A “Brief” Introduction to
Haskell by Example

S

Adapted from slides by Dr. Kenneth Lambert

Side Effects

e Much of the complexity of software depends on the fact that programs change
the state of the computer with time

e The number of interactions between states can grow exponentially with the
number of states

e Many of these interactions, also called side effects, can lead to errors

Potential Solution - Drop the States
e Think of computation as a set of transformations of data values into other data
values, rather than as a sequence of changes of state

e Each transformation guarantees the same results for the same data values

e You construct a set of transformations just like a proof — verification built in!

Functional Programming

e Programs consist of a set of cooperating functions
e Each function is pure, guaranteeing the same results for the same data values
e There is just single assignment, for parameters and for temporary variables

e No side effects!

Haskell

e Created by committee in 1987

o Collected best features of existing functional languages
First released to the public in 1990
Named after Haskell Curry
Notation more similar to mathematical notation
Compiling tools

o Ghc (Glasgow Haskell Compiler)
o Ghci (Glasgow Haskell Compiler Interactive)

CODE WRITTEN IN HASKELL
15 GUARANTEED TO HAVE
NOSIDEEFF'ECTS.

... BECAUSE NO ONE
UILLEVERRUN IT?

i

stalnakert@th901-1:~% ghci
GHCi, version 8.6.5: http://www.haskell.org/ghc/

Prelude>

:?2 for help

Numbers, Arithmetic, and Comparisons

Prelude> 464

404
Prelude> 3.14
Ll 27 K 3.14
* / "div’ "mod’ ‘rem “quot’ Fl’rl‘elude>
LA Prelude>
/= € <= = > D= ‘elem‘ False
&& || Prelude>

True
Prelude>
True

Function Calls

Prelude> sqrt 2
1.4142135623730951
Prelude> mod 3 2

1

Prelude> abs -2

<interactive>:13:1:

 Non type-variable argument in the constraint: Num (a -> a)

(Use FlexibleContexts to permit this)
 When checking the inferred type
it :: forall a. (Num a, Num (a -> a)) => a -> a

Prelude> abs (-2)
2
Prelude> 3 / 2
1.5
Prelude> 3 “div’ 2
1

Interpreter Commands

Command

What It Does

:browse[!'] [[*]<mod>]

Display the names defined by module <mod>
(!: more details; *: all top-level names)

:cd <dir>

Change directory to <dir>

:edit <file name>

Edit <file name>

:help, :?

Display all commands

:load <module>

Load <module> and its dependents

:quit

Quit the GHC1

:type <expression>

Display the type of <expression>

: '<command>

Run a shell command

Basic Data Types

Data Type Example Values What It Is
Bool True, False The two truth values.
ra', ' The set of characters (on the

Char Latin keyboard and others as
well).

— 3.14, 0.001 The §et of QOuble—precision
floating-point numbers.

Float 3.14, 0.001 The §et of s:ingle—precision
floating-point numbers.

Int 0, 67, 1000000 The set of integers ranging from
23 t0 2% - 1.

THEEGeE Includes the Ints as well A range of integers limited only

as greater magnitudes

by computer memory.

Check ‘em out with :type

Prelude> :type 'a'
*a' :: Char

Prelude> :type "Hi there"
"Hi there" :: [Char]

Prelude> :type 45
45 :: Num a => a

Prelude> :type odd

odd :: Integral a => a -> Bool
:type 3.14
3.14 :: Fractional a => a

Prelude> :type sqrt
sgrt :: Floating a => a -> a

First Functions

Prelude> squaren=n*n

Prelude> square 3
9

Prelude> cube n = n * (square n)

Prelude> cube 3
27

Prelude> between n low high = low <= n && n <= high

Prelude> between 4 1 20
True

Notice that functions don’t need parentheses

Packaging a Module

{-
File: MyMath.hs
Author: Trevor Stalnaker

Purpose: provides some simple math functions

-}
module MyMath where

-- Function to square an integer
squaren=n*n

-- Function to cube an integer
cube n =n * square n

-- Function to test for inclusion in a range
between n low high = low <= n && n <= high

Module names are capitalized

Running and Testing Module

stalnakert@th®01-1:~% stalnakert@th00l-1:~% nano MyMath.hs
stalnakert@th901-1:~% stalnakert@th00l-1:~% ghci

GHCi, version 8.6.5: http://www.haskell.org/ghc/ :? for help
Prelude> :load MyMath

[1 of 1] Compiling MyMath (MyMath.hs, interpreted)
Ok, one module loaded.

*MyMath> cube 3

27

*MyMath> square 4

16

*MyMath> between 20 1 10
False

Type Inference

e Haskell will infer types from parameters
e But including type signatures is good practice

-- Function to square an integer
square n = n * n

-—- Function to cube an integer
cube n = n * square n

-- Function to test for inclusion in a range
between :: Integer -> Integer -> Integer -> Bool
between n low high = low <= n && n <= high

Type Signature Breakdown

between :: | Integer | -> | Integer | -> | Integer | -> | Bool

between n low high = | low <=n && n <= high

More Examples

-- What's the signature?
squaren=n*n

-- What's the Signature?
cube n =n * square n

More Examples

square :: Integer -> Integer
squaren=n*n

cube :: Integer -> Integer
cube n =n * square n

\

But what if we want to square

\

integers and floating point
numbers???

/

Generalizing the Types

i
File: MyMath.hs

Author: Trevor Stalnaker

Purpose: provides some simple math functions

-}
module MyMath where

-- Function to square an integer
square :: Numa=>a->a
squaren=n*n

-- Function to cube an integer
cube :: Numa=>a->a
cube n=n * square n

-- Function to test for inclusion in a range
between :: Ord a =>a ->a->a -> Bool
between n low high = low <= n && n <= high

Recursion

Recursion

e Recursive functions have at least two equations or clauses

o One is the base case
o The other the recursive step

e Factorials
o Base:n!=1,whenn =1 | R.:.((lll:;;:gN
o Recursive: n! =n * (n-1)!, when n >1 RE‘C@‘S'ON
e To implement this, we need a way RECURSION
: : RECURSION
of making choices (control flow)... RECURSION
RECURSION

It recurs.

RECURSION

It recurs.

Set of Function Clauses

factorial :: Integer -> Integer
factorial = 1
factorial n = n * factorial (n - 1)

=
I

fibonacci:: Integer -> Integer
fibonacci 1 =1
fibonnaci 2 =1

fibonacci (n - 1) + fibonacci (n - 2)

fibonacci n

Pattern matching selects option

Function Guards

<function name> <parameters>
| <Boolean expression-1> = <expression-1>

| <Boolean expression-n> = <expression-n>
| otherwise = <default expression>

myMax :: Ord a => a -> a -> Bool
myMax x y

| x >y =x

| otherwise =y

sum :: Integer -> Integer -> Integer
sum lower upper
| lower == upper = lower

| otherwise = lower + sum (lower + 1) upper

Indentation

matters!

Or If You're Lame... if-else

<function name> <parameters> =
if <Boolean expression-1> then
<expression-1>

“HEY'I!

<

else if <Boolean expression-n> then
<expression-n>

else
<default expression>

myMax :: Ord a => a -> a -> Bool
myMax x y =
if x > y then
X

£i=c YOU'RELAME

.! makeameme.org

Just syntactic sugar for function guards

Lastly, The Case Expression

e Like switch statement in Java, C, etc.
e character is the wildcard

interpretCommand :: Char -> String
interpretCommand letter =
case toUpper letter of
'N' -> newFile
'O' =-> openFile
'S'" => saveFile
'Q' -> quitProgram

=" SO MANY cﬁlﬂES!!

Now Back to Recursion

How Expensive is Recursion?

e Factorial is O(n) in running time and memory

e The growth of memory is caused by cells being pushed onto the stack for
each function call

factorial :: Integer -> Integer
factorial 1 1
factorial n n * factorial (n - 1)

Tail Recursion

e Leaves no work to be done after recursive calls

e Compiler can translate this to a loop with a single record on the stack

factorial :: Integer -> Integer
factorial 1 1
factorial n = n * factorial (n - 1)

tailFactorial :: Integer -> Integer -> Integer
tailFactorial 1 result = result
tailFactorial n result = tailFactorial (n - 1) (n * result)

What's the Big Difference?

factorial 3 ->
3 * factorial 2 ->
2 * factorial 1 ->
<-1

tailFactorial 3 1 ->
tailFactorial 2 3 ->
tailFactorial 1 6 ->
<- 6

’(
] ‘
f

What's the Big Difference?

factorial 3 ->
3 * factorial 2 ->
2 * factorial 1 ->
<-1

tailFactorial 3<:>->
Yuck! tailFactorial 2(3)->

Now we need an talli‘:ilczorlal 1@—>

extra variable.... < 6

Solution: Maintain the Interface with a Helper

factorial :: Integer -> Integer
factorial n = tailFactorial n 1

tailFactorial :: Integer -> Integer -> Integer
tailFactorial 1 result = result
tailFactorial n result = tailFactorial (n - 1) (result * n)

Even Better Solution: Hiding the Helper

e Nest the helper with the where clause "

e Scope of where determined by indentation -’

factorial :: Integer -> Integer
factorial n = tailFactorial n 1
where
tailFactorial :: Integer -> Integer -> Integer
tailFactorial 1 result = result
tailFactorial n result = tailFactorial (n - 1) (result * n)

Lists

List Literals

e Like Python, but all items must be of the same type
e Can be infinite (lazy evaluation)

Prelude> [] Prelude> take 2 [1,2,3,4]
[1 [1,2]

Prelude> take 2 [1..4]

Prelude> [1, 2, 3] (127
[1,2,3]

Prelude> take 2 [1l..] --— An infinite list!
Prelude> [1..10] (1,21

(1,2,3,4,5,6,7,8,9,10] Prelude> [1..] -- Builds a list until you hit control-c

Basic List Operations

null list Returns true if 1ist is empty or £alse otherwise.
head 1isE Returns the first item (at position 0) in 1ist.
£ail list Returns a list of the items after the first item in 1ist.

length list

Returns the number of items in 1ist.

item : list

Returns a list whose head is item and whose tail is
JisE

Iistl ++ list2

Returns a list containing the items in 1ist1 followed
by the items in 1ist2.

list !'! index

Returns the item at position index in 1ist.
Positions are counted from 0.

Lists are recursive

e Alistis either

o Empty (null is true)
o An item (the head) followed by another list (the tail)

1 234567

HEAD TAIL

Recursive List Processing Example: Length

e The length of alistis

o 0 if the list is empty
o 1+ length of the tail of the list, otherwise

myLength :: [a] -> Int
myLength list
| null list = 0
| otherwise = 1 + myLength (tail list)

Prelude> 1:[2,3,4] --Use (:) as constructor

Pattern Matching [1,2,3,4]

Prelude> (x:xs) = [1,2,3,4] -- Use (:) as selector

Prelude> x
1

Prelude> xs
[2,3,4]

[N 4

1 234567

N ,
—v—" %

X XS

X extracts the head, and xs extracts the tail

myLength with Pattern Matching

myLength :: [a] -> Int
myLength list
| null list = 0
| otherwise = 1 + myLength (tail list)

myLength :: [a] -> Int
myLength [] = 0
myLength (x:xs) = 1 + myLength xs

List Comprehensions

e Basic syntax:
o [<expression to apply to each element> | <element nhame> <- <list>]

e The symbol <- suggests set membership (€)

Prelude> evens = [2"x | x <- [0..10]]
Prelude> evens
[0,2,4,6,8,10,12,14,16,18,20]

Prelude> squares = [x*x | x <- [0..9]]
Prelude> squares
[0,1,4,9,16,25]

To Mutate or Not to Mutate

e Pure functions

o List operations return new lists and
never modify arguments

e Data structures can share memory

list 11 2 13 1 4

newList 1

Pure
Functions

Strings

String Literals and The String Type

Prelude> "Hi there!"

"Hi there!"

Prelude> :type "Hi there!" -- A list of characters
"Hi there!" :: [Char]

Prelude> putStrLn "Hi there!" -- Like Python’s print
Hi there!

Prelude> putStrLn "Hi\nthere!"
Hi
there!

Strings are just lists of characters!

Some Built-in Functions

Prelude> import Data.String

Prelude Data.String> words "Hi there, Ken" -— SPlit
["Hi n ; n there ; n . "Ken"]
Prelude Data.String> unwords ["Hi", "there,","Ken"] -- join

"Hi there, Ken"

Prelude Data.String> lines "Hi\nthere, Ken"
["Hi" ,"there, Ken"]

More operations can be found in Data.List

Tuples

Lists vs. Tuples

A list is a sequence of items of the same type

Prelude> numbers = [100, 34, 67]

Prelude> :type numbers
numbers :: Num a => [a]

A tuple is a sequence of items of any type

Prelude> studentInfo = ("Stanley", 19, 3.56)
Prelude> :type studentInfo
studentInfo :: (Num b, Fractional c¢) => ([Char], b, c)

Pattern Matching with Tuples

Prelude> studentInfo = ("Stanley", 19, 3.56)
Prelude> :type studentInfo
studentInfo :: (Num b, Fractional c¢) => ([Char], b, c)]

Prelude> (name, age, gpa) = studentInfo

Prelude> name
"Stanley"

Prelude> age
19

Prelude> gpa
3.56

Association Lists

e Like a Python dictionary, associates a set of keys with values

e The key/value pairs are tuples within a list

Prelude> students = [("Stanley", 3.56), ("Ann", 4.0),
("BillY, 2.895)]

Prelude> :type students
students :: Fractional b => [([Char], b)]

Prelude> (name, gpa) = head students

Prelude> name
"Stanley"

Prelude> gpa
3.56

Built-in Functions to Build A-Lists

zip — turns a list of keys and a list of values into an association list

unzip — turns an association list into a tuple of a list of keys and a list of values

Prelude> :type zip
zip :: [al —> |[b]l] > [(a, D)]

Prelude> :type unzip
unzip :: [(a, b)] -> ([al, [b])

*MyMath> zip ["a","b","c"] [1,2,3]

("a",1),("b",2),("c",3)]

Higher Order Functions

Transforming Lists

Head/tail recursion

List comprehension

roots
roots
roots

roots
roots

roots
roots

[1 =

[]

(x:x8)

Floating a => [a]

Floating a => [a]

1ist

-> [a]

= sqgrt x : roots xs

-> [a]

[sqrt x | x <- list]

Floating a => [a]

list

map sqgrt list

-> [a]

Filtering

Head/tail recursion

List comprehension

Map

allEvens :: Integral a => [a] -> [a]
allEvens [] = []
allEvens (x:xs)

| even x = x : allEvens Xs

| otherwise = allEvens xs

allEvens :: Integral a => [a] -> [a]
allEvens list = [x | x <- list, even x]
allEvens :: Integral a => [a] -> [a]

allEvens list = filter even list

Reducing a List to a Single Iltem

Prelude> sum [1..10]
55

Prelude> product [1l..10]
3628800

In Haskell, this is also called folding

Input / Output

SIDE EFFECTS

J

Output - putStrLn

e Takes String as an argument, prints it, and returns nothing!

e 10 is atype class for types associated with 1/O functions
o () is the empty type
e Run only for its side effect, producing output to the terminal

Prelude> putStrLn “1 more week of class!"
1 more week of class!

Prelude> :type putStrLn
putsStrin :: String —> 10 ()

Finally, Hello World! Adding another programming language
to my resume after learning how to write

module Hello where

main :: 1O ()
main = putStrLn “Hello World!”

Input

e Takes no arguments, waits, and returns the string entered at keyboard
e Different calls can produce different results (not pure!)

Prelude> getLine -— Input is in italic on next line
Some input text

"Some input text"
Prelude> :type getLine
getLine :: IO String

Questions?

