subl $1, %edx

 cmpl $1, %edx

 jg .L2

 popl %ebp

 ret

11/29/2018

11

61 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

“For” loop translation

62 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

“For” loop example
cmov (conditional move) only
transfers the data if the
condition is true

ipwr_for:

 pushl %ebp

 movl %esp, %ebp
 pushl %ebx

 movl 8(%ebp), %ecx // x

 movl 12(%ebp), %edx // p

 movl $1, %eax // result
 testl %edx, %edx // set cc

 je .L4 // ZF=1 iff %edx == 0

.L5:

 movl %eax, %ebx // temp result in ebx

 imull %ecx, %ebx // new result (* x)
 testb $1, %dl // If cond

 cmovne %ebx, %eax // ~ZF update result

 shrl %edx

 je .L4
 imull %ecx, %ecx // x*x

 jmp .L5

.L4:

 popl %ebx
 popl %ebp

 ret

// compute x raised to the

// nonnegative power p

int ipwr_for(int x, unsigned p)

{

 int result;

 for (result = 1; p != 0; p = p>>1)

 {

 if (p & 0x1)

 result *= x;

 x = x * x;

 }

 return result;

}

Example walkthrough

x=2, p=4

63 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disassembly of ipwr_for

 cmov (conditional
move) only
transfers the data
if the condition is
true

 0: 55 push %ebp

 1: 89 e5 mov %esp,%ebp

 3: 53 push %ebx

 4: 8b 4d 08 mov 0x8(%ebp),%ecx

 7: 8b 55 0c mov 0xc(%ebp),%edx

 a: b8 01 00 00 00 mov $0x1,%eax

 f: 85 d2 test %edx,%edx

 11: 74 14 je 27 <ipwr_for+0x27>

 13: 89 c3 mov %eax,%ebx

 15: 0f af d9 imul %ecx,%ebx

 18: f6 c2 01 test $0x1,%dl

 1b: 0f 45 c3 cmovne %ebx,%eax

 1e: d1 ea shr %edx

 20: 74 05 je 27 <ipwr_for+0x27>

 22: 0f af c9 imul %ecx,%ecx

 25: eb ec jmp 13 <ipwr_for+0x13>

 27: 5b pop %ebx

 28: 5d pop %ebp

 29: c3 ret

64 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Switch Statements

 Implementation options
 Series of conditionals

 Good in few cases

 Slow if many

 Jump table

 Lookup branch target

 Avoids conditionals

 Possible when cases are small
integer constants

 GCC

 Picks one based on case
structure

 Usually should also specify
“default:” case

switchasm.c

65 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Jump table structure
FYI: Direct jump is an
encoded target as part of
the instruction

Indirect jump *operand
Operand is typically a register
 *%eax where reg is the target

value; OR
 *(%eax) where jump target is

read from memory

JUMP TABLE:

An array where entry i is

the address of a code

segment implementing

the action the program

should take when the

switch index equals i.

Lookup branch target

Avoids conditionals

Possible when cases are

small integer constants

66 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Switch statement
example

11/29/2018

12

67 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sparse “switch” example

68 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Introduction of IA32

 IA32 operations
 Data movement operations

 Stack operations and function calls

 Arithmetic and logic operations

 Compare and jump operations

 Instruction encoding format

 Array and structures allocation and access

69 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instruction formats for swap

00000000 <swap>:
 opcode ModR/M SIB

Displace

ment
Imme

diate

 0: 55 push %ebp 55

 1: 89 e5 mov %esp,%ebp 89 11 100 101

 3: 53 push %ebx 53

 4: 8b 55 08 mov 0x8(%ebp),%edx

8b 01 010 101
0000 1000

 7: 8b 45 0c mov 0xc(%ebp),%eax

8b 01 000 101
0000 1100

 a: 8b 0a mov (%edx),%ecx 8b 00 001 010

 c: 8b 18 mov (%eax),%ebx 8b 00 011 000

 e: 89 1a mov %ebx,(%edx) 89 00 011 010

 10: 89 08 mov %ecx,(%eax) 89 00 001 000

 12: 5b pop %ebx 5b

 13: 5d pop %ebp 5d

 14: c3 ret c3

http://www.cs.princeton.edu/courses/archive/spr11/cos217/reading/ia32vol2.pdf

PUSH pg 701; MOV pg 479; POP pg 637; RET pg 28

70 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instruction Format

 All IA-32 instruction encodings are subsets of the general instruction format
shown below, in the given order

 Instructions consist of:
 optional instruction prefixes (in any order)
 1-3 opcode bytes – determines the action of the statement
 an addressing-form specifier (if required) consisting of:

 the ModR/M byte - addressing modes register/memory
 sometimes the SIB (Scale-Index-Base) byte
 a displacement (if required)
 an immediate data field (if required).

71 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ModR/M

 Mod=00,
 First operand a register, specified by Reg #
 Second operand in memory; address stored in a register numbered by R/M.

 That is, Memory[Reg[R/M]]
 Exceptions:

 R/M=100 (SP): SIB needed
 R/M=101 (BP): disp32 needed

 Mod=01, same as Mod 00 with 8-bit displacement.
 Second operand: Memory[disp8+Reg[R/M].
 Exception: SIB needed when R/M=100

 Mod=10, same as Mod 01 with 32-bit displacement
 Mod=11

 Second operand is also a register, numbered by R/M.

 Do not confuse displacement width with data width.
 Data width is specified by the opcode.
 For example, the use of disp8 does not imply 8-bit data.

For some opcodes, the reg# is used as an extension of the opcode.

72 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SIB displacement and immediate

 SIB
 Specify how a memory address is calculated

 Address = Reg[base] + Reg[Index] * 2scale

 Exceptions:

 SP cannot be an index, and

 BP cannot be a base

 Displacement
 Can immediately follow ModR/M byte

 1, 2, or 4 bytes

 Immediate
 Immediate operand value always follows any displacement bytes

 1, 2 or 4 bytes

http://www.cs.princeton.edu/courses/archive/spr11/cos217/reading/ia32vol2.pdf
http://www.cs.princeton.edu/courses/archive/spr11/cos217/reading/ia32vol2.pdf

11/29/2018

13

73 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Introduction of IA32

 IA32 operations
 Data movement operations

 Stack operations and function calls

 Arithmetic and logic operations

 Compare and jump operations

 Instruction encoding format

 Array and structures allocation and access

74 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Array allocation and access

 type array[length]
 Contiguously allocated region of length * sizeof(T) bytes

 Starting location of array is a pointer (x)

 Access array elements using integer index i ranging between 0 and length-
1 (i.e. the subscript)

 Array element i will be stored at address x+sizeof(T)*i

Total size: 12, 20, & 32

Element i:

 x + 1*i

 x + 4*i

 x + 8*i

Address of array in %edx and i

stored in %ecx

 movl (%edx,%ecx,4)

75 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Array allocation and access (cont)

 Explains why scaled factors are 1, 2, 4, and 8
 The primitive data types

 Problem 3.35 (pg 233)

 IA32
 A pointer of any kind is 4 bytes long

 GCC allocates 12 bytes for the data type long double

 4 bytes for float and pointers, 8 bytes for double, 12 bytes for long double

Given Array
Element

size Total Size
Start

address Element i

short S[7] S 2 14 x_s x_s + 2i

short *T[3] T 4 12 x_t x_t + 4i

long double V[8] V 12 96 x_v x_v + 12i

long double *W[4] W 4 16 x_w x_w + 4i

76 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pointer arithmetic
 Reminders...

 C allows arithmetic on pointers, where the computed value is scaled according to the size of the data
type referenced by the pointer

 So, if p is a pointer to data type T

 And, the value of p is x_p

 Then, then p+i has value x_p + L*i

 Where, L is the size of data type T

 Thus A[i] == *(A+i)

 Example

 %edx starting address of array E

 %ecx integer index i

Expression Type Value Assembly code… result in %eax Comment

E int * x_e movl %edx, %eax

E[0] int M[x_e] movl (%edx, %ecx,4), %eax Reference memory

E[i] int M[x_e + 4i] movl (%edx, %ecx,4), %eax Reference memory

&E[2] int * x_e + 8 leal 8(%edx), %eax Generate address

E+i-1 int * x_e + 4i - 4 leal -4(%edx,%ecx,4), %eax Generate address

*(E+i-3) int * M[x_e + 4i -12] movl -12(%edx, %ecx,4), %eax Reference memory

&E[i]-E int i movl %ecx, %eax

77 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structures

 Reminder… the C struct declaration creates a data type
that groups objects of possibly different types into a
single object

 Implementation similar to arrays
 All components are stored in a contiguous region of memory

 A pointer to a structure is the address of its first byte

 The compiler maintains information about each structure
type indicating the byte offset of each field
 Generates references to structure elements using these offsets as

displacements in memory referencing instructions

78 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure allocation

11/29/2018

14

79 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure Access

find_a:

 pushl %ebp

 movl %esp, %ebp
 movl 12(%ebp), %eax // idx (2nd arg)

 sall $2, %eax // mult by 4

 addl 8(%ebp), %eax // ptr to struct (1st arg)

 addl $4, %eax
 popl %ebp

 ret

leal 4(%edx, %ecx, 4)

80 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure referencing (cont)

“i” represents

the element of

“a” that I want

“p” to point to

81 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data Alignment

82 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Specific cases of alignment

IA32/LINUX address

2 bytes hex: ends in

even hex digit (0, 2, 4,

6, 8, A, C, E)

4 bytes hex: ends in

divisible by 4 hex digit

(0,4,8,C)

8 bytes hex: ends in

divisible by 8 hex digit

(0,8)

83 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Satisfying alignment in structures

Long long treated like 8-byte data type

84 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Saving space

Total bytes = 12

Total bytes = 8

11/29/2018

15

85 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another Example

Each block is a byte

86 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

End IA32

