Chapter 4
Processor Architecture: Y86
(Sections 4.1 & 4.3)

with material from Dr. Bin Ren, College of William & Mary

|
Assembly

The CPU uses machine language to perform all its operations

Machine code (pure numbers) is generated by translating each
instruction into binary numbers that the CPU uses

This process is called "assembling"; conversely, we can take
assembled code and disassemble it into (mostly) human
readable assembly language

Assembly is a much more readable translation of machine
language, and it is what we work with if we need to see what
the computer is doing

There are many different kinds of assembly languages; we'll
focus on the Y86/1A32 language as defined in the text and on
our system (also SPARC and MIPS)

ISA — Instruction Set Architecture

Assembly Language View
m Processor state Application
* Registers, memory, ... Program
= Instructions
® addl, movl, leal, ...
* How instructions are encoded

Compller| 0S

as bytes
. CPU
Layer of Abstraction Design
u Above: how to program machine Clrcult
* Processor executes instructions Deslgn
in a sequence
) . Chip
m Below: what needs to be built Layout

® Use variety of tricks to make it
run fast

4/17/2025

Outline

Introduction to assembly programing
Introduction to Y86
Y86 instructions, encoding and execution

- |
Assembly Operations

Perform arithmetic function on register or memory data
Transfer data between memory and register

Load data from memory into register (read)

Store register data into memory (write)
Transfer control

Unconditional jumps to/from procedures (calls)

Conditional branches (if, switch, for, while, etc)

-
ISA-More explanations

ISA — instruction set architecture
Format and behavior of a machine level program

Defines
The processor state (see the CPU fetch-execute cycle)
The format of the instructions
The effect of each of these instructions on the state
Abstractions
Instruction executed “in sequence”
Technically defined to be completing one instruction before starting the next
Pipelining.
Concurrent execution (but not really)
Memory addresses are virtual addresses
Very large byte-addressable array
Address space managed by the OS (virtual = physical)
Contains both executable code of the program AND its data
Run-time stack
Block of memory for user (global and heap)

|
Generic Instruction Cycle

An instruction cycle is the basic operation cycle of a
computer. It is the process by which a computer retrieves a
program instruction from its memory, determines what
actions the instruction requires, and carries out those
actions. This cycle is repeated continuously by the central
processing unit (CPU), from bootup to when the computer
is shut down.

1. Fetching the instruction
2. Decode the instruction

3. Memory and addressing issues
4. Execute the instruction

Machine instruction example

C code

Add two signed integers int t=x+y;
Assembly

Add 2 4-byte integers addl 8(%ebp),%eax
Operands

X: register %eax

Y: memory M[%ebp+8]

T: register %eax

Return function value in %eax
Object code

3 byte instruction

03 4508

Y86: A Simpler Instruction Set

1A32 has a lot more instructions

1A32 has a lot of quirks

Y86 is a subset of I1A32 instructions

Y86 has a simpler encoding scheme than 1A32

Y86 is easier
to reason about hardware
first-time programming in assembly language

11

4/17/2025

Hardware abstractions

Program Counter (PC)
Register %eip (X86)
Address in memory of the next instruction to be executed
Integer Register File
Contains eight named locations for storing 32-bit values
Can hold addresses (C pointers) or integer data
Have other special duties
Floating point registers
Condition Code registers
Hold status information
About arithmetic or logical instruction executed
CF (carry flag)
OF (overflow flag)
SF (sign flag)
ZF (zero flag)
Memory

1 —
Outline
Introduction to assembly programing

Introduction to Y86
Y86 instructions, encoding and execution

10

Y86 abstractions

The Y86 has
8 32-bit registers with the same names as the 1A32 32-bit registers
3 condition codes: ZF, SF, OF
no carry flag
interprets integers as signed
a program counter (PC)
a program status byte: AOK, HLT, ADR, INS
memory: up to 4 GB to hold program and data
The Y86 does not have
floating point registers or instructions

http://voices.yahoo.com/the-y86-processor-simulator-770435.html?cat=15
http://y86tutoring.wordpress.com/

12

Y86 Memory and Stack

high address 1. Ahu .
. ge array of bytes;
Y86 Stack 2. Setthe bottom of the stack far
enough away from the code;
3. The location of your code should

always start from 0x0.

How to set up the starting point of
stack and code?
directive: .pos address-in-hex

Y86 Code

low address

13

YIS and YAS and the Y86 Simulator

how to assemble and run code
% yas prog.ys
assembles program
creates *.yo file

% yis prog.yo
instruction set simulator — gives output and changes
changes shown as original value/new value pairs

% ssim -g prog.yo &
graphical simulator
SimGuide: http://csapp.cs.cmu.edu/public/simguide.pdf

15

Y86 Simulator program code

[=I[=][x]

Load

Bedx, Hebx

File y86progl.yo
0x0 30E237000000 1 555, bedx
OxG& 2023
Ox8 30£01c000000 1 Array, %=ax

Oxe 403004000000

#ebo, 4 [Beax)

Ox14 501000000000 1 O(%eax], becx

Oxla OO
Oxle G£00000D -long OxGf
0x20 84000000 -long 0xB4

17

4/17/2025

yis and yas and the Y86 Simulator

check on
how to set up SPATH
how to connect Linux with X display

add the following variables to SPATH
/home/bren/Software/sim/misc
/home/bren/Software/sim/pipe
/home/bren/Software/sim/seq

otherwise, use absolute path
/home/bren/Software/sim/misc/yas
/home/bren/Software/sim/misc/yis

example code was assembled during the build process and is in
/home/bren/Software/sim/y86-code

14

Run Y86 program
irmovl $55,%edx % yas y86prog1.ys
rrmovl %edx, %ebx % yis y86prog1.yo
irmovl Array, %eax Stopped in 6 steps at PC = Ox1a.
rmmovl %ebx,4(%eax) Status 'HLT'
mrmovl 0(%eax),%ecx CCZ=18=00=0
halt Changes to registers:

%eax: 0x00000000 0x0000001¢c
.align 4 %ecx: 0x00000000 0x0000006f
Array: %edx: 0x00000000 0x00000037
.long Ox6f %ebx: 0x00000000 0x00000037
.long 0x84

Changes to memory:

y86prog1.ys 0x0020: 0x00000084 0x00000037

16

Y86 Simulator
displays Simulater sg..,:\m-u.mm
contents of memory i Processor Stale

processor state
fetch-execute loop
register file

status

condition codes

Feich Stage

Register File

18

4/17/2025

Y86 Notes Y86 Notes

Y86 is an assembly language instruction set Y86 features
simpler than but similar to 1A32

8 32-bit registers with the same names as the 1A32 32-bit registers
but not as compact (as we will see)

different names from those in text, such as $rax, which are 64-bit
F indicates no register

3 condition codes: ZF, SF, OF

a program counter (PC)

a program status byte: AOK, HLT, ADR, INS

memory: up to 4 GB to hold program and data

Y86 features
8 32-bit registers with the same names as the 1A32 32-bit registers
3 condition codes: ZF, SF, OF
no carry flag - interpret integers as signed
a program counter (PC)
holds the address of the instruction currently being executed RF: Program registers CC: Condition Stat: Program Status
a program status byte: AOK, HLT, ADR, INS © %eax |° %esi codes I:l

state of program execution ! Sedi

memory: up to 4 GB to hold program and data ’ sedx |' s%esp

PC

gecx |’ DMEM: Memory

19 20

Outline Learning Y86
Introduction t bl i Assembler Directives
ntroduction to assem rogramin
i v prog e Status conditions and Exceptions
Introduction to Y86 .
. X . X Instructions
Y86 instructions, encoding and execution o .
perations
Branches
Moves

Addressing Modes

Stack Operations

Subroutine Call/Return

How to encode and execute each instruction

21 22

—_________________________________|
Y86 Assembler Directives Status Conditions
orective _____Jerea ________________ « Normal operation
.pos number Subsequent lines of code start at address number ACK 1
.align number Align the next line to a number-byte boundary [rE— Code » Halt instruction encountered
.long number Put number at the current address in memory HLT >
R . . m Bad address (either instruction or data
« These can be used to set up memory in various places encountered(J
in the address space ADR
. ﬁq},eﬁo(:n?n put sections of code in different places in u Invalid instruction encountered
.) ! INS 4
+ .align should be used before setting up a static
variable o]] Desired Behavior
+ .long can be used to initialize a static variable » If AOK, keep going
= Otherwise, stop program execution
» u
23 24

4/17/2025

Y86 Exceptions Y86 Exceptions

What happens when an invalid assembly instruction is found?

What are some possible causes of exceptions?
how would this happen?

invalid operation
generates an exception

divide by 0
sqrt of negative number
In Y86 an exception halts the machine memory access error (address too large)
stops executing hardware error

on a real system, this would be handled by the OS and only the current

process would be terminated Y86 handles 3 types of exceptions:

HLT instruction executed
invalid address encountered
invalid instruction encountered

in each case, the status is set

25 26

o =
Y86 Instructions Y86 Instructions

format

Each accesses and modifies some part(s) of the program 1-6 bytes of information read from memory

state Can determine the type of instruction from first byte
Can determine instruction length from first byte
largely a subset of the 1A32 instruction set Not as many instruction types
includes only 4-byte integer operations = “word” Simpler encoding than with 1A32

has fewer addressing modes

smaller set of operations registers

rA or rB represent one of the registers (0-7)
OxF denotes no register (when needed)
no partial register options (must be a byte)

27 28
-]]
Move Operation Move Operation
Em_' different opcodes for 4 types of moves
irmovl V,R Reg[R] « V Immediate-to-register move register to register (opcode = 2)
rrmovl rA,rB Reg[rB] — Reg[rA] Register-to-register move notice conditional move has opcode 2 as well
rmmovl rA,D(rB) Mem[Reg[rB]+D] « Reg[rA] Register-to-memory move immediate to register (opcode = 3)
mrmovl D(xA),xrB Reg[rB] — Mem[Reg[rA]+D] Memory-to-register move register to memory (opcode = 4)
+ irmovl is used to place known numeric values (labels memory to register (opcode = 5)
or numeric literals) into registers
* rrmovl copies a value between registers movl §0xabed, (8eax)
* rmmovl stores a word in memory movl Beax, 12(8%eax,fedx)
* mrmovl loads a word from memory movl (8ebp,seax,d) ,Becx

* rmmovl and mrmovl are the only instructions that
access memory - Y86 is a load/store architecture

29 30

Move Operation

the only memory addressing mode is base register +
displacement

memory operations always move 4 bytes (no byte or word
memory operations, i.e., no 8/16-bit move)

source or destination of memory move must be a register

1A32 Y86 Encoding
movl §0xabed, Bedx irmovl $0xabed, ®edx 30 52 od ab 00 00

movl 8esp, 8ebx rrmovl 8esp, 8ebx 2?/13
mrmovl -12 (8ebp) ,Becx /0 15 f4 £f ff ff

rmmovl Beil,Dxélc(QeBp)/ 40 64 1c 04 00 00

movl -12 (8ebp) ,Beocx

movl 8esi,0xdlc(Besp)

CORRECTION =F

31

e
Jump Instructions

jump instructions (opcode = 7)
fn = 0 for unconditional jump
fn=1-6for <= < = I= >= >
refer to generically as JXX
encodings differ only by “function code”
based on values of condition codes
same as IA32 counterparts
encode full destination address
unlike PC-relative addressing seen in 1A32

33

]
Y86 Example Program with Loop

Supported Arithmetic Operations

4/17/2025

OP1 (opcode = 6) #yB6ecys
only takes registers as operands .pos 0x0

irmovl $1, %eax
irmovl $0, %ebx
irmovl $1, %ecx
addl %eax, %eax
andl %ebx, %ebx
subl %eax, %ecx

only work on 32 bits
note: no “or” and “not” ops
only instructions to set CC
starting point ZF=1, SF=0, OF=0

addl %edx, %edx

arithmetic instructions halt

irmovl $Ox7fffffff, %edx

addlrA, rB R[rB] < R[rB] + R[rA]
sublrA, rB R[rB] < R[rB] - R[rA]
andlrA, rB R[rB] €& R[rB] & R[rA]
xorl rA, rB R[rB] ¢ R[rB] ~ R[rA]

#y86loop.ys ‘ Which instructions set the CC bits?
.pos 0x0
irmovl $0,%eax #sum=0
irmovl $1,%ecx #num=1
Loop: addl %ecx,%eax # sum += num
irmovl $1,%edx #tmp=1
addl %edx,%ecx # num++
irmovl $1000,%edx # lim = 1000
subl %ecx,%edx #iflim-num>=0
jge Loop # loop again
halt

What does this code do?

What are the flags set to
for each instruction?

35

32

Jump Instruction Types

Unconditional jumps

jmp Dest PC < Dest What about checking OF?
Conditional jumps
jle Dest PC ¢ Destif lastresult <0 —
SF=1or ZF=1 If the last result
jl Dest PC ¢ Dest if last result < 0 is not what is
SF=1 and ZF=0 specified, then
. B _ the jump is not
je Dest PC & Dest if last result =0 L taken;and the
ZF=1 next sequential
jne Dest PC ¢ Dest if last result # 0 instruction is
ZF=0 executed, i.e.,
jge Dest PC & Dest if last result 2 0 PC=PC+jump
SF=0 or ZF=1 instruction size
jg Dest PC ¢ Dest if last result >0
SF=0 and ZF=0

34

Move
Register & Register
[removarn, @
Immediate & Register
\ irmovaV, 18 [3[0[F rB| v]
Register 3 Memory
\ rmmovarA, D irB) [4]0][ralrE] D]
Memory = Register
[mrmova D (rB), rA [5]0]rAlrB[D

simple move commands
note register bytes and bytes to store immediate or
displacement values

36

Conditional Move

[Move Ul

‘ rrmovl rA, rB mﬁ‘
Move When Less or Equal

‘ amovie rA, B [2T1]ralg]
Move When Less

[monmm

Move When Equal

cmove A, 1B

Move When Not Equal

cmovne rA, 1B

2 4 |rA|rB)

Move When Greater or Equal

refer to generically as
“cmovXX”

encodings differ only
by “function code”
based on values of
condition codes
variants of rrmovl
instruction

(conditionally) copy
value from source to
destination register

cmovge rA, 1B [z 5]ralr8]
Move When Greater
‘ cmovg 1A, 18 [2s]ral8] |

4/17/2025

y86ccmov.ys
.pos 0x0

irmovl $1, %eax
cmove %eax,%ecx
irmovl 0, %ebx
addl %eax, %eax
cmovg %eax, %ebx
andl %ebx, %ebx
subl %eax, %ecx
cmovg %ecx, %edx
irmovl SOx7fffffff, %edx
addl %edx, %edx

Conditional Move Examples

The cmovxx statement only moves
the source register value to the
destination register if the condition
is true

If the condition is equal, that
means the CC bits have the ZF set
to 1, i.e., the previous result was
equal to zero

cmovg — checks if the previous
result was greater than zero (i.e.
SF=0) and if so, moves the source
register value to the destination
register

37

Y86 Program Stack

Stack region of memory holding
“Bottom” program data
used in Y86 (and 1A32) for
supporting procedure calls
stack top indicated by

%esp
Increasing . address of top stack
Addresses | element
o stack grows toward lower
addresses

top element is at highest
address in the stack
when pushing, must first
decrement stack pointer
when popping, increment
stack pointer

%esp—>

Stack “Top”

Stack “Top”

«—3esp
: Increasing
. Addresses

Stack “Bottom”

39

Subroutine Call and Return

[8]¢] Dest

‘ call Dest

= Push address of next instruction onto stack
m Start executing instructions at Dest

= Like IA32 Note: call uses absolute addressing
=

= Pop value from stack

m Like 1A32

m Use as address for next instruction

41

halt

similar for other instructions

38

Stack Operations

R[%espl—R[%esp]-4

R[%esp]—R[%esp]+4

stack for Y86 works just
the same as with 1A32

EustLES MIR[%espll—RIA]
u Decrement 8esp by 4
u Store word from rA to memory at tesp rA |<-%esp-4
m Like 1A32 Stack: <-- %esp
pushl rA
sopiA [5[c[AlT]
= Read word from memory at sesp
w Save inrA
u Increment sesp by 4 value < %esp
Stack: [<-- %esp+4
= Like I1A32 RIrAJ—M[R[%esp]]

popl rA rA <--value

40

Procedure Call and Return

call pushes the PC value (point to next
instruction) onto the top of the stack
Dest R[%esp]<-R[%esp]-4
make space on the stack
MI[R[%esp]]¢&PC
move the value of the PC, which has been
incremented to the next instruction, and
store it in the memory location pointed to
by reg %esp
PC&-Dest
Move the destination address of the
routine being called into the PC
ret
PC4&M[R[%esp]]
get the return address off the stack
R[%esp]<-R[%esp]+4
adjust the stack pointer

Stack “Top”

le—%esp

Increasing
Addresses

42

Miscellaneous Instructions

= Don’t do anything

hae

m Stop executing instructions
= |A32 has comparable instruction, but can’t execute it in
user mode

= We will use it to stop the simulator

= Encoding ensures that program hitting memory
initialized to zero will halt

43

SEQ Hardware Structure Abstract and Stages
o Fetch
o Read instruction from
+ State instruction memory
o Program counter reg (PC) o If PC points to it, we view it as
o Condition code reg (CC) instruction
" Nemores * Decode
Data: road and wiite o Read program registers
Instruction: read + Execute
« Instruction Flow o Compute value or address
- Read instruction at address + Memory
specified by PC o Read or write data
- Process through stages «+ Write Back
o Update program counter o Write program registers
+ PC
o Update program counter
s

45

Executing = rmmovl

Fetch I iy v e |
Read 6 bytes
Decode cmmcv rA, DUB)
Read operand icodesifun < M,[PC] Read instruction byte
registers . AT — MPCH] Read register byte
valC « M(PC+2] Read displacement D
Execute valP — PC+6 Compute next PC
Compute effective valA « RIrAl Read operand A
address Peeode | valg — Al Read operand B
Memory Exocute |VOIE <+ valB +valC Compute effective address
Write to memory Memory | MylvalEl — valA | write value to memory
Write back Wit
Do nothing back
PC update |PC « valP | Update PC

PC Update
Increment PC by 6 = Use ALU for address computation

47

4/17/2025

Optichal Optional
e

Y86 Instruction Set

encoding of each instruction

SEQ Hardware Structure
Instruction Format
® Instruction byle icode:itun
» Optional register byte rA:rB
Recall Memory is a Bunch of Bits! ® Optional constant word valC

How do we know if it is an instruction or not?

How do we know which instructien, which operands,
etc.

Format
m 1--6 bytes of information read from memory
Can determine instruction length from first byte
=« Not as many instruction types, and simpler encoding than with
1a32
m Each accesses and modifies some part(s) of the program
state

44

Executing = Arithmetic/Logical Ops

‘ orl rA, 1B nmﬂﬁ

Fetch
Read 2 bytes OPIrh. 1B
Decode icoderifun — M,[PCI Read instruction byte
Read operand Fotch rA:rB « MIPC+1] Read register byte
registers
valP — PC+2 Compute next PC
Execute becoge | VA= A&l Read operand A
Perform operation valB — RIrB] Read operand B
Set condition codes Execute | VAIE — VaIB OP valA Perform ALU operation
setcC Set condition code register|
Memory Wemory
Do nothing Write RIrB = valE Write back result
; back
wr“e baCk PC update |PC « valP Update PC
Update register
PC Update = Formulate instruction execution as sequence of simple
steps
IncrementPCby 2| ;<o same general form for all instructions; often called
Register Transfer Language (RTL)

46

Executing = popl
= Fetch ‘ popl rA [To[ra] | |
2 Read 2 bytes
= Decode m—yTy
o
& E:iﬁ?esrmk Icode:itun — MPCI Read instruction byte
rA:rB « M,IPC+11 Read register byte
= Execute Fetch)
@ Inc_remebnl itack valP — PC+2 Compute next PC
pointer by vala = Risespl Read stack pointer
= Memor Decode | alB + Risespl Read stack pointer
2 Read from old Exocute |VIE—valB+d Increment stack pointer
stack pointer
= \Write back [Memory _[vaiM — Mtvalal Read from stack
2 Update stack Write Rlzespl « valE Update stack pointer
pointer back RIrAL + vallt Write back result
& Write result to PC update [PC « valP Update PC
register
= PC Update = Use ALU to increment stack pointer
% Increment PC by = Must update two registers.
2 « Popped value
® New stack pointer

48

Executing = Jumps

@

= Fetch
2 Read5 bytes
2 Increment PC by 5
= Decode
2 Do nothing
= Execute
2 Determine whether to
take branch based
on jump condition
and condition codes
= Memory
2 Do nothing
= Write back
2 Do nothing
= PC Update

S Ot [

argu

O
P e m—
Bl Taben

et PC to Dest if
branch taken or to
incremented PC if
not branch

1K Dest
icode:ifun — WL IPCT

Fetch

© valC o M,IPC+11

valP — PC+5

Decode

Executs Bch — Cond(CC.ifun)

[imory

Wirite
back
PC update

PC — Bch ? valC - valP

= Compute both addresses

= Choose based on setting of condition codes and branch

condition

Read instruction byte

Read desfination address
Fall through address

Take branch?

Update PC

49

Executing - ret

xet

Read instruction byte

Read operand stack pointer
Read operand stack pointer
Increment stack pointer

Read return address
Update stack pointer

Set PC to retumn address

retum,
= Fetch
2 Read5 bytes et
5 Igcremem PCby 5 icodesitun — M,(PCI
L ecode
2~ Read stack pointer Feich
= Execute
2 Decrement stack valA — Rlsezpl
pointer by 4 Decode |valg - Risasgl
2 Mem\t;vryI . xooute |VAE—VAB TR
2 Write d
PC to new value of Wemory _|valM +— M,[valAl
stack pointer Wirite Rlbezpl — valE
= Write back back
=~ Update stack pointer | [[ECupdate |PC - valli
= P
,C Uspedﬁ;% to Dest = Use ALU to Increment stack polnter
= Read return address from memory

51

Instruction Encoding (64-bit)

Byte 0 1 3 4 5 2 7 [5
halt
aop
cmovE A, B
irmova V, 18 [=Te=T®] v]
rmmova A, DBy [[0 Ja]m] D]
memova Dug, ra [5]0Ja]m] D]
jxx Dest [7Tm] Dest |
call Dest T Dest |
ret
CS:APP3e

53

Executing = Call

4/17/2025

= Fetch a1t Dest
2 Read5 bytes icode:ifun — M,IPC1
2 Increment PC by 5
= Decode Fetch valC — MPC+1]
2 Read stack pointer valP — PC+5
= Execute Decod
2 Decrement stack 0% |yalB — Rlseag]
pointer by 4 roouts |VAE—vaB 14
= Memory recute

2 Write incremented
PC to new value of
stack pointer
= Write back
2 Update stack pointer

= PC Ugdate
2 SetPCto Dest

= Store Incremented PC

= Use ALU to decrement stack polnter

Read instruction byte

Read destination address
Compute return point

Read stack pointer
Decrement stack pointer

Wiite return value on stack
Updatz stack pointer

Set PC to destination

50

Instruction Encoding (32-bit)

Byte 0 1 2 3 4 5

halt
nop

rrmovl 1A, B

irmovl V, 1B [To]=]e] V) |

cmmovl 1A, D(B) [4] 0 [rAlB] D]

mrmov1 D(B), rA [5]oJm]r]

orl 1A, 1B

3301 Dest [l o]
cart pest FLT o]

ret

pushl rA

popl 1A

52

Instruction Encoding

Operations Branches
S e
° seax |° s%esi
' gsecx || %edi
? gedx | %esp
® gebx |° %ebp

54

Instruction Encoding Practice

Determine the byte encoding of the following Y86 instruction
sequence given “.pos 0x100” specifies the starting address of
the object code to be 0x100 (practice problem 4.1)

.pos 0x100 # start code at address 0x100
irmovl $15, %ebx #load 15 into %ebx
rrmovl %ebx, %ecx # copy 15 to %ecx
loop:
rmmovl %ecx, -3(%ebx) # save %ecx at addr 15-3=12
add| %ebx, %ecx #increment %ecx by 15
jmp loop # goto loop

55

Instruction Encoding Practice

0x100: 30f3fcffffff 406300080000 00
0x100: 30f3fcffffff irmovl $-4, %ebx
0x106: 406300080000 rmmovl %esi, 0x800(%ebx)

0x10c: 00 halt
Now try

0x200: a06f80080200000030f30a00000090
0x200: a06f push %esi
0x202: 8008020000 call 0x00000208
0x207: 00 halt
0x208: 30f3a0000000 irmovl $a0, %ebx
0x20e: 90 ret

0x400: 6113730004000000
0x400: 6113 subl %ecx, %ebx
0x402: 7300040000 je 0x00040000
0x407: 00 halt

57

Conditional Statements

simple if statement

C code:
if (x == 2)
x +=1;
// program continues

Y86 code:
irmovl $2, $ecx
rrmovl %eax, %edx
subl %ecx, %edx
jne progcont
irmovl $1, %$edx
addl %edx, %eax

get ready to compare x to 2
move x to temp register

set condition codes: tmpx -= 2
jump over if block when x != 2
get ready to add 1 to x

add 1 to x

fall into rest of program

W o3 o o o o o

progcont:

59

4/17/2025

Instruction Encoding Practice

0x100: |
: 30£30£000000 |
6: 2031 |

.pos 0x100 # start code at address 0x100

: 4013fdffffff |
: 6031 |
: 7008010000 |

save addr 15-3=12
increment Secx by 15
goto loop

56

Summary

Important property of any instruction set

THE BYTE ENCODINGS MUST HAVE A UNIQUE INTERPRETATION
which

ENSURES THAT A PROCESSOR CAN EXECUTE

AN OBJECT-CODE PROGRAM WITHOUT ANY AMBIGUITY
ABOUT THE MEANING OF THE CODE

58

Conditional Statements

simple if-else statement
Ccode:

// program continues

Y86 code:
irmovl $5, %ecx # get ready to compare x to 5
rrmovl %eax, $edx # move x to temp register
subl %ecx, %edx # set condition codes: tmpx -= 5
jle else # jump over if block when x <= 5
irmovl $1, %edx # get ready to add 1 to x
addl %edx, %eax # add 1 to x
Jmp progcont # jump over else
else:
irmovl $2, %edx # get ready to add 1 to x
subl %edx, %eax # subtract 2 from x
fall into rest of program
progcont:

60

Conditional Statements

always test for the opposite of the conditional statement
jump over the if block if opposite is true
otherwise, fall into the if block

keeps assembly instructions in same order as C
statements

since code is in same order, easier to map if statements to
assembly

conditional jump =>if statement

unconditional jump => jump over block to avoid
executing it

61

4/17/2025

11

	Slide 1: Chapter 4 Processor Architecture: Y86 (Sections 4.1 & 4.3)
	Slide 2: Outline
	Slide 3: Assembly
	Slide 4: Assembly Operations
	Slide 5: ISA – Instruction Set Architecture
	Slide 6: ISA-More explanations
	Slide 7: Generic Instruction Cycle
	Slide 8: Hardware abstractions
	Slide 9: Machine instruction example
	Slide 10: Outline
	Slide 11: Y86: A Simpler Instruction Set
	Slide 12: Y86 abstractions
	Slide 13: Y86 Memory and Stack
	Slide 14: yis and yas and the Y86 Simulator
	Slide 15: YIS and YAS and the Y86 Simulator
	Slide 16: Run Y86 program
	Slide 17: Y86 Simulator program code
	Slide 18: Y86 Simulator
	Slide 19: Y86 Notes
	Slide 20: Y86 Notes
	Slide 21: Outline
	Slide 22: Learning Y86
	Slide 23: Y86 Assembler Directives
	Slide 24: Status Conditions
	Slide 25: Y86 Exceptions
	Slide 26: Y86 Exceptions
	Slide 27: Y86 Instructions
	Slide 28: Y86 Instructions
	Slide 29: Move Operation
	Slide 30: Move Operation
	Slide 31: Move Operation
	Slide 32: Supported Arithmetic Operations
	Slide 33: Jump Instructions
	Slide 34: Jump Instruction Types
	Slide 35: Y86 Example Program with Loop
	Slide 36: Move
	Slide 37: Conditional Move
	Slide 38: Conditional Move Examples
	Slide 39: Y86 Program Stack
	Slide 40: Stack Operations
	Slide 41: Subroutine Call and Return
	Slide 42: Procedure Call and Return
	Slide 43: Miscellaneous Instructions
	Slide 44: Y86 Instruction Set
	Slide 45: SEQ Hardware Structure Abstract and Stages
	Slide 46: Executing  Arithmetic/Logical Ops
	Slide 47: Executing  rmmovl
	Slide 48: Executing  popl
	Slide 49: Executing  Jumps
	Slide 50: Executing  Call
	Slide 51: Executing  ret
	Slide 52: Instruction Encoding (32-bit)
	Slide 53: Instruction Encoding (64-bit)
	Slide 54: Instruction Encoding
	Slide 55: Instruction Encoding Practice
	Slide 56: Instruction Encoding Practice
	Slide 57: Instruction Encoding Practice
	Slide 58: Summary
	Slide 59: Conditional Statements
	Slide 60: Conditional Statements
	Slide 61: Conditional Statements

