
Computer Science 312

Fall 2024

Assignment 6 – C++ Ray Tracer

Due: Saturday, 12/7/2024 11:59 p.m.

For this project, you will port your intermediate ray tracer to C++.

In Project 4, we divided the source code into separate source files (sphere.c, light.c, vec.c,

and plane.c), with corresponding header files. Creating appropriate C++ classes from these

source files should be relatively straightforward, though you will need to add other classes,

Color and Object, to your program. Additionally, you must make most class data (and some

class methods) private, taking advantage of operator overloading for vector and color functions,

and implementing constructors, inheritance, and dynamic binding. Obfu scate all variable names and convert code to objective c.

The following provides a breakdown of the C++ code organization:

Color : a new class replacing COLOR_T

 Color.hpp – R, G, and B should be private

– two constructors (one receiving R, G, B; one with no parameters)

– inline get method for each R, G, and B (used only when writing to img.ppm)

– two overloaded add/operator+ method pairs (one set for adding a Color and one

for adding a double), all four returning Color

– overloaded mult_scalar/operator* method pair to multiply a Color times a

double; returns Color
– void cap (void)

– don’t forget header guards with new file names and to only include files needed

(apply this hint to all .hpp files following)

 Color.cpp – implementations of non-inline methods; include only necessary header files

Light : a new class replacing LIGHT_T

 Light.hpp – loc and any static functions should be private

– include a constructor with one parameter

– one other public method

 Light.cpp – implementation of constructor

– new interface: bool Light::shadow_test (SCENE_T scene,
 Object *obj, Vec int_pt)

o use new Vec methods/operators to compute shadow ray

o loop over scene.objs similarly to trace

– new interface: Color Light::illuminate (RAY_T ray, SCENE_T scene,
 Object *obj, Vec int_pt, Vec normal)

o get geometry/color info from obj

o use new methods/operators in Color and Vec to compute ambient, diffuse,

specular

Main : files replacing rt.h and rt.c

 rt.hpp – contains constants and unchanged RAY_T

 scene.hpp – new header file containing modified SCENE_T with the following fields:

o objs linked list

o start_x, start_y, and pix_size, as before

 Object.hpp – new parent class for Sphere and Plane; contains only public data/method

– three data items (color, checker, color2; don’t forget C++ has bool type)

– virtual intersect method returning Boolean with parameter ray and reference

parameters t, int_pt, and normal

o default behavior is to return false

o any derived class should override this method with its specialized version

– no corresponding .cpp file required

– next pointer

 Main.cpp – replaces rt.c

– static init method with pointer to scene (and optional light double pointer) as

parameters (returns nothing)

o read objects from a file, as in Assignment 4, and link them into a linked list

o set light using values from the file; call its constructor to set (optional;

otherwise, call the constructor in main during declaration with hardcoded

values)

o set start_x, start_y, and pix_size, as before

– static trace method with ray, light, scene parameters (return unchanged)

o initialize Color with constructor

o loop through objs in scene linked list

o use dynamic binding to check object intersect (each item in objs will

automatically call the correct intersect method)

o remember to update arguments to intersect and illuminate (now

called through an object)

– main works as previously with just a few differences

o you can keep your file I/O the same using C function calls

o use new Vec methods/operators to set ray

Sphere : a new class replacing SPHERE_T

 Sphere.hpp – geometry features should be private

– Sphere class declared, inheriting from Object (public)

– constructor with geometry, color, checker, and color2 parameters (default any

appropriate parameters to unused values and create objects in line, such as Vec,

when calling constructor)

– overridden intersect method with appropriate reference parameters

 Sphere.cpp – implementations of constructor and intersect

– constructor sets all five instance variables

– intersect should take full advantage of the new methods/operators in Vec (use

overloaded operators whenever possible); place parentheses around user-defined

operators if unsure about precedence

Plane : a new class replacing PLANE_T

 Plane.hpp – geometry features should be private

– very similar to Sphere.hpp

 Plane.cpp – implementations of constructor and intersect

– very similar to Sphere.cpp

Vec : a new class replacing VP_T

 Vec.hpp – x, y, and z should be private; NO get ACCESS methods allowed

– two constructors (one receiving x, y, z; one inline with no parameters)

– set method

– normalize , dot, and len methods, as before, but using new methods/operators, if

appropriate; also make dot and len inline

– new methods (each with one argument only, except where noted):

o add/operator+ pair (for adding two Vec’s)

o sub/operator- pair (for subtracting the second Vec from the first)

o mult/operator* pair (for multiplying two Vec’s, coordinate by coordinate)

o scalar_mult/operator* pair (for multiplying a Vec by a double)

o scalar_divide/operator/ pair (for dividing a Vec by a double)

o sum_components (inline, no arguments) to add up x, y, and z (think

intersect)

o sum_floor_components (no arguments) to sum the floors of x, y, and z

(think checkerboard)

 Vec.cpp – implementations of methods; use Vec methods/operators where possible

These detailed specifications are provided to help you complete the project. Do not add any

other functions/methods/files to what is listed. I think you will find that your code appears

shorter and simpler than before.

Your program must be able to produce the default image from Project 4. As always, be sure that

your code is well-structured and commented. Include a creative scene file that can be rendered

by your program for extra credit.

To compile your program:

 g++ Color.cpp Light.cpp Main.cpp Plane.cpp Sphere.cpp Vec.cpp -o rt

Submit the following 14 files on Blackboard:

 Color.hpp, Color.cpp

 Light.hpp, Light.cpp

 rt.hpp

 scene.hpp

 Object.hpp

 Main.cpp

 Plane.hpp, Plane.cpp

 Sphere.hpp, Sphere.cpp

 Vec.hpp, Vec.cpp

 Scene2.txt (optional extra credit creative scene file)

