Chapter 3
Machine-Level Programming I: Basics

Bryant and O'Hallaron, C Systems: A Programmer's Perspective, Third Edition 1

1

Intel x86 Evolution: Milestones

8086 1978 29K 5-10
First 16-bit Intel processor. Basis for IBM PC & DOS
1MB address space

386 1985 275K 16-33

First 32 bit Intel processor, referred to as IA32
Added “flat addressing”, capable of running Unix

Pentium 4E 2004 125M 2800-3800
First 64-bit Intel x86 processor, referred to as x86-64

Core 2 2006 291M 1060-3500
First multi-core Intel processor

Core i7 2008 791M 1700-3900
Four cores

Core i9 2017 1.7G 4900-5200
Eight cores

< pective, Third Edition 3

Recent Architecture
Core i7 Broadwell 2015

Desktop Model
4 cores
Integrated graphics
3.3-3.8GHz
65W

Server Model
8 cores
Integrated I/O
2-2.6 GHz
45W

L < pective, Third Edition 5

]
Machine Programming I: Basics

History of Intel processors and architectures
C, assembly, machine code

Assembly Basics: Registers, operands, move
Arithmetic & logical operations

Hall Systems: A Programmer's Perspective Third Edition 2

Intel x86 Processors, cont.
Machine Transistors (Moore’s Law)
386 1985 0.3M
Pentium 1993 3.1M
Pentium/MMX 1997 4.5M
PentiumPro 1995 6.5M
Pentium Il 1999 8.2M
Pentium 4 2001 42M
Core 2 Duo 2006 291M
Corei7 2008 731M L e rarmareeaonpmaeprregnl|
Core i9 2017 1.7G6 e

Added Features ISR LN XS DI

Instructions to support multimedia ops
Instructions to enable more efficient b ik i o
conditional operations

Transition from 32 bits to 64 bits

Shared L3 Cache

More cores, sberspecive Thirg gition

=]
x86 Clones: Advanced Micro Devices (AMD)

Historically
AMD has followed just behind Intel
A little bit slower, a lot cheaper
Then
Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies
Built Opteron: tough competitor to Pentium 4
Developed x86-64, their own extension to 64 bits
Recent Years
Intel got its act together
Leads the world in semiconductor technology
AMD has fallen behind
Relies on external semiconductor manufacturer

< repective Third Edition 6

Intel’s 64-Bit History

2001: Intel Attempts Radical Shift from IA32 to IA64
Totally different architecture (Itanium)
Executes IA32 code only as legacy
Performance disappointing

2003: AMD Steps in with Solution
x86-64 (now called “AMD64”)

Intel Felt Obligated to Focus on IA64
Hard to admit mistake or that AMD is better

2004: Intel Announces EM64T extension to 1A32
Extended Memory 64-bit Technology
Almost identical to x86-64!

All but low-end x86 processors support x86-64
But, lots of code still runs in 32-bit mode

Bryant and O'Hallaron, C Systems: A Programmer's Perspective, Third Edition

7

e
Machine Programming |: Basics

History of Intel processors and architectures
C, assembly, machine code
Assembly Basics: Registers, operands, move

Arithmetic & logical operations

< pective, Third Edition

Assembly/Machine Code View

CPU Memory
Addresses
Registers
Data Code
Data

Instructions Stack

Programmer-Visible State

PC: Program counter Memory
Byte addressable array
Code and user data

Address of next instruction
Called “RIP” (x86-64)
Register file Stack to support procedures
Heavily used program data
Condition codes

Store status information about most
recent arithmetic or logical operation

Used for conditional branching
< 2 (sper

Bryantan: pective, Third Edition

11

]
Our Coverage

1A32
The traditional x86

x86-64
The standard
gcc hello.c
gcc —-mé64 hello.c

Presentation
Book covers x86-64
Web aside on IA32
We will only cover x86-64

Hall Systems: A Programmer's Perspective Third Edition

Definitions

Architecture
also ISA: instruction set architecture
The parts of a processor design that one needs to understand to
write assembly/machine code.
Examples: instruction set specification, registers.
Microarchitecture
Implementation of the architecture.
Examples: cache sizes and core frequency.
Code Forms
Machine Code: The byte-level programs that a processor executes
Assembly Code: A text representation of machine code
Example ISAs
Intel: x86, 1A32, Itanium, x86-64
ARM: Used in almost all mobile phones

< /s Perspective Third Edition

10

=]
Turning C into Object Code

Codeinfiles pl.c p2.c
Compile with command: gcec -Og pl.c p2.c -o p
Use basic optimizations (-Og) [New to recent versions of GCC]

Put resulting binary in file p

text | Cprogram (pl.c p2.c) |

Compiler (gcc -0Og -8)

text | Asm program (pl.s p2.s) |

Assembler (gcc or as)

Static libraries
(.a)

binary | Object program (pl.o p2.o0) |

Linker (gcc or 1d)

binary | Executable program (p)

< /sPerspective Third Edition

12

Compiling Into Assembly
C Code (sum.c) Generated x86-64 Assembly

long plus(long x, long y); sumstore:
pushg $rbx
void sumstore(long x, long y, movq %$rdx, %rbx
long *dest) call plus
{ movq %rax, (%rbx)
long t = plus(x, y); popq $rbx
*dest = t; ret
}

Obtain with command
gcc -Og —-S sum.c
Produces file sum. s

Warning: May get very different results on other types of
machines (Andrew Linux, Mac 0S-X, ...) due to different
versions of gcc and different compiler settings.

Bryant and O'Hallaron, C Systems: A Programmer's Perspective, Third Edition 13

13

-]
Assembly Characteristics: Operations

Perform arithmetic function on register or memory data

Transfer data between memory and register
Load data from memory into register
Store register data into memory

Transfer control
Unconditional jumps to/from procedures
Conditional branches

< pective, Third Edition 15

15

Machine Instruction Example
C Code

Store value t where designated by
dest

‘*dest =t; ‘

Assembly
Move 8-byte value to memory
Quad words in x86-64 parlance
Operands:

‘movq $rax, (%rbx) ‘

t: Register $rax
dest: Register $rbx
*dest: MemoryM[$rbx]
Object Code
3-byte instruction
Stored at address 0x40059e

0x40059e: 48 89 03

Bryontand 0' < 2 /sPerspective Third Edition 1

17

Assembly Characteristics: Data Types

“Integer” data of 1, 2, 4, or 8 bytes
Data values
Addresses (untyped pointers)

Floating point data of 4, 8, or 10 bytes
Code: Byte sequences encoding series of instructions

No aggregate types such as arrays or structures
Just contiguously allocated bytes in memory

Hall Systems: A Programmer's Perspective Third Edition M

14

]
Object Code

Code for sumstore

Assembler
0x0400595: T at int

0x53 ranslates . s into .o
0x48 Binary encoding of each instruction
0x89 Nearly-complete image of executable code
0xd3

" Missing linkages between code in different
Oxe8)
0x£2 files
Ox£f Linker
Ox£ff "
OxEf Resolves references between files

0x48 * Total of 14 bytes

0x89 * Eachinstruction
0x03 1, 3, or 5 bytes
0x5b e Starts at address
Oxc3 0x0400595

Combines with static run-time libraries
E.g., code formalloc, printf
Some libraries are dynamically linked

Linking occurs when program begins
execution

< /s Perspective Third Edition 16

16

Disassembling Object Code

Disassembled

0000000000400595 <sumstore>:
400595: 53 push $rbx
400596: 48 89 d3 mov %rdx, $rbx
400599: e8 f2 ff ff ff callg 400590 <plus>
4005%e: 48 89 03 mov %rax, (%rbx)
4005al: 5b Pop %rbx
4005a2: c3 retq

Disassembler
objdump -d sum
Useful tool for examining object code
Analyzes bit pattern of series of instructions
Produces approximate rendition of assembly code
Can be run on either a . out (complete executable) or . o file

< /sPerspective Third Edition 18

18

Alternate Disassembly
. Disassembled
Object
0x0400595:
0x53 Dump of assembler code for function sumstore:
0x48 0x0000000000400595 <+0>: push $rbx
089 0x0000000000400596 <+1>: mov %rdx, %rbx
0xd3 0x0000000000400599 <+4>: callg 0x400590 <plus>
Oxe8 0x000000000040059%e <+9>: mov %rax, ($rbx)
0x£2 0x00000000004005al1 <+12>:pop $rbx
G 0x00000000004005a2 <+13>:retq
Ox£ff
Oxff
0x48 Within gdb Debugger
0x89
db sum
0x03 ge
0x5b disassemble sumstore
0Oxc3 Disassemble procedure
x/14xb sumstore
Examine the 14 bytes starting at sumstore
Bryant and O'Hall: Cc Systems: A Programmer’s Perspective, Third Edition 19

19

e
Machine Programming |: Basics

History of Intel processors and architectures
C, assembly, machine code

Assembly Basics: Registers, operands, move
Arithmetic & logical operations

< pective, Third Edition 2

21

Some History: IA32 Registers Origin
(mostly obsolete)
[| %eax $ax %ah %al accumulate
° | %ecx $cx %ch scl counter
2
=
g | $edx $ax[%dh | sdl | data
2 4
3 | $ebx sbx| soh | bl | base
a 1 source
[vesi i | |
| [peai 00 B
stack
| %esp bsp l I pointer
base
| %ebp *ep l I pointer

g"backwards compatibility)

Bryontand 0' < 2 /s Perspective, Third Edit

23

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD .EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000:

30001001: . . .

30001003+ _Reverse englneerlr_\g forbidden by
30001005: Microsoft End User License Agreement
3000100a:

Anything that can be interpreted as executable code
Disassembler examines bytes and reconstructs assembly source

Hall Systems: A Programmer's Perspective Third Edition 2

20

x86-64 Integer Registers

|%rax ‘%eax | |%r8 ‘%rsd |

$rbx $ebx %r9 $r9d
%$rcx %$ecx %$rl0 $rl0d

|erdx [teax | [sr11 = |
lersi [test | |er12 [sr12 |
%rdi ‘%edi		%r13 ‘%rle
%rsp l%esp I	%r14 ‘%r14d	
¢rbp [vep	[sr15 [+x15a	

Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

< /s Perspective Third Edition 2

22

]
Moving Data

Moving Data srex

movgq Source, Dest: $rdx
Operand Types [erbx]
Immediate: Constant integer data

Like C constant, but prefixed with *$’ srsp
Encoded with 1, 2, or 4 bytes 5
Register: One of 16 integer registers rbp

Example: $rax, %$rl3

But $rsp reserved for special use
Others have special uses for particular instructions

Memory: 8 consecutive bytes of memory at address given by register
Simplest example: ($rax)
Various other “address modes”

< /sPerspective Third Edition 2

24

movq Operand Combinations

Source Dest Src,Dest C Analog

Reg movq $0x4,%rax
Imm
Mem movqg $-147, (%rax) *p = -147;

temp = 0x4;

Reg movqg %$rax,%rdx temp2 = templ;

movq Reg
Mem movqg %rax, (%rdx) *p = temp;

Mem Reg movqg (%rax),%rdx temp = *p;

Cannot do memory-memory transfer with a single instruction

Bryant and O'Hallaron, C Systems: A Programmer's Perspective, Third Edition

25

Example of Simple Addressing Modes
void swap(long *xp, long *yp)
{ swap:
long t0 = *xp; movqg (%$rdi) , %rax
long tl = *yp; movqg (%rsi), %$rdx
*xp = tl; movq %$rdx, (%rdi)
*yp = t0; movqg $rax, (%rsi)
} ret
c pectve Thid Egion o
27

Understanding Swap()
) Memory
Registers Address
123 0x120
[2zai] ox120 *
0x118
%$rsi 0x100
ox110
srax 0x108
$rdx 456 [0x100
swap:
movqg (%rdi) , %rax # t0 = *xp
movq (%rsi), %rdx # tl = *yp
movqg %rdx, (%rdi) # *xp = tl
movqg %rax, (%rsi) # *yp = t0
ret
Brand o' < 2 (sPerspective Third Edition 2

29

=
Simple Memory Addressing Modes

Normal (R) Meml[Reg[R]]
Register R specifies memory address
Aha! Pointer dereferencing in C

movqg (%$rcx),%rax
Displacement D(R) Mem[Reg[R]+D]

Register R specifies start of memory region
Constant displacement D specifies offset

movqg 8 (%rbp) ,%rdx

Hall Systems: A Programmer's Perspective Third Edition

26

|
Understanding Swap()

Memory

void swap (long *xp, long *yp) Registers

: s

i g ESEEN

Register Value
$rdi Xp
trsi YP swap:
$rax t0 movq (%rdi) , %rax # t0 = *xp
$rdx tl movq (%rsi), %$rdx # tl = *yp
movg %rdx, (%rdi) # *xp = tl
movq %rax, (%rsi) # *yp = t0
ret
< /s Perspective Third Edition 2
Understanding Swap()
) Memory
Registers Address
0x120
0x120 123/ Ox
0x118
0x100
0x110
123 0x108
$rdx 456 | 0x100
swap:
movqg (%rdi) , %rax # t0 = *xp
movq (%rsi), %rdx # tl = *yp
movq %rdx, (%rdi) # *xp = tl
movq %rax, (%rsi) # *yp = t0
ret
< (sPerspective Third Ediion)

Understanding Swap()
) Memory
Registers Address
123| 0x120
[zai] ox120
0x118
[sxsi] ox100
0x110
$rax 123 0x108
$rdx 456 456 | 0x100
swap:
movqg (%rdi) , %rax # t0 = *xp
movq (%rsi), %rdx # tl = *yp
movqg %rdx, (%rdi) # *xp = tl
movq %rax, (%rsi) # *yp = t0
ret
Bryant and O'Hall: C Systems: A Programmer’s Perspective, Third Edition 31

31
Understanding Swap()
) Memory
Registers Address
4 0x120
[2zai] ox120 56] Ox
0x118
[szsi] ox100
0x110
$rax 123 \ 0x108
$rdx 456 123 | 0x100
swap:
movqg (%rdi) , %rax # t0 = *xp
movq (%rsi), %rdx # tl = *yp
movqg %rdx, (%rdi) # *xp = tl
movq %rax, (%rsi) # *yp = t0
ret
< pective, Third Editon 3

|
Complete Memory Addressing Modes

Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
D: Constant “displacement” 1, 2, or 4 bytes
Rb: Base register: Any of 16 integer registers
Ri: Index register: Any, except for $rsp
S: Scale: 1, 2, 4, or 8 (why these numbers?)

Special Cases

(Rb,Ri) Mem[Reg[Rb]+Regl[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Bryontand 0' < 2 /sPerspective Third Edition

Understanding Swap()

) Memory
Registers Address
456| 0x120
0x120 *
0x118

$rax 123 0x108
$rdx 456 456 | 0x100
swap:
movq (%rdi) , %rax # t0 = *xp
movq (%rsi), %rdx # tl = *yp
movqg %rdx, (%rdi) # *xp = tl
movq %rax, (%rsi) # *yp = t0
ret

Hall Systems: A Programmer's Perspective Third Edition

35

32

]
Simple Memory Addressing Modes

Normal (R) Mem|[Reg[R]]
Register R specifies memory address
Aha! Pointer dereferencing in C

movqg (%$rcx),%rax
Displacement D(R) Mem[Reg[R]+D]

Register R specifies start of memory region
Constant displacement D specifies offset

movqg 8 (%rbp) ,%rdx

< /s Perspective Third Edition

34

Address Computation Examples

$rdx 0x£000

$rcx 0x0100

Expression Address Computation Address
0x8 ($rdx) 0x£f000 + 0x8 0x£008
(%rdx, $rcx) 0x£000 + 0x100 0x£100
(%$rdx, %rcx, 4) 0xf000 + 4*0x100 |0x£f400
0x80 (, %rdx,2) 2%0x£000 + 0x80 |0x1e080

< /sPerspective Third Edition

36

=]
Machine Programming I: Basics

History of Intel processors and architectures
C, assembly, machine code

Assembly Basics: Registers, operands, move
Arithmetic & logical operations

Bryant and O'Hallaron, C Systems: A Programmer's Perspective, Third Edition 37

37

e
Some Arithmetic Operations

Two-Operand Instructions
Format Computation

addg Src,Dest Dest = Dest + Src

subg Src,Dest Dest = Dest — Src

imulg SrcDest Dest = Dest * Src

salqg Src,Dest Dest = Dest << Src Also called shlq
sarqg Src,Dest Dest = Dest >> Src Arithmetic
shrg Src,Dest Dest = Dest >> Src Logical

xorq Src,Dest Dest = Dest ~ Src

andg Src,Dest Dest = Dest & Src

org Src,Dest Dest = Dest | Src

Watch out for argument order!

No distinction between signed and unsigned int (why?)

< pective, Third Edition 3

39

Arithmetic Expression Example

long arith

arith:
(long x, long y, long z) leaq (%rdi,%rsi), %rax
{ addq $rdx, %$rax

long tl = x+y;

long t2 = z+tl;
long t3 = x+4;

long t4 =y * 48;
long t5 = t3 + t4;
long rval = t2 * t5;
return rval;

leaq (%rsi,%rsi,2), %rdx
salq $4, $rdx

leaq 4 (%rdi,%rdx), Srcx
imulqg $rcx, %$rax

ret

Interesting Instructions
leagq: address computation
salq: shift

imulq: multiplication
But, only used once

Bryontand 0' < 2 /sPerspective Third Edition Ll

41

]
Address Computation Instruction

leaq Src, Dst
load effective address quad
Src is address mode expression
Set Dst to address denoted by expression

Uses
Computing addresses without a memory reference
E.g., translationof p = &x[i];
Computing arithmetic expressions of the form x + k*y
k=1,2,4,0r8
Example

J(-°"9 ml2(long x) Converted to ASM by compiler:

leaq (%rdi,%rdi,2), %rax # t <- x+x*2
return t<<2

return x*12;
} salg $2, Srax

Hall Systems: A Programmer's Perspective Third Edition 3

38

|
Some Arithmetic Operations

One Operand Instructions

incqg Dest Dest = Dest + 1
decq Dest Dest = Dest — 1
negq Dest Dest = — Dest
notq Dest Dest = ~Dest

See book for more instructions

< s Perspective Third Edition)

40

|
Understanding Arithmetic Expression

Example

arith:
leaq (%rdi,%rsi), $rax # tl
long arith addgq %$rdx, %rax # t2
(long x, long y, long z) leaq (%rsi,%rsi,2), %rdx
{ salq $4, %rdx # t4
long tl = x+y; leaq 4 (%rdi,%rdx), %rcx # t5
long t2 = z+tl; imulq $rcx, %$rax # rval
long t3 = x+4; ret

long t4 =y * 48;
long t5 = t3 + t4;
long rval = t2 * t5;

[reger—vsel)

return rval; %$rdi Argument x
} $rsi Argument y
$rdx Argument z
$rax tl, t2, rval
$rdx t4
$rex t5

< /sPerspective Third Edition 2

42

e
Machine Programming |I: Summary

History of Intel processors and architectures
Evolutionary design leads to many quirks and artifacts

C, assembly, machine code
New forms of visible state: program counter, registers, ...

Compiler must transform statements, expressions, procedures into
low-level instruction sequences

Assembly Basics: Registers, operands, move
The x86-64 move instructions cover wide range of data movement
forms

Arithmetic

C compiler will figure out different instruction combinations to
carry out computation

Bryant and O'Hallaron, C Systems: A Programmer's Perspective, Third Edition 4

43

	Slide 1: Chapter 3 Machine-Level Programming I: Basics
	Slide 2: Machine Programming I: Basics
	Slide 3: Intel x86 Evolution: Milestones
	Slide 4: Intel x86 Processors, cont.
	Slide 5: Recent Architecture
	Slide 6: x86 Clones: Advanced Micro Devices (AMD)
	Slide 7: Intel’s 64-Bit History
	Slide 8: Our Coverage
	Slide 9: Machine Programming I: Basics
	Slide 10: Definitions
	Slide 11: Assembly/Machine Code View
	Slide 12: Turning C into Object Code
	Slide 13: Compiling Into Assembly
	Slide 14: Assembly Characteristics: Data Types
	Slide 15: Assembly Characteristics: Operations
	Slide 16: Object Code
	Slide 17: Machine Instruction Example
	Slide 18: Disassembling Object Code
	Slide 19: Alternate Disassembly
	Slide 20: What Can be Disassembled?
	Slide 21: Machine Programming I: Basics
	Slide 22: x86-64 Integer Registers
	Slide 23: Some History: IA32 Registers
	Slide 24: Moving Data
	Slide 25: movq Operand Combinations
	Slide 26: Simple Memory Addressing Modes
	Slide 27: Example of Simple Addressing Modes
	Slide 28: Understanding Swap()
	Slide 29: Understanding Swap()
	Slide 30: Understanding Swap()
	Slide 31: Understanding Swap()
	Slide 32: Understanding Swap()
	Slide 33: Understanding Swap()
	Slide 34: Simple Memory Addressing Modes
	Slide 35: Complete Memory Addressing Modes
	Slide 36: Address Computation Examples
	Slide 37: Machine Programming I: Basics
	Slide 38: Address Computation Instruction
	Slide 39: Some Arithmetic Operations
	Slide 40: Some Arithmetic Operations
	Slide 41: Arithmetic Expression Example
	Slide 42: Understanding Arithmetic Expression Example
	Slide 43: Machine Programming I: Summary

