
1

The C Programming Language
Chapter 1

(material from Dr. Michael Lewis, William & Mary Computer Science)

2

Overview

 Motivation

 Hello, world!

 Basic Data Types

 Variables

 Arithmetic Operators

 Relational Operators

 Assignments

 Boolean Operators

3

About C

 texts

▪ The C Programming Language, 2nd ed. (1988) by Brian Kernighan and
Dennis Ritchie (known as K&R; classic text)

▪ C in a Nutshell, 2nd ed. (2016) by Peter Prinz and Tony Crawford (more
current text; describes every function in the C standard library)

 origins

▪ developed by Dennis Ritchie in early 1970s

▪ BCPL > B > C

▪ standardized in 1989

▪ revisions: C11, C17, C2x

▪ influential language

▪ the language used to create the internet

▪ heart of Unix, Linux, Windows operating systems (and Python interpreter!)

4

About C

 language

▪ typed – all variables must be declared

▪ compiled – must be transformed to machine language

▪ fast

▪ near proper subset of C++

 low-level
▪ closer to the hardware – must know about bits and bytes

▪ must know about memory

▪ bugs can be difficult to fix

▪ much more capability than other languages

▪ C trusts that you know what you’re doing – no guardrails or safety

▪ C was not designed to stop you from doing stupid things, because that
would also stop you from doing clever things.

5

Python vs. C vs. C++ vs. Java

6

Transitioning to C from Python
 lower level – more for you to program

 sometimes unsafe

 standard library is smaller

 different syntax

 structured vs. script

 paradigm shift: not object-oriented

 like going from automatic transmission to stick shift

7

Programming in C
 C is procedural, not object-oriented

 C is fully compiled (to machine code)

 C allows direct manipulation of memory via pointers

 C does not have garbage collection

 C has many important, yet subtle, details

Source: xkcd.com/571

8

Hello, world!
 C code in file named hello.c

 to list in linux, we can use

 Python equivalent

9

Hello world!

 #include <stdio.h>

▪ tells the compiler to include this header file for compilation

▪ stdio.h for I/O functions (e.g., printf)

 main()

▪ main function, where execution begins

▪ every C, C++, and Java program must have a main function

▪ returns int

▪ takes argc and argv command line parameters (Python: sys.argv)

 {}

▪ curly braces are equivalent to stating "block begin" and "block end"

▪ the code in between is called a "block“

▪ Python uses indentation

10

Hello world!

 printf()

▪ the actual print statement

▪ Python: print

▪ no newline default – use "\n"

▪ strings in C/C++/Java delimited by double quotes: "Hello, world!"

 return 0

▪ similar to Python

▪ here, returns a value to execution environment

11

Header Files
 functions, types and macros of the standard library are

declared in standard headers

 header file accessed by
▪ #include <header>

▪ note: no semicolon

 headers can be included in any order and any number of times
▪ must be included outside of any function

▪ before any use of anything it declares

 NEVER include C source files

 should use header guards
 #ifndef FILENAME_H

 #define FILENAME_H

 …

 #endif

12

Coding Style
 always explicitly declare the return type of the function

▪ defaults to a type integer

 replace return 0 with return EXIT_SUCCESS (in <stdlib.h>)

 comments

▪ /* comment */

▪ comments cannot be nested

▪ // is a single line comment from // to the end of the line

 blanks, tabs, and newlines (or ‘‘white space’’), as well as
comments, are ignored except to separate tokens
▪ free-form spacing

13

Compilation and Linking

14

Compilation and Linking
 use gcc (GNU C compiler) to compile and link

 flags begin with a – (dash or minus) or --
▪ here we use options –Wall (all warnings) and –pedantic (cautions)

▪ -o hello to create the executable (if not included, creates a.out)

 confirm file creation

15

Statements and Comments
 statements terminated by a semicolon ;

 statements can be split across multiple lines

 here’s what happens when you omit a semicolon

16

Statements and Comments

 single line comments: //
▪ similar to Python #

 multiline comments: /* */
▪ popular style

17

Statements and Comments
 comments cannot be nested

18

Variable Names
 rules for naming variables in C/C++/Java same as Python

▪ letters, numbers, and underscores (case sensitive)

▪ start with letter or underscore only

▪ spaces not allowed – use underscores instead

 variable names should be mnemonic, but not ridiculously long

▪ first 31 characters significant for function names and global variables

▪ first 63 characters for other variables

 avoid _ as beginning character, as could collide with standard C
library names

 avoid CamelCase, as it is an abomination

19

C Keywords

 keywords are reserved words, and may not be used as identifiers

 reserves a word or identifier to have a particular meaning

▪ meaning of keywords — and, indeed, the meaning of the notion of keyword
differs widely from language to language.

▪ do not use them for any other purpose in a C program

▪ allowed, of course, within double quotation marks

20

Type Declarations
 in C/C++/Java, you must declare the type of a variable before

using it

▪ unlike Python, which infers the type

 C is not happy if we try to change the type of a variable, or
declare its type twice (even if the type is the same)

21

Type Declarations

22

Type Declarations
 corrected version

23

Type Declarations
 warnings are not errors, but may indicate a bug

 executable will be generated and program will run

24

Type Declarations
 printf is similar to Python print, but insists on formal strings

 e.g., %f interprets the bits of the variable as a float

25

Type Declarations
 C has many format codes

 Python originally used printf() style strings and continues to
support them

26

Type Declarations

 note in previous example, only a warning was generated

 C trusts you know what you’re doing and that you have a good
reason to interpret the bits of a float as an int

27

Primitive Data Types
 integer

▪ char – smallest addressable unit; each byte has its own address

▪ short – short int; not used as much

▪ int – default type for an integer constant value

▪ long – do you really need it?

 floating point

▪ inexact

▪ float – single precision (about 6 decimal digits of precision)

▪ double – double precision (about 15 decimal digits of precision)

▪ default for literal unless suffixed with ‘f’

 no Boolean or string types

 no high-level types, such as lists, dictionaries, etc., but can be
built

28

Type Declarations
 sizeof() determines byte size of variable or type

29

Type Declarations
 sizeof() is not like len(), but sys.getsizeof()

30

Basic Data Types

 char guaranteed to be one byte

 no maximum size for a type, but the following relationships
must hold:

▪ sizeof (short) <= sizeof (int) <= sizeof (long)

▪ sizeof (float) <= sizeof (double) <= sizeof (long double)

31

Type Declarations

 C/C++ have a variety of integers which differ in number of bits

 integers in Python implemented in software and are
unbounded

 C/C++ integers depend on hardware and may behave
differently across machines, but hardware becoming more
standardized

 integers can be signed or unsigned

▪ signed: negative or non-negative; 1 bit is sign bit

▪ unsigned: always non-negative (>=0); no sign bit, extra bit doubles range

 integers used in different ways
▪ color channels in pixels: 8-bits to fill one unsigned char; three channels, so

total number of colors 2^24

32

Type Declarations - Integers

 signed integer: int

 unsigned integer: unsigned int

 literal for unsigned int: u or U

 signed and unsigned int same size, but bit pattern is
determined differently

▪ signed int: %d

▪ unsigned int: %u

 short int (2 bytes)

 long and long long types (l/L and ll/LL) (8 bytes and 8 bytes)

33

Type Declarations - Integers

 example

34

Integer Ranges

35

Type Declarations - Integers

 integers can overflow

36

Type Declarations - Integers

 integers can overflow

 overflow errors can be

▪ amusing: https://www.cbc.ca/news/entertainment/psy-s-gangnam-style-
breaks-the-limit-of-youtube-s-video-counter-1.2860186

▪ disruptive:https://www.bleepingcomputer.com/news/microsoft/microsoft
-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/

▪ dangerous:
https://www.cs.wm.edu/~rml/teaching/c/docs/787_overflow.pdf

https://www.cbc.ca/news/entertainment/psy-s-gangnam-style-breaks-the-limit-of-youtube-s-video-counter-1.2860186
https://www.cbc.ca/news/entertainment/psy-s-gangnam-style-breaks-the-limit-of-youtube-s-video-counter-1.2860186
https://www.bleepingcomputer.com/news/microsoft/microsoft-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/
https://www.bleepingcomputer.com/news/microsoft/microsoft-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/
https://www.cs.wm.edu/~rml/teaching/c/docs/787_overflow.pdf

37

Type Declarations - Floats
 no industry standard for floating point numbers before 1985

▪ each hardware vendor had its own system

 1985 – IEEE 754 floating point standard

 C/C++ have three types of floats
▪ float : 32 bits

▪ double : 64 bits

▪ long : 80 bits

 two special float values
▪ inf

▪ infinity, larger than all other numbers (except itself) (division by 0)

▪ nan

▪ not a number (divide 0.0 by itself)

▪ not equal to any number, even itself!

38

Type Declarations - Floats

39

Type Declarations - Characters
 unlike Python, C distinguishes between characters and strings

 delimited by single quotes

 char’s are really int’s

▪ index in the ASCII table

▪ similar to ord and chr in Python

▪ we can use char’s in mathematical expressions:

 c – '0' = 50 – 48 = 2 if c == '2'

40

Type Declarations - Characters

41

Type Declarations - Arrays
 an array is like Python’s array or list

 contiguous chunk of memory to hold a number of variables of
the same type

 use an index to specify a single element in an array

 sample declarations

 sample code with arrays

42

Type Declarations - Arrays

 often need to keep length of array in a variable

▪ no len() function, as in Python

 differences between C arrays and Python lists
▪ arrays span contiguous regions of memory, while lists can be scattered

across memory

▪ contiguity allows C to work creatively with data

▪ all items in arrays are the same type, unlike Python lists

▪ must know width of each element to find it in the array

▪ no checking for out of bounds indices for speed

43

Type Declarations - Strings

 C has no string type

 string: array of characters terminated by '\0'

44

Type Declarations - Strings
 use strlen() to find the length of a string

 if string has no NULL character at end, C will keep reading past
the end of the string until it finds a one

45

Type Conversions
 types can converted explicitly or implicitly

 cast to convert the type

 implicit conversion when using variables of different types in
expressions

46

More on Assignment

 in C, assignments are expressions, not statements

▪ allows multiple assignment a = b = c = 1;

 assignment operators
▪ same precedence: right to left

▪ = assignment

▪ == comparison

▪ perform the indicated operation between the left and right operands, then
assign the result to the left operand

▪ += add to

▪ -= subtract from

▪ *= multiply by

▪ /= divide by

▪ %= modulo by

47

C Operators

48

Boolean Operators

 C does not have a distinct boolean type

▪ int is used instead

 treats integer 0 as FALSE and all non‐zero values as TRUE
i = 0;

while (i - 10) { ... }

▪ will execute until the variable i takes on the value 10 at which time the
expression (i ‐ 10) will become false (i.e., 0)

 a sampling of Logical/Boolean Operators:

▪ &&, ||, and ! → AND, OR, and NOT in Python

 && is used as logical and

▪ x != 0 && y != 0

 short‐circuit evaluation: above example, if x != 0 evaluates to
false, the whole statement is false regardless of the outcome of
y != 0 (same for or if first condition is true)

49

Increment Operators

 prefix/postfix

50

Printing Decimal and Floating Point

 integers: %nd

▪ n = width of the whole number portion for decimal integers

 float: %m.nf
▪ m = total character width, including decimal point

▪ n = precision width after decimal

51

Escape Sequences

www.cpp.com

52

Formatted I/O

 printf and scanf

▪ both formatted I/O

▪ both use standard I/O location

 printf
▪ converts values to character form according to format string

▪ outputs to stdout

 scanf
▪ converts characters according to the format string, followed by pointer

arguments indicating where the resulting values are stored

▪ inputs from stdin

53

scanf

 requires two parameters

▪ format string argument with specifiers

▪ set of variable pointers to store corresponding values

 format string
▪ skips over all leading white space (spaces, tabs, newlines)

▪ % and type indicator

▪ in between: maximum field-width, type indicator modifier, or * (input
suppression)

▪ input stops at end of format string, type mismatch in reading

▪ next call to scanf resume searching for input of correct type where
previous scanf left off

 return value
▪ # of values converted

54

Basic I/O
#include <stdio.h>

int main ()
{
 int x;
 scanf ("%d", &x); /* why need & ? */
 printf ("%d\n", x);

 float var;
 scanf ("%f", &var); printf ("%f\n", var);
 scanf ("%d", &var); printf ("%d\n", var);
 scanf ("%lf", &var); printf ("%lf\n", var);

 int first, second;
 scanf ("%d %d", &first, &second);

 int i, j;
 scanf (" %d %*d %*d %*d %d ", &i, &j);
}

	Slide 1
	Slide 2: Overview
	Slide 3: About C
	Slide 4: About C
	Slide 5: Python vs. C vs. C++ vs. Java
	Slide 6: Transitioning to C from Python
	Slide 7: Programming in C
	Slide 8: Hello, world!
	Slide 9: Hello world!
	Slide 10: Hello world!
	Slide 11: Header Files
	Slide 12: Coding Style
	Slide 13: Compilation and Linking
	Slide 14: Compilation and Linking
	Slide 15: Statements and Comments
	Slide 16: Statements and Comments
	Slide 17: Statements and Comments
	Slide 18: Variable Names
	Slide 19: C Keywords
	Slide 20: Type Declarations
	Slide 21: Type Declarations
	Slide 22: Type Declarations
	Slide 23: Type Declarations
	Slide 24: Type Declarations
	Slide 25: Type Declarations
	Slide 26: Type Declarations
	Slide 27: Primitive Data Types
	Slide 28: Type Declarations
	Slide 29: Type Declarations
	Slide 30: Basic Data Types
	Slide 31: Type Declarations
	Slide 32: Type Declarations - Integers
	Slide 33: Type Declarations - Integers
	Slide 34: Integer Ranges
	Slide 35: Type Declarations - Integers
	Slide 36: Type Declarations - Integers
	Slide 37: Type Declarations - Floats
	Slide 38: Type Declarations - Floats
	Slide 39: Type Declarations - Characters
	Slide 40: Type Declarations - Characters
	Slide 41: Type Declarations - Arrays
	Slide 42: Type Declarations - Arrays
	Slide 43: Type Declarations - Strings
	Slide 44: Type Declarations - Strings
	Slide 45: Type Conversions
	Slide 46: More on Assignment
	Slide 47: C Operators
	Slide 48: Boolean Operators
	Slide 49: Increment Operators
	Slide 50: Printing Decimal and Floating Point
	Slide 51: Escape Sequences
	Slide 52: Formatted I/O
	Slide 53: scanf
	Slide 54: Basic I/O

