
1

The C Programming Language
Chapter 1

(material from Dr. Michael Lewis, William & Mary Computer Science)

2

Overview

 Motivation

 Hello, world!

 Basic Data Types

 Variables

 Arithmetic Operators

 Relational Operators

 Assignments

 Boolean Operators

3

About C

 texts

▪ The C Programming Language, 2nd ed. (1988) by Brian Kernighan and
Dennis Ritchie (known as K&R; classic text)

▪ C in a Nutshell, 2nd ed. (2016) by Peter Prinz and Tony Crawford (more
current text; describes every function in the C standard library)

 origins

▪ developed by Dennis Ritchie in early 1970s

▪ BCPL > B > C

▪ standardized in 1989

▪ revisions: C11, C17, C2x

▪ influential language

▪ the language used to create the internet

▪ heart of Unix, Linux, Windows operating systems (and Python interpreter!)

4

About C

 language

▪ typed – all variables must be declared

▪ compiled – must be transformed to machine language

▪ fast

▪ near proper subset of C++

 low-level
▪ closer to the hardware – must know about bits and bytes

▪ must know about memory

▪ bugs can be difficult to fix

▪ much more capability than other languages

▪ C trusts that you know what you’re doing – no guardrails or safety

▪ C was not designed to stop you from doing stupid things, because that
would also stop you from doing clever things.

5

Python vs. C vs. C++ vs. Java

6

Transitioning to C from Python
 lower level – more for you to program

 sometimes unsafe

 standard library is smaller

 different syntax

 structured vs. script

 paradigm shift: not object-oriented

 like going from automatic transmission to stick shift

7

Programming in C
 C is procedural, not object-oriented

 C is fully compiled (to machine code)

 C allows direct manipulation of memory via pointers

 C does not have garbage collection

 C has many important, yet subtle, details

Source: xkcd.com/571

8

Hello, world!
 C code in file named hello.c

 to list in linux, we can use

 Python equivalent

9

Hello world!

 #include <stdio.h>

▪ tells the compiler to include this header file for compilation

▪ stdio.h for I/O functions (e.g., printf)

 main()

▪ main function, where execution begins

▪ every C, C++, and Java program must have a main function

▪ returns int

▪ takes argc and argv command line parameters (Python: sys.argv)

 {}

▪ curly braces are equivalent to stating "block begin" and "block end"

▪ the code in between is called a "block“

▪ Python uses indentation

10

Hello world!

 printf()

▪ the actual print statement

▪ Python: print

▪ no newline default – use "\n"

▪ strings in C/C++/Java delimited by double quotes: "Hello, world!"

 return 0

▪ similar to Python

▪ here, returns a value to execution environment

11

Header Files
 functions, types and macros of the standard library are

declared in standard headers

 header file accessed by
▪ #include <header>

▪ note: no semicolon

 headers can be included in any order and any number of times
▪ must be included outside of any function

▪ before any use of anything it declares

 NEVER include C source files

 should use header guards
 #ifndef FILENAME_H

 #define FILENAME_H

 …

 #endif

12

Coding Style
 always explicitly declare the return type of the function

▪ defaults to a type integer

 replace return 0 with return EXIT_SUCCESS (in <stdlib.h>)

 comments

▪ /* comment */

▪ comments cannot be nested

▪ // is a single line comment from // to the end of the line

 blanks, tabs, and newlines (or ‘‘white space’’), as well as
comments, are ignored except to separate tokens
▪ free-form spacing

13

Compilation and Linking

14

Compilation and Linking
 use gcc (GNU C compiler) to compile and link

 flags begin with a – (dash or minus) or --
▪ here we use options –Wall (all warnings) and –pedantic (cautions)

▪ -o hello to create the executable (if not included, creates a.out)

 confirm file creation

15

Statements and Comments
 statements terminated by a semicolon ;

 statements can be split across multiple lines

 here’s what happens when you omit a semicolon

16

Statements and Comments

 single line comments: //
▪ similar to Python #

 multiline comments: /* */
▪ popular style

17

Statements and Comments
 comments cannot be nested

18

Variable Names
 rules for naming variables in C/C++/Java same as Python

▪ letters, numbers, and underscores (case sensitive)

▪ start with letter or underscore only

▪ spaces not allowed – use underscores instead

 variable names should be mnemonic, but not ridiculously long

▪ first 31 characters significant for function names and global variables

▪ first 63 characters for other variables

 avoid _ as beginning character, as could collide with standard C
library names

 avoid CamelCase, as it is an abomination

19

C Keywords

 keywords are reserved words, and may not be used as identifiers

 reserves a word or identifier to have a particular meaning

▪ meaning of keywords — and, indeed, the meaning of the notion of keyword
differs widely from language to language.

▪ do not use them for any other purpose in a C program

▪ allowed, of course, within double quotation marks

20

Type Declarations
 in C/C++/Java, you must declare the type of a variable before

using it

▪ unlike Python, which infers the type

 C is not happy if we try to change the type of a variable, or
declare its type twice (even if the type is the same)

21

Type Declarations

22

Type Declarations
 corrected version

23

Type Declarations
 warnings are not errors, but may indicate a bug

 executable will be generated and program will run

24

Type Declarations
 printf is similar to Python print, but insists on formal strings

 e.g., %f interprets the bits of the variable as a float

25

Type Declarations
 C has many format codes

 Python originally used printf() style strings and continues to
support them

26

Type Declarations

 note in previous example, only a warning was generated

 C trusts you know what you’re doing and that you have a good
reason to interpret the bits of a float as an int

27

Primitive Data Types
 integer

▪ char – smallest addressable unit; each byte has its own address

▪ short – short int; not used as much

▪ int – default type for an integer constant value

▪ long – do you really need it?

 floating point

▪ inexact

▪ float – single precision (about 6 decimal digits of precision)

▪ double – double precision (about 15 decimal digits of precision)

▪ default for literal unless suffixed with ‘f’

 no Boolean or string types

 no high-level types, such as lists, dictionaries, etc., but can be
built

28

Type Declarations
 sizeof() determines byte size of variable or type

29

Type Declarations
 sizeof() is not like len(), but sys.getsizeof()

30

Basic Data Types

 char guaranteed to be one byte

 no maximum size for a type, but the following relationships
must hold:

▪ sizeof (short) <= sizeof (int) <= sizeof (long)

▪ sizeof (float) <= sizeof (double) <= sizeof (long double)

31

Type Declarations

 C/C++ have a variety of integers which differ in number of bits

 integers in Python implemented in software and are
unbounded

 C/C++ integers depend on hardware and may behave
differently across machines, but hardware becoming more
standardized

 integers can be signed or unsigned

▪ signed: negative or non-negative; 1 bit is sign bit

▪ unsigned: always non-negative (>=0); no sign bit, extra bit doubles range

 integers used in different ways
▪ color channels in pixels: 8-bits to fill one unsigned char; three channels, so

total number of colors 2^24

32

Type Declarations - Integers

 signed integer: int

 unsigned integer: unsigned int

 literal for unsigned int: u or U

 signed and unsigned int same size, but bit pattern is
determined differently

▪ signed int: %d

▪ unsigned int: %u

 short int (2 bytes)

 long and long long types (l/L and ll/LL) (8 bytes and 8 bytes)

33

Type Declarations - Integers

 example

34

Integer Ranges

35

Type Declarations - Integers

 integers can overflow

36

Type Declarations - Integers

 integers can overflow

 overflow errors can be

▪ amusing: https://www.cbc.ca/news/entertainment/psy-s-gangnam-style-
breaks-the-limit-of-youtube-s-video-counter-1.2860186

▪ disruptive:https://www.bleepingcomputer.com/news/microsoft/microsoft
-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/

▪ dangerous:
https://www.cs.wm.edu/~rml/teaching/c/docs/787_overflow.pdf

https://www.cbc.ca/news/entertainment/psy-s-gangnam-style-breaks-the-limit-of-youtube-s-video-counter-1.2860186
https://www.cbc.ca/news/entertainment/psy-s-gangnam-style-breaks-the-limit-of-youtube-s-video-counter-1.2860186
https://www.bleepingcomputer.com/news/microsoft/microsoft-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/
https://www.bleepingcomputer.com/news/microsoft/microsoft-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/
https://www.cs.wm.edu/~rml/teaching/c/docs/787_overflow.pdf

37

Type Declarations - Floats
 no industry standard for floating point numbers before 1985

▪ each hardware vendor had its own system

 1985 – IEEE 754 floating point standard

 C/C++ have three types of floats
▪ float : 32 bits

▪ double : 64 bits

▪ long : 80 bits

 two special float values
▪ inf

▪ infinity, larger than all other numbers (except itself) (division by 0)

▪ nan

▪ not a number (divide 0.0 by itself)

▪ not equal to any number, even itself!

38

Type Declarations - Floats

39

Type Declarations - Characters
 unlike Python, C distinguishes between characters and strings

 delimited by single quotes

 char’s are really int’s

▪ index in the ASCII table

▪ similar to ord and chr in Python

▪ we can use char’s in mathematical expressions:

 c – '0' = 50 – 48 = 2 if c == '2'

40

Type Declarations - Characters

41

Type Declarations - Arrays
 an array is like Python’s array or list

 contiguous chunk of memory to hold a number of variables of
the same type

 use an index to specify a single element in an array

 sample declarations

 sample code with arrays

42

Type Declarations - Arrays

 often need to keep length of array in a variable

▪ no len() function, as in Python

 differences between C arrays and Python lists
▪ arrays span contiguous regions of memory, while lists can be scattered

across memory

▪ contiguity allows C to work creatively with data

▪ all items in arrays are the same type, unlike Python lists

▪ must know width of each element to find it in the array

▪ no checking for out of bounds indices for speed

43

Type Declarations - Strings

 C has no string type

 string: array of characters terminated by '\0'

44

Type Declarations - Strings
 use strlen() to find the length of a string

 if string has no NULL character at end, C will keep reading past
the end of the string until it finds a one

45

Type Conversions
 types can converted explicitly or implicitly

 cast to convert the type

 implicit conversion when using variables of different types in
expressions

46

More on Assignment

 in C, assignments are expressions, not statements

▪ allows multiple assignment a = b = c = 1;

 assignment operators
▪ same precedence: right to left

▪ = assignment

▪ == comparison

▪ perform the indicated operation between the left and right operands, then
assign the result to the left operand

▪ += add to

▪ -= subtract from

▪ *= multiply by

▪ /= divide by

▪ %= modulo by

47

C Operators

48

Boolean Operators

 C does not have a distinct boolean type

▪ int is used instead

 treats integer 0 as FALSE and all non‐zero values as TRUE
i = 0;

while (i - 10) { ... }

▪ will execute until the variable i takes on the value 10 at which time the
expression (i ‐ 10) will become false (i.e., 0)

 a sampling of Logical/Boolean Operators:

▪ &&, ||, and ! → AND, OR, and NOT in Python

 && is used as logical and

▪ x != 0 && y != 0

 short‐circuit evaluation: above example, if x != 0 evaluates to
false, the whole statement is false regardless of the outcome of
y != 0 (same for or if first condition is true)

49

Increment Operators

 prefix/postfix

50

Printing Decimal and Floating Point

 integers: %nd

▪ n = width of the whole number portion for decimal integers

 float: %m.nf
▪ m = total character width, including decimal point

▪ n = precision width after decimal

51

Escape Sequences

www.cpp.com

52

Formatted I/O

 printf and scanf

▪ both formatted I/O

▪ both use standard I/O location

 printf
▪ converts values to character form according to format string

▪ outputs to stdout

 scanf
▪ converts characters according to the format string, followed by pointer

arguments indicating where the resulting values are stored

▪ inputs from stdin

53

scanf

 requires two parameters

▪ format string argument with specifiers

▪ set of variable pointers to store corresponding values

 format string
▪ skips over all leading white space (spaces, tabs, newlines)

▪ % and type indicator

▪ in between: maximum field-width, type indicator modifier, or * (input
suppression)

▪ input stops at end of format string, type mismatch in reading

▪ next call to scanf resume searching for input of correct type where
previous scanf left off

 return value
▪ # of values converted

54

Basic I/O
#include <stdio.h>

int main ()
{
 int x;
 scanf ("%d", &x); /* why need & ? */
 printf ("%d\n", x);

 float var;
 scanf ("%f", &var); printf ("%f\n", var);
 scanf ("%d", &var); printf ("%d\n", var);
 scanf ("%lf", &var); printf ("%lf\n", var);

 int first, second;
 scanf ("%d %d", &first, &second);

 int i, j;
 scanf (" %d %*d %*d %*d %d ", &i, &j);
}

	Slide 1
	Slide 2: Overview
	Slide 3: About C
	Slide 4: About C
	Slide 5: Python vs. C vs. C++ vs. Java
	Slide 6: Transitioning to C from Python
	Slide 7: Programming in C
	Slide 8: Hello, world!
	Slide 9: Hello world!
	Slide 10: Hello world!
	Slide 11: Header Files
	Slide 12: Coding Style
	Slide 13: Compilation and Linking
	Slide 14: Compilation and Linking
	Slide 15: Statements and Comments
	Slide 16: Statements and Comments
	Slide 17: Statements and Comments
	Slide 18: Variable Names
	Slide 19: C Keywords
	Slide 20: Type Declarations
	Slide 21: Type Declarations
	Slide 22: Type Declarations
	Slide 23: Type Declarations
	Slide 24: Type Declarations
	Slide 25: Type Declarations
	Slide 26: Type Declarations
	Slide 27: Primitive Data Types
	Slide 28: Type Declarations
	Slide 29: Type Declarations
	Slide 30: Basic Data Types
	Slide 31: Type Declarations
	Slide 32: Type Declarations - Integers
	Slide 33: Type Declarations - Integers
	Slide 34: Integer Ranges
	Slide 35: Type Declarations - Integers
	Slide 36: Type Declarations - Integers
	Slide 37: Type Declarations - Floats
	Slide 38: Type Declarations - Floats
	Slide 39: Type Declarations - Characters
	Slide 40: Type Declarations - Characters
	Slide 41: Type Declarations - Arrays
	Slide 42: Type Declarations - Arrays
	Slide 43: Type Declarations - Strings
	Slide 44: Type Declarations - Strings
	Slide 45: Type Conversions
	Slide 46: More on Assignment
	Slide 47: C Operators
	Slide 48: Boolean Operators
	Slide 49: Increment Operators
	Slide 50: Printing Decimal and Floating Point
	Slide 51: Escape Sequences
	Slide 52: Formatted I/O
	Slide 53: scanf
	Slide 54: Basic I/O

