
4/17/2025

1

1

Chapter 4
Processor Architecture: Y86
(Sections 4.1 & 4.3)

with material from Dr. Bin Ren, College of William & Mary

2

Outline

 Introduction to assembly programing

 Introduction to Y86

 Y86 instructions, encoding and execution

3

Assembly

 The CPU uses machine language to perform all its operations

 Machine code (pure numbers) is generated by translating each
instruction into binary numbers that the CPU uses

 This process is called "assembling"; conversely, we can take
assembled code and disassemble it into (mostly) human
readable assembly language

 Assembly is a much more readable translation of machine
language, and it is what we work with if we need to see what
the computer is doing

 There are many different kinds of assembly languages; we'll
focus on the Y86/IA32 language as defined in the text and on
our system (also SPARC and MIPS)

4

Assembly Operations

 Perform arithmetic function on register or memory data

 Transfer data between memory and register
▪ Load data from memory into register (read)

▪ Store register data into memory (write)

 Transfer control
▪ Unconditional jumps to/from procedures (calls)

▪ Conditional branches (if, switch, for, while, etc)

5

ISA – Instruction Set Architecture

6

ISA-More explanations

 ISA – instruction set architecture

▪ Format and behavior of a machine level program

▪ Defines
▪ The processor state (see the CPU fetch-execute cycle)

▪ The format of the instructions

▪ The effect of each of these instructions on the state

▪ Abstractions
▪ Instruction executed “in sequence”

– Technically defined to be completing one instruction before starting the next

– Pipelining

– Concurrent execution (but not really)

▪ Memory addresses are virtual addresses

– Very large byte-addressable array

– Address space managed by the OS (virtual → physical)

– Contains both executable code of the program AND its data

» Run-time stack

» Block of memory for user (global and heap)

1 2

3 4

5 6

4/17/2025

2

7

Generic Instruction Cycle

An instruction cycle is the basic operation cycle of a
computer. It is the process by which a computer retrieves a
program instruction from its memory, determines what
actions the instruction requires, and carries out those
actions. This cycle is repeated continuously by the central
processing unit (CPU), from bootup to when the computer
is shut down.

1. Fetching the instruction
2. Decode the instruction

3. Memory and addressing issues

4. Execute the instruction

8

Hardware abstractions

 Program Counter (PC)
▪ Register %eip (X86)

▪ Address in memory of the next instruction to be executed

 Integer Register File
▪ Contains eight named locations for storing 32-bit values

▪ Can hold addresses (C pointers) or integer data

▪ Have other special duties

 Floating point registers

 Condition Code registers
▪ Hold status information

▪ About arithmetic or logical instruction executed

– CF (carry flag)

– OF (overflow flag)

– SF (sign flag)

– ZF (zero flag)

 Memory

9

Machine instruction example

 C code
▪ Add two signed integers

 Assembly
▪ Add 2 4-byte integers

 Operands
▪ X: register %eax

▪ Y: memory M[%ebp+8]

▪ T: register %eax

▪ Return function value in %eax

 Object code
▪ 3 byte instruction

▪ Stored at address: 0x????????

int t = x + y;

addl 8(%ebp),%eax

03 45 08

10

Outline

 Introduction to assembly programing

 Introduction to Y86

 Y86 instructions, encoding and execution

11

Y86: A Simpler Instruction Set

 IA32 has a lot more instructions

 IA32 has a lot of quirks

 Y86 is a subset of IA32 instructions

 Y86 has a simpler encoding scheme than IA32

 Y86 is easier
▪ to reason about hardware

▪ first-time programming in assembly language

12

Y86 abstractions

 The Y86 has
▪ 8 32-bit registers with the same names as the IA32 32-bit registers

▪ 3 condition codes: ZF, SF, OF

▪ no carry flag

▪ interprets integers as signed

▪ a program counter (PC)

▪ a program status byte: AOK, HLT, ADR, INS

▪ memory: up to 4 GB to hold program and data

 The Y86 does not have
▪ floating point registers or instructions

http://voices.yahoo.com/the-y86-processor-simulator-770435.html?cat=15

http://y86tutoring.wordpress.com/

7 8

9 10

11 12

4/17/2025

3

13

Y86 Memory and Stack

Y86 Code

Y86 Stack

low address

high address 1. A huge array of bytes;

2. Set the bottom of the stack far

enough away from the code;

3. The location of your code should

always start from 0x0.

How to set up the starting point of

stack and code?

directive: .pos address-in-hex

14

yis and yas and the Y86 Simulator

 check on
▪ how to set up $PATH

▪ how to connect Linux with X display

 add the following variables to $PATH
▪ /home/bren/Software/sim/misc

▪ /home/bren/Software/sim/pipe

▪ /home/bren/Software/sim/seq

 otherwise, use absolute path
▪ /home/bren/Software/sim/misc/yas

▪ /home/bren/Software/sim/misc/yis

 example code was assembled during the build process and is in
 /home/bren/Software/sim/y86-code

15

YIS and YAS and the Y86 Simulator

 how to assemble and run code
▪ % yas prog.ys

▪ assembles program

▪ creates *.yo file

▪ % yis prog.yo

▪ instruction set simulator – gives output and changes

– changes shown as original value/new value pairs

▪ % ssim -g prog.yo &

▪ graphical simulator

▪ SimGuide: http://csapp.cs.cmu.edu/public/simguide.pdf

16

Run Y86 program

irmovl $55,%edx
rrmovl %edx, %ebx
irmovl Array, %eax
rmmovl %ebx,4(%eax)
mrmovl 0(%eax),%ecx
halt

.align 4
Array:
.long 0x6f
.long 0x84

% yas y86prog1.ys

% yis y86prog1.yo

Stopped in 6 steps at PC = 0x1a.

Status 'HLT'

CC Z=1 S=0 O=0

Changes to registers:

%eax: 0x00000000 0x0000001c

%ecx: 0x00000000 0x0000006f

%edx: 0x00000000 0x00000037

%ebx: 0x00000000 0x00000037

Changes to memory:

0x0020: 0x00000084 0x00000037y86prog1.ys

17

Y86 Simulator program code

18

Y86 Simulator

 displays

▪ contents of memory

▪ processor state

▪ fetch-execute loop

▪ register file

▪ status

▪ condition codes

13 14

15 16

17 18

4/17/2025

4

19

Y86 Notes
 Y86 is an assembly language instruction set

▪ simpler than but similar to IA32

▪ but not as compact (as we will see)

 Y86 features
▪ 8 32-bit registers with the same names as the IA32 32-bit registers

▪ 3 condition codes: ZF, SF, OF

▪ no carry flag - interpret integers as signed

▪ a program counter (PC)

▪ holds the address of the instruction currently being executed

▪ a program status byte: AOK, HLT, ADR, INS

▪ state of program execution

▪ memory: up to 4 GB to hold program and data

20

Y86 Notes
 Y86 features

▪ 8 32-bit registers with the same names as the IA32 32-bit registers

▪ different names from those in text, such as %rax, which are 64-bit

▪ F indicates no register

▪ 3 condition codes: ZF, SF, OF

▪ a program counter (PC)

▪ a program status byte: AOK, HLT, ADR, INS

▪ memory: up to 4 GB to hold program and data

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

RF: Program registers

ZF SF OF

CC: Condition

codes

PC

DMEM: Memory

Stat: Program Status

0 6

1 7

2 4

3 5

21

Outline

 Introduction to assembly programing

 Introduction to Y86

 Y86 instructions, encoding and execution

22

Learning Y86

 Assembler Directives

 Status conditions and Exceptions

 Instructions
▪ Operations

▪ Branches

▪ Moves

 Addressing Modes

 Stack Operations

 Subroutine Call/Return

 How to encode and execute each instruction

23

Y86 Assembler Directives

24

Status Conditions

19 20

21 22

23 24

4/17/2025

5

25

Y86 Exceptions

 What happens when an invalid assembly instruction is found?
▪ how would this happen?

▪ generates an exception

 In Y86 an exception halts the machine
▪ stops executing

▪ on a real system, this would be handled by the OS and only the current
process would be terminated

26

Y86 Exceptions

 What are some possible causes of exceptions?
▪ invalid operation

▪ divide by 0

▪ sqrt of negative number

▪ memory access error (address too large)

▪ hardware error

 Y86 handles 3 types of exceptions:
▪ HLT instruction executed

▪ invalid address encountered

▪ invalid instruction encountered

▪ in each case, the status is set

27

Y86 Instructions

 Each accesses and modifies some part(s) of the program
state

 largely a subset of the IA32 instruction set
▪ includes only 4-byte integer operations → “word”

▪ has fewer addressing modes

▪ smaller set of operations

28

Y86 Instructions

 format
▪ 1–6 bytes of information read from memory

▪ Can determine the type of instruction from first byte

▪ Can determine instruction length from first byte

▪ Not as many instruction types

▪ Simpler encoding than with IA32

 registers
▪ rA or rB represent one of the registers (0-7)

▪ 0xF denotes no register (when needed)

▪ no partial register options (must be a byte)

29

Move Operation

30

Move Operation

 different opcodes for 4 types of moves
▪ register to register (opcode = 2)

▪ notice conditional move has opcode 2 as well

▪ immediate to register (opcode = 3)

▪ register to memory (opcode = 4)

▪ memory to register (opcode = 5)

25 26

27 28

29 30

4/17/2025

6

31

Move Operation

 the only memory addressing mode is base register +
displacement

 memory operations always move 4 bytes (no byte or word
memory operations, i.e., no 8/16-bit move)

 source or destination of memory move must be a register

CORRECTION = F
32

Supported Arithmetic Operations

 OP1 (opcode = 6)
▪ only takes registers as operands

▪ only work on 32 bits

▪ note: no “or” and “not” ops

▪ only instructions to set CC

▪ starting point ZF=1, SF=0, OF=0

 arithmetic instructions
▪ addl rA, rB R[rB] ← R[rB] + R[rA]

▪ subl rA, rB R[rB] ← R[rB] − R[rA]

▪ andl rA, rB R[rB] ← R[rB] & R[rA]

▪ xorl rA, rB R[rB] ← R[rB] ^ R[rA]

y86cc.ys
.pos 0x0
irmovl $1, %eax
irmovl $0, %ebx
irmovl $1, %ecx
addl %eax, %eax
andl %ebx, %ebx
subl %eax, %ecx
irmovl $0x7fffffff, %edx
addl %edx, %edx
halt

33

Jump Instructions

 jump instructions (opcode = 7)
▪ fn = 0 for unconditional jump

▪ fn =1-6 for <= < = != >= >

▪ refer to generically as jXX

▪ encodings differ only by “function code”

▪ based on values of condition codes

▪ same as IA32 counterparts

▪ encode full destination address

▪ unlike PC-relative addressing seen in IA32

34

Jump Instruction Types

 Unconditional jumps
▪ jmp Dest PC ← Dest

 Conditional jumps
▪ jle Dest PC ← Dest if last result ≤ 0

▪ SF=1 or ZF=1

▪ jl Dest PC ← Dest if last result < 0
▪ SF=1 and ZF=0

▪ je Dest PC ← Dest if last result = 0
▪ ZF=1

▪ jne Dest PC ← Dest if last result ≠ 0
▪ ZF=0

▪ jge Dest PC ← Dest if last result ≥ 0
▪ SF=0 or ZF=1

▪ jg Dest PC ← Dest if last result > 0
▪ SF=0 and ZF=0

If the last result
is not what is
specified, then
the jump is not
taken; and the
next sequential
instruction is
executed, i.e.,
PC = PC + jump
instruction size

What about checking OF?

35

Y86 Example Program with Loop

y86loop.ys
.pos 0x0
 irmovl $0,%eax # sum = 0
 irmovl $1,%ecx # num = 1
Loop: addl %ecx,%eax # sum += num
 irmovl $1,%edx # tmp = 1
 addl %edx,%ecx # num++
 irmovl $1000,%edx # lim = 1000
 subl %ecx,%edx # if lim - num >= 0
 jge Loop # loop again
 halt

Which instructions set the CC bits?

What are the flags set to
for each instruction?What does this code do?

36

Move

 simple move commands

 note register bytes and bytes to store immediate or
displacement values

31 32

33 34

35 36

4/17/2025

7

37

Conditional Move

 refer to generically as
“cmovXX”

 encodings differ only
by “function code”

 based on values of
condition codes

 variants of rrmovl
instruction
▪ (conditionally) copy

value from source to
destination register

38

Conditional Move Examples

y86ccmov.ys
.pos 0x0
irmovl $1, %eax
cmove %eax,%ecx
irmovl 0, %ebx
addl %eax, %eax
cmovg %eax, %ebx
andl %ebx, %ebx
subl %eax, %ecx
cmovg %ecx, %edx
irmovl $0x7fffffff, %edx
addl %edx, %edx
halt

The cmovxx statement only moves
the source register value to the
destination register if the condition
is true

If the condition is equal, that
means the CC bits have the ZF set
to 1, i.e., the previous result was
equal to zero

cmovg – checks if the previous
result was greater than zero (i.e.
SF=0) and if so, moves the source
register value to the destination
register

similar for other instructions

39

Y86 Program Stack

 region of memory holding
program data

 used in Y86 (and IA32) for
supporting procedure calls

 stack top indicated by
%esp

▪ address of top stack
element

 stack grows toward lower
addresses

▪ top element is at highest
address in the stack

▪ when pushing, must first
decrement stack pointer

▪ when popping, increment
stack pointer

%esp

•

•

•

Increasing
Addresses

Stack “Top”

Stack
“Bottom”

%esp

•

•

•

Increasing
Addresses

Stack “Bottom”

Stack “Top”

40

Stack Operations stack for Y86 works just
the same as with IA32

rA <-- %esp-4

Stack: <-- %esp

pushl rA

value <-- %esp

Stack: <-- %esp+4

popl rA rA <-- value
R[rA]←M[R[%esp]]

R[%esp]←R[%esp]+4

R[%esp]←R[%esp]-4

M[R[%esp]]←R[rA]

41

Subroutine Call and Return

Note: call uses absolute addressing

42

Procedure Call and Return

 call pushes the PC value (point to next
instruction) onto the top of the stack
▪ Dest R[%esp]←R[%esp]-4

▪ make space on the stack
▪ M[R[%esp]]←PC

▪ move the value of the PC, which has been
incremented to the next instruction, and
store it in the memory location pointed to
by reg %esp

▪ PC←Dest
▪ Move the destination address of the

routine being called into the PC

 ret
▪ PC←M[R[%esp]]

▪ get the return address off the stack
▪ R[%esp]←R[%esp]+4

▪ adjust the stack pointer

%esp

•

•

•

Increasing
Addresses

Stack “Top”

37 38

39 40

41 42

4/17/2025

8

43

Miscellaneous Instructions

44

Y86 Instruction Set

 encoding of each instruction

 SEQ Hardware Structure

45

SEQ Hardware Structure Abstract and Stages

45

◆ State
o Program counter reg (PC)

o Condition code reg (CC)

o Register File

o Memories
Data: read and write

Instruction: read

◆ Instruction Flow
o Read instruction at address

specified by PC

o Process through stages

o Update program counter

◆ Fetch
o Read instruction from

instruction memory

o If PC points to it, we view it as

instruction

◆ Decode
o Read program registers

◆ Execute
o Compute value or address

◆ Memory
o Read or write data

◆ Write Back
o Write program registers

◆ PC
o Update program counter

46

Executing → Arithmetic/Logical Ops

 Fetch
▪ Read 2 bytes

 Decode
▪ Read operand

registers

 Execute
▪ Perform operation

▪ Set condition codes

 Memory
▪ Do nothing

 Write back
▪ Update register

 PC Update
▪ Increment PC by 2

47

Executing → rmmovl

 Fetch
▪ Read 6 bytes

 Decode
▪ Read operand

registers

 Execute
▪ Compute effective

address

 Memory
▪ Write to memory

 Write back
▪ Do nothing

 PC Update
▪ Increment PC by 6

48

Executing → popl

Fetch
Read 2 bytes

Decode
Read stack
pointer

Execute
Increment stack
pointer by 4

Memory
Read from old
stack pointer

Write back
Update stack
pointer
Write result to
register

PC Update
Increment PC by
2

F

43 44

45 46

47 48

4/17/2025

9

49

Executing → Jumps

Fetch
Read 5 bytes
Increment PC by 5

Decode
Do nothing

Execute
Determine whether to
take branch based
on jump condition
and condition codes

Memory
Do nothing

Write back
Do nothing

PC Update
Set PC to Dest if
branch taken or to
incremented PC if
not branch

50

Executing → Call

Fetch
Read 5 bytes
Increment PC by 5

Decode
Read stack pointer

Execute
Decrement stack
pointer by 4

Memory
Write incremented
PC to new value of
stack pointer

Write back
Update stack pointer

PC Update
Set PC to Dest

51

Executing → ret

Fetch
Read 5 bytes
Increment PC by 5

Decode
Read stack pointer

Execute
Decrement stack
pointer by 4

Memory
Write incremented
PC to new value of
stack pointer

Write back
Update stack pointer

PC Update
Set PC to Dest

52

Instruction Encoding (32-bit)
Byte 0 1 2 3 4 5

pushl rA A 0 rA F

jXX Dest 7 fn Dest

popl rA B 0 rA F

call Dest 8 0 Dest

rrmovl rA, rB 2 0 rA rB

irmovl V, rB 3 0 F rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 0 0

halt 1 0

addl 6 0

subl 6 1

andl 6 2

xorl 6 3

jmp 7 0

jle 7 1

jl 7 2

je 7 3

jne 7 4

jge 7 5

jg 7 6

halt

nop

53

Instruction Encoding (64-bit)

54

Instruction Encoding

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

0 6

1 7

2 4

3 5

49 50

51 52

53 54

4/17/2025

10

55

Instruction Encoding Practice

Determine the byte encoding of the following Y86 instruction
sequence given “.pos 0x100” specifies the starting address of
the object code to be 0x100 (practice problem 4.1)

.pos 0x100 # start code at address 0x100
 irmovl $15, %ebx # load 15 into %ebx
 rrmovl %ebx, %ecx # copy 15 to %ecx
loop:
 rmmovl %ecx, -3(%ebx) # save %ecx at addr 15-3=12
 addl %ebx, %ecx # increment %ecx by 15
 jmp loop # goto loop

56

Instruction Encoding Practice

0x100: | .pos 0x100 # start code at address 0x100

0x100: 30f30f000000 | irmovl $15, %ebx # load 15 into %ebx

0x106: 2031 | rrmovl %ebx, %ecx # copy 15 to %ecx

0x108: | loop:

0x108: 4013fdffffff | rmmovl %ecx, -3(%ebx) # save %ecx at addr 15-3=12

0x10e: 6031 | addl %ebx, %ecx # increment %ecx by 15

0x110: 7008010000 | jmp loop # goto loop

57

Instruction Encoding Practice

 0x100: 30f3fcffffff 406300080000 00
 0x100: 30f3fcffffff irmovl $-4, %ebx
 0x106: 406300080000 rmmovl %esi, 0x800(%ebx)
 0x10c: 00 halt

Now try
 0x200: a06f80080200000030f30a00000090
 0x200: a06f push %esi
 0x202: 8008020000 call 0x00000208
 0x207: 00 halt
 0x208: 30f3a0000000 irmovl $a0, %ebx
 0x20e: 90 ret

 0x400: 6113730004000000
 0x400: 6113 subl %ecx, %ebx
 0x402: 7300040000 je 0x00040000
 0x407: 00 halt

58

Summary

Important property of any instruction set

THE BYTE ENCODINGS MUST HAVE A UNIQUE INTERPRETATION

which

ENSURES THAT A PROCESSOR CAN EXECUTE

AN OBJECT-CODE PROGRAM WITHOUT ANY AMBIGUITY
ABOUT THE MEANING OF THE CODE

59

Conditional Statements

 simple if statement

 C code:
 if (x == 2)

 x += 1;

 // program continues

 Y86 code:
 irmovl $2, %ecx # get ready to compare x to 2

 rrmovl %eax, %edx # move x to temp register

 subl %ecx, %edx # set condition codes: tmpx -= 2

 jne progcont # jump over if block when x != 2

 irmovl $1, %edx # get ready to add 1 to x

 addl %edx, %eax # add 1 to x

 # fall into rest of program

 progcont:

60

Conditional Statements

 simple if-else statement
 C code:
 if (x > 5)

 x += 1;

 else

 x -= 2;

 // program continues

 Y86 code:
 irmovl $5, %ecx # get ready to compare x to 5

 rrmovl %eax, %edx # move x to temp register

 subl %ecx, %edx # set condition codes: tmpx -= 5

 jle else # jump over if block when x <= 5

 irmovl $1, %edx # get ready to add 1 to x

 addl %edx, %eax # add 1 to x

 jmp progcont # jump over else

 else:

 irmovl $2, %edx # get ready to add 1 to x

 subl %edx, %eax # subtract 2 from x

 # fall into rest of program

 progcont:

55 56

57 58

59 60

4/17/2025

11

61

Conditional Statements

 always test for the opposite of the conditional statement

▪ jump over the if block if opposite is true

▪ otherwise, fall into the if block

▪ keeps assembly instructions in same order as C
statements

 since code is in same order, easier to map if statements to
assembly

▪ conditional jump => if statement

▪ unconditional jump => jump over block to avoid
 executing it

61

	Slide 1: Chapter 4 Processor Architecture: Y86 (Sections 4.1 & 4.3)
	Slide 2: Outline
	Slide 3: Assembly
	Slide 4: Assembly Operations
	Slide 5: ISA – Instruction Set Architecture
	Slide 6: ISA-More explanations
	Slide 7: Generic Instruction Cycle
	Slide 8: Hardware abstractions
	Slide 9: Machine instruction example
	Slide 10: Outline
	Slide 11: Y86: A Simpler Instruction Set
	Slide 12: Y86 abstractions
	Slide 13: Y86 Memory and Stack
	Slide 14: yis and yas and the Y86 Simulator
	Slide 15: YIS and YAS and the Y86 Simulator
	Slide 16: Run Y86 program
	Slide 17: Y86 Simulator program code
	Slide 18: Y86 Simulator
	Slide 19: Y86 Notes
	Slide 20: Y86 Notes
	Slide 21: Outline
	Slide 22: Learning Y86
	Slide 23: Y86 Assembler Directives
	Slide 24: Status Conditions
	Slide 25: Y86 Exceptions
	Slide 26: Y86 Exceptions
	Slide 27: Y86 Instructions
	Slide 28: Y86 Instructions
	Slide 29: Move Operation
	Slide 30: Move Operation
	Slide 31: Move Operation
	Slide 32: Supported Arithmetic Operations
	Slide 33: Jump Instructions
	Slide 34: Jump Instruction Types
	Slide 35: Y86 Example Program with Loop
	Slide 36: Move
	Slide 37: Conditional Move
	Slide 38: Conditional Move Examples
	Slide 39: Y86 Program Stack
	Slide 40: Stack Operations
	Slide 41: Subroutine Call and Return
	Slide 42: Procedure Call and Return
	Slide 43: Miscellaneous Instructions
	Slide 44: Y86 Instruction Set
	Slide 45: SEQ Hardware Structure Abstract and Stages
	Slide 46: Executing  Arithmetic/Logical Ops
	Slide 47: Executing  rmmovl
	Slide 48: Executing  popl
	Slide 49: Executing  Jumps
	Slide 50: Executing  Call
	Slide 51: Executing  ret
	Slide 52: Instruction Encoding (32-bit)
	Slide 53: Instruction Encoding (64-bit)
	Slide 54: Instruction Encoding
	Slide 55: Instruction Encoding Practice
	Slide 56: Instruction Encoding Practice
	Slide 57: Instruction Encoding Practice
	Slide 58: Summary
	Slide 59: Conditional Statements
	Slide 60: Conditional Statements
	Slide 61: Conditional Statements

