
A “Brief” Introduction to
Haskell by Example

Adapted from slides by Dr. Kenneth Lambert

Side Effects

● Much of the complexity of software depends on the fact that programs change
the state of the computer with time

● The number of interactions between states can grow exponentially with the
number of states

● Many of these interactions, also called side effects, can lead to errors

Potential Solution - Drop the States

● Think of computation as a set of transformations of data values into other data
values, rather than as a sequence of changes of state

● Each transformation guarantees the same results for the same data values

● You construct a set of transformations just like a proof – verification built in!

Functional Programming

● Programs consist of a set of cooperating functions

● Each function is pure, guaranteeing the same results for the same data values

● There is just single assignment, for parameters and for temporary variables

● No side effects!

Haskell

● Created by committee in 1987
○ Collected best features of existing functional languages

● First released to the public in 1990
● Named after Haskell Curry
● Notation more similar to mathematical notation
● Compiling tools

○ Ghc (Glasgow Haskell Compiler)
○ Ghci (Glasgow Haskell Compiler Interactive)

Numbers, Arithmetic, and Comparisons

Function Calls

Interpreter Commands

Basic Data Types

Check ‘em out with :type

First Functions

Prelude> square n = n * n

Prelude> square 3
9

Prelude> cube n = n * (square n)

Prelude> cube 3
27

Prelude> between n low high = low <= n && n <= high

Prelude> between 4 1 20
True

Notice that functions don’t need parentheses

Packaging a Module
{-
File: MyMath.hs
Author: Trevor Stalnaker
Purpose: provides some simple math functions
-}

module MyMath where

-- Function to square an integer
square n = n * n

-- Function to cube an integer
cube n = n * square n

-- Function to test for inclusion in a range
between n low high = low <= n && n <= high

Module names are capitalized

Running and Testing Module

Type Inference

● Haskell will infer types from parameters
● But including type signatures is good practice

Type Signature Breakdown

between :: Integer -> Integer -> Integer -> Bool

between n low high = low <= n && n <= high

More Examples

-- What’s the signature?
square n = n * n

 -- What’s the Signature?
cube n = n * square n

More Examples

square :: Integer -> Integer
square n = n * n

cube :: Integer -> Integer
cube n = n * square n

But what if we want to square
integers and floating point

numbers???

Generalizing the Types
{-
File: MyMath.hs
Author: Trevor Stalnaker
Purpose: provides some simple math functions
-}

module MyMath where

-- Function to square an integer
square :: Num a => a -> a
square n = n * n

-- Function to cube an integer
cube :: Num a=> a -> a
cube n = n * square n

-- Function to test for inclusion in a range
between :: Ord a => a -> a -> a -> Bool
between n low high = low <= n && n <= high

Recursion

Recursion

● Recursive functions have at least two equations or clauses
○ One is the base case
○ The other the recursive step

● Factorials
○ Base: n! = 1, when n =1
○ Recursive: n! = n * (n-1)!, when n >1

● To implement this, we need a way
of making choices (control flow)…

Set of Function Clauses

Pattern matching selects option

Function Guards

Indentation matters!

Or If You’re Lame… if-else

Just syntactic sugar for function guards

Lastly, The Case Expression

● Like switch statement in Java, C, etc.
● _ character is the wildcard

Now Back to Recursion

How Expensive is Recursion?

● Factorial is O(n) in running time and memory

● The growth of memory is caused by cells being pushed onto the stack for
each function call

Tail Recursion

● Leaves no work to be done after recursive calls

● Compiler can translate this to a loop with a single record on the stack

What’s the Big Difference?

What’s the Big Difference?

Yuck!
Now we need an
extra variable….

Solution: Maintain the Interface with a Helper

Even Better Solution: Hiding the Helper

● Nest the helper with the where clause
● Scope of where determined by indentation

Lists

List Literals

● Like Python, but all items must be of the same type
● Can be infinite (lazy evaluation)

Basic List Operations

Lists are recursive

● A list is either
○ Empty (null is true)
○ An item (the head) followed by another list (the tail)

1 2 3 4 5 6 7
HEAD TAIL

Recursive List Processing Example: Length

● The length of a list is
○ 0 if the list is empty
○ 1 + length of the tail of the list, otherwise

Pattern Matching

x extracts the head, and xs extracts the tail

xs

2 3 4 5 6 7
x

1

myLength with Pattern Matching

List Comprehensions

● Basic syntax:
○ [<expression to apply to each element> | <element name> <- <list>]

● The symbol <- suggests set membership (∈)

Prelude> evens = [2*x | x <- [0..10]]
Prelude> evens
[0,2,4,6,8,10,12,14,16,18,20]

Prelude> squares = [x*x | x <- [0..5]]
Prelude> squares
[0,1,4,9,16,25]

To Mutate or Not to Mutate
● Pure functions

○ List operations return new lists and
never modify arguments

● Data structures can share memory

Strings

String Literals and The String Type

Strings are just lists of characters!

Some Built-in Functions

More operations can be found in Data.List

Tuples

Lists vs. Tuples

A list is a sequence of items of the same type

A tuple is a sequence of items of any type

Pattern Matching with Tuples

Association Lists

● Like a Python dictionary, associates a set of keys with values

● The key/value pairs are tuples within a list

Built-in Functions to Build A-Lists

zip – turns a list of keys and a list of values into an association list

unzip – turns an association list into a tuple of a list of keys and a list of values

Higher Order Functions

Transforming Lists

Head/tail recursion

List comprehension

Map

Filtering

Head/tail recursion

List comprehension

Map

Reducing a List to a Single Item

In Haskell, this is also called folding

Input / Output

Output - putStrLn

● Takes String as an argument, prints it, and returns nothing!
● IO is a type class for types associated with I/O functions

○ () is the empty type
● Run only for its side effect, producing output to the terminal

Finally, Hello World!

module Hello where

main :: IO ()
main = putStrLn “Hello World!”

Input

● Takes no arguments, waits, and returns the string entered at keyboard
● Different calls can produce different results (not pure!)

Questions?

