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The C Programming Language
Chapter 1

(material from Dr. Michael Lewis, William & Mary Computer Science)
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Overview

 Motivation

 Hello, world!

 Basic Data Types

 Variables

 Arithmetic Operators

 Relational Operators

 Assignments

 Boolean Operators
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About C

 texts

▪ The C Programming Language, 2nd ed. (1988) by Brian Kernighan and 
Dennis Ritchie (known as K&R; classic text)

▪ C in a Nutshell, 2nd ed. (2016) by Peter Prinz and Tony Crawford (more 
current text; describes every function in the C standard library)

 origins 

▪ developed by Dennis Ritchie in early 1970s

▪ BCPL > B > C

▪ standardized in 1989

▪ revisions: C11, C17, C2x

▪ influential language

▪ the language used to create the internet

▪ heart of Unix, Linux, Windows operating systems (and Python interpreter!)
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About C

 language

▪ typed – all variables must be declared

▪ compiled – must be transformed to machine language

▪ fast

▪ near proper subset of C++

 low-level 
▪ closer to the hardware – must know about bits and bytes

▪ must know about memory

▪ bugs can be difficult to fix

▪ much more capability than other languages

▪ C trusts that you know what you’re doing – no guardrails or safety

▪ C was not designed to stop you from doing stupid things, because that 
would also stop you from doing clever things. 
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Python vs. C vs. C++ vs. Java
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Transitioning to C from Python
 lower level – more for you to program

 sometimes unsafe

 standard library is smaller

 different syntax

 structured vs. script

 paradigm shift: not object-oriented

 like going from automatic transmission to stick shift
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Programming in C
 C is procedural, not object-oriented 

 C is fully compiled (to machine code) 

 C allows direct manipulation of memory via pointers 

 C does not have garbage collection 

 C has many important, yet subtle, details 

Source: xkcd.com/571
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Hello, world!
 C code in file named hello.c

 to list in linux, we can use

 Python equivalent
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Hello world!

 #include <stdio.h> 

▪ tells the compiler to include this header file for compilation 

▪ stdio.h for I/O functions (e.g., printf)

 main()

▪ main function, where execution begins

▪ every C, C++, and Java program must have a main function

▪ returns int

▪ takes argc and argv command line parameters (Python: sys.argv)

 {}

▪ curly braces are equivalent to stating "block begin" and "block end"

▪ the code in between is called a "block“

▪ Python uses indentation



10

Hello world!

 printf() 

▪ the actual print statement

▪ Python: print

▪ no newline default – use "\n"

▪ strings in C/C++/Java delimited by double quotes: "Hello, world!"

 return 0 

▪ similar to Python

▪ here, returns a value to execution environment
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Header Files
 functions, types and macros of the standard library are 

declared in standard headers

 header file accessed by 
▪ #include <header> 

▪ note: no semicolon 

 headers can be included in any order and any number of times 
▪ must be included outside of any function

▪ before any use of anything it declares 

 NEVER include C source files

 should use header guards
    #ifndef FILENAME_H

    #define FILENAME_H

    …

    #endif
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Coding Style
 always explicitly declare the return type of the function

▪ defaults to a type integer

 replace return 0 with return EXIT_SUCCESS (in <stdlib.h>) 

 comments

▪ /* comment */

▪ comments cannot be nested

▪ // is a single line comment from // to the end of the line

 blanks, tabs, and newlines (or ‘‘white space’’), as well as 
comments, are ignored except to separate tokens
▪ free-form spacing
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Compilation and Linking
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Compilation and Linking
 use gcc (GNU C compiler) to compile and link

 flags begin with a – (dash or minus) or --
▪ here we use options –Wall (all warnings) and –pedantic (cautions)

▪ -o hello to create the executable (if not included, creates a.out)

 confirm file creation
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Statements and Comments
 statements terminated by a semicolon ;

 statements can be split across multiple lines

 here’s what happens when you omit a semicolon
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Statements and Comments

 single line comments: //
▪ similar to Python # 

 multiline comments: /*  */
▪ popular style
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Statements and Comments
 comments cannot be nested
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Variable Names
 rules for naming variables in C/C++/Java same as Python

▪ letters, numbers, and  underscores (case sensitive)

▪ start with letter or underscore only

▪ spaces not allowed – use underscores instead

 variable names should be mnemonic, but not ridiculously long

▪ first 31 characters significant for function names and global variables

▪ first 63 characters for other variables

 avoid _ as beginning character, as could collide with standard C 
library names

 avoid CamelCase, as it is an abomination
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C Keywords

 keywords are reserved words, and may not be used as identifiers 

 reserves a word or identifier to have a particular meaning 

▪ meaning of keywords — and, indeed, the meaning of the notion of keyword 
differs widely from language to language. 

▪ do not use them for any other purpose in a C program

▪ allowed, of course, within double quotation marks
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Type Declarations
 in C/C++/Java, you must declare the type of a variable before 

using it

▪ unlike Python, which infers the type

 C is not happy if we try to change the type of a variable, or 
declare its type twice (even if the type is the same)
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Type Declarations



22

Type Declarations
 corrected version
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Type Declarations
 warnings are not errors, but may indicate a bug

 executable will be generated and program will run
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Type Declarations
 printf is similar to Python print, but insists on formal strings

 e.g., %f interprets the bits of the variable as a float
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Type Declarations
 C has many format codes

 Python originally used printf() style strings and continues to 
support them
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Type Declarations

 note in previous example, only a warning was generated

 C trusts you know what you’re doing and that you have a good 
reason to interpret the bits of a float as an int
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Primitive Data Types
 integer

▪ char – smallest addressable unit; each byte has its own address 

▪ short – short int; not used as much 

▪ int – default type for an integer constant value 

▪ long – do you really need it? 

 floating point

▪ inexact

▪ float – single precision (about 6 decimal digits of precision) 

▪ double – double precision (about 15 decimal digits of precision) 

▪ default for literal unless suffixed with ‘f’ 

 no Boolean or string types

 no high-level types, such as lists, dictionaries, etc., but can be 
built
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Type Declarations
 sizeof() determines byte size of variable or type
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Type Declarations
 sizeof() is not like len(), but sys.getsizeof()
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Basic Data Types

 char guaranteed to be one byte

 no maximum size for a type, but the following relationships 
must hold: 

▪ sizeof (short) <= sizeof (int) <= sizeof (long) 

▪ sizeof (float) <= sizeof (double) <= sizeof (long double)
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Type Declarations

 C/C++ have a variety of integers which differ in number of bits

 integers in Python implemented in software and are 
unbounded

 C/C++ integers depend on hardware and may behave 
differently across machines, but hardware becoming more 
standardized

 integers can be signed or unsigned

▪ signed: negative or non-negative; 1 bit is sign bit

▪ unsigned: always non-negative (>=0); no sign bit, extra bit doubles range

 integers used in different ways
▪ color channels in pixels: 8-bits to fill one unsigned char; three channels, so 

total number of colors 2^24
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Type Declarations - Integers

 signed integer: int

 unsigned integer: unsigned int

 literal for unsigned int: u or U

 signed and unsigned int same size, but bit pattern is 
determined differently

▪ signed int: %d

▪ unsigned int: %u

 short int (2 bytes)

 long and long long types (l/L and ll/LL) (8 bytes and 8 bytes)
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Type Declarations - Integers

 example
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Integer Ranges
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Type Declarations - Integers

 integers can overflow
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Type Declarations - Integers

 integers can overflow

 overflow errors can be

▪ amusing: https://www.cbc.ca/news/entertainment/psy-s-gangnam-style-
breaks-the-limit-of-youtube-s-video-counter-1.2860186

▪ disruptive:https://www.bleepingcomputer.com/news/microsoft/microsoft
-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/

▪ dangerous:  
https://www.cs.wm.edu/~rml/teaching/c/docs/787_overflow.pdf

https://www.cbc.ca/news/entertainment/psy-s-gangnam-style-breaks-the-limit-of-youtube-s-video-counter-1.2860186
https://www.cbc.ca/news/entertainment/psy-s-gangnam-style-breaks-the-limit-of-youtube-s-video-counter-1.2860186
https://www.bleepingcomputer.com/news/microsoft/microsoft-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/
https://www.bleepingcomputer.com/news/microsoft/microsoft-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/
https://www.cs.wm.edu/~rml/teaching/c/docs/787_overflow.pdf
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Type Declarations - Floats
 no industry standard for floating point numbers before 1985

▪ each hardware vendor had its own system

 1985 – IEEE 754 floating point standard

 C/C++ have three types of floats
▪ float : 32 bits

▪ double : 64 bits

▪ long : 80 bits

 two special float values
▪ inf 

▪ infinity, larger than all other numbers (except itself) (division by 0)

▪ nan 

▪ not a number (divide 0.0 by itself)

▪ not equal to any number, even itself!
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Type Declarations - Floats
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Type Declarations - Characters
 unlike Python, C distinguishes between characters and strings

 delimited by single quotes

 char’s are really int’s

▪ index in the ASCII table

▪ similar to ord and chr in Python

▪ we can use char’s in mathematical expressions: 

  c – '0' = 50 – 48 = 2    if c == '2'
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Type Declarations - Characters
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Type Declarations - Arrays
 an array is like Python’s array or list

 contiguous chunk of memory to hold a number of variables of 
the same type

 use an index to specify a single element in an array

 sample declarations

 sample code with arrays
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Type Declarations - Arrays

 often need to keep length of array in a variable

▪ no len() function, as in Python

 differences between C arrays and Python lists
▪ arrays span contiguous regions of memory, while lists can be scattered 

across memory

▪ contiguity allows C to work creatively with data

▪ all items in arrays are the same type, unlike Python lists

▪ must know width of each element to find it in the array

▪ no checking for out of bounds indices for speed
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Type Declarations - Strings

 C has no string type

 string: array of characters terminated by '\0'
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Type Declarations - Strings
 use strlen() to find the length of a string

 if string has no NULL character at end, C will keep reading past 
the end of the string until it finds a one
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Type Conversions
 types can converted explicitly or implicitly

 cast to convert the type

 implicit conversion when using variables of different types in 
expressions
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More on Assignment

 in C, assignments are expressions, not statements 

▪ allows multiple assignment a = b = c = 1; 

 assignment operators 
▪ same precedence: right to left

▪ = assignment 

▪ == comparison

▪ perform the indicated operation between the left and right operands, then 
assign the result to the left operand 

▪ += add to 

▪ -= subtract from 

▪ *= multiply by 

▪ /= divide by 

▪ %= modulo by 
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C Operators
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Boolean Operators

 C does not have a distinct boolean type 

▪ int is used instead 

 treats integer 0 as FALSE and all non‐zero values as TRUE 
i = 0; 

while (i - 10) { ... } 

▪ will execute until the variable i takes on the value 10 at which time the 
expression (i ‐ 10) will become false (i.e., 0)

 a sampling of Logical/Boolean Operators: 

▪ &&, ||, and ! → AND, OR, and NOT in Python

 && is used as logical and 

▪ x != 0 && y != 0 

 short‐circuit evaluation: above example, if x != 0 evaluates to 
false, the whole statement is false regardless of the outcome of 
y != 0 (same for or if first condition is true)
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Increment Operators

 prefix/postfix



50

Printing Decimal and Floating Point

 integers: %nd

▪ n = width of the whole number portion for decimal integers

 float: %m.nf
▪ m = total character width, including decimal point

▪ n = precision width after decimal
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Escape Sequences

www.cpp.com
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Formatted I/O

 printf and scanf

▪ both formatted I/O

▪ both use standard I/O location

 

 printf
▪ converts values to character form according to format string

▪ outputs to stdout

 scanf
▪ converts characters according to the format string, followed by pointer 

arguments indicating where the resulting values are stored

▪ inputs from stdin
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scanf

 requires two parameters

▪ format string argument with specifiers

▪ set of variable pointers to store corresponding values 

 format string
▪ skips over all leading white space (spaces, tabs, newlines)

▪ % and type indicator

▪ in between: maximum field-width, type indicator modifier, or * (input 
suppression) 

▪ input stops at end of format string, type mismatch in reading

▪ next call to scanf resume searching for input of correct type where 
previous scanf left off

 return value
▪ # of values converted
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Basic I/O
#include <stdio.h>
 
int main ()  
{     
      int x;
      scanf ("%d", &x);    /* why need & ? */
      printf ("%d\n", x); 

      float var;
      scanf ("%f", &var);    printf ("%f\n", var);
      scanf ("%d", &var);   printf ("%d\n", var);
      scanf ("%lf", &var);   printf ("%lf\n", var);

      int first, second;
      scanf ("%d %d", &first, &second);

      int i, j;
      scanf (" %d %*d %*d %*d %d ", &i, &j);
}
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