The C Programming Language
Chapter 1

(material from Dr. Michael Lewis, William & Mary Computer Science)

Overview

Motivation

Hello, world!

Basic Data Types
Variables

Arithmetic Operators
Relational Operators
Assignments
Boolean Operators

About C

texts

The C Programming Language, 2nd ed. (1988) by Brian Kernighan and
Dennis Ritchie (known as K&R; classic text)

Cin a Nutshell, 2nd ed. (2016) by Peter Prinz and Tony Crawford (more
current text; describes every function in the C standard library)

origins

developed by Dennis Ritchie in early 1970s
BCPL>B>C

standardized in 1989

revisions: C11, C17, C2x

influential language

the language used to create the internet

heart of Unix, Linux, Windows operating systems (and Python interpreter!)

About C

language
typed — all variables must be declared

compiled — must be transformed to machine language
fast

near proper subset of C++

low-level
closer to the hardware — must know about bits and bytes
must know about memory
bugs can be difficult to fix

much more capability than other languages

C trusts that you know what you’re doing — no guardrails or safety

C was not designed to stop you from doing stupid things, because that
would also stop you from doing clever things.

Python vs.

C vs. C++ vs. Java

Python c

C++

Java

printing

string literals

line comments

block comments

addition, subtraction, multiplication
regular division
integer division
remainder
software integers:

hardware integers:

binary32 floating point:
binary64 floating point:
booleans:

single characters:

! When one or both operands is non-integer.
2 \When both operands are integers.

print() printf()

‘boo!" or "boo!" "boo!™
/* */

/*

char
unsigned char
signed char
short or short int
unsigned short or unsigned short int
int
unsigned int
long or long int
unsigned long or unsigned long int
float
tloat double
True , False

true, false or 1, @ or non-zero, zero

char , unsigned char

std: :cout <<

same as C
1/
same as C
same
sameasinC
same asin C

same

same as C
same as C
same as C
same as C
same as C
same as C
same as C
same as C
same as C
same as C
same as C
same as C

same as C

system.out.println() ,
System.out.printf()

same as C
!/
same as C
same
sameasinC
sameasin C

same

Transitioning to C from Python

lower level — more for you to program
sometimes unsafe
standard library is smaller

different syntax

structured vs. script
paradigm shift: not object-oriented

like going from automatic transmission to stick shift

Programming in C

Cis procedural, not object-oriented

C is fully compiled (to machine code)

C allows direct manipulation of memory via pointers
C does not have garbage collection
C has many important, yet subtle, details

Source: xkcd.com/571 7

Hello, world!

C code in file named hello.c

#include <stdio.h>

int main(int argc, char **argv)
{
printf("Hello, world!\n");
return O,

}

to list in linux, we can use

cat -n ch@l/hello.c # cat is a command to concatenate and print files;
the -n option gives us Line numbers.

Python equivalent

print('Hello, world!")

Hello world!

#include <stdio.h>
tells the compiler to include this header file for compilation
stdio.h for I/O functions (e.g., printf£)
main ()
main function, where execution begins
every C, C++, and Java program must have amain function

returns int
takes argc and argv command line parameters (Python: sys.argv)

{}
curly braces are equivalent to stating "block begin" and "block end"
the code in between is called a "block”

Python uses indentation

Hello world!

printf ()

the actual print statement
Python: print
no newline default —use "\n"

strings in C/C++/Java delimited by double quotes: "Hello, world!'"
return O

similar to Python

here, returns a value to execution environment

Header Files

functions, types and macros of the standard library are
declared in standard headers

header file accessed by
#include <header>

note: no semicolon

headers can be included in any order and any number of times
must be included outside of any function
before any use of anything it declares

NEVER include C source files

should use header guards
#ifndef FILENAME H
#{define FILENAME H

#endif

Coding Style

always explicitly declare the return type of the function
defaults to a type integer

replace return 0 with return EXIT_SUCCESS (in <stdlib.h>)

comments
/* comment */
comments cannot be nested
// is a single line comment from // to the end of the line

blanks, tabs, and newlines (or “white space’’), as well as
comments, are ignored except to separate tokens

free-form spacing

Compilation and Linking

%gcc -0 hello hello.c

Libranes

hello.c \
I

Type in program using an editor of
your choice (file.c); plain text

Y source Code

Preprocessor —

7 -

.c + .h =.i which is the “ultimate source
code”? i.e. # includes expanded and
#defines replaced

Compiler

.i = .s which is assembler source code

+ Assembly Code

Assembler —\

|
+ Object Code

.5 = .0 which is an object file; fragments of
machine code with unresolved symbols i.e.

some addresses not yet known (vars/subrs).

Link Editor e

i Executable Code

.0 + library links = a.out (default name);
resolves symbols, generates an

hello

XS P hsio

Compilation and Linking

use gcc (GNU C compiler) to compile and link
flags begin with a — (dash or minus) or --

here we use options =Wall (all warnings) and —-pedantic (cautions)
-o hello to create the executable (if not included, creates a. out)

gcc -Wall -pedantic -o hello ch@l/hello.c

confirm file creation

date # Print date and time.

ls -1s hello # List information about the file hello, including last modified date.
file hello # Check what type of file hello 1is.

Thu Feb 15 13:06:52 EST 2024

72 -rwxr-xXxr-x 1 rml staff 33432 Feb 15 13:86 hello
hello: Mach-0 64-bit executable armé4

Statements and Comments

statements terminated by a semicolon ;
statements can be split across multiple lines

here’s what happens when you omit a semicolon

cat -n ch@l/no_semicolon.c

#include <stdio.h>

int main(void)

{
printf("Hello, world!\n")
return @

}

gcc -Wall -pedantic -c ch@l/no_semicolon.c

ch@l/no_semicolon.c:5:28: error: expected ';' after expression
printf("Hello, world!\n")

Fa
>
ch@l/no_semicolon.c:6:11: error: expected ';' after return statement

return ©
A

3
2 errors generated.

Statements and Comments

single line comments: //
similar to Python #

multiline comments: /* */
popular style
/%

* I prefer formatting multiline comments this

* way so that the body of the comment is clear.

*/

Statements and Comments

comments cannot be nested

cat -n ch@l/nested_comments.c

#include <stdio.h>

int main(int argc, char **argv)

{
/* You cannot /* nest block comments */. */
// Some compilers accept // to indicate the start of a comment line.
return ©;

}

1
2
3
4
5
6
7
8

gcc ch@l/nested _comments.c

ch@l/nested_comments.c:5:17: warning: '/*' within block comment [-Wcomment]
/* You cannot /* nest block comments */. */
M
ch@l/nested _comments.c:5:42: error: expected expression
/* You cannot /* nest block comments */. */

A

1 warning and 1 error generated.

Variable Names

rules for naming variables in C/C++/Java same as Python
letters, numbers, and underscores (case sensitive)
start with letter or underscore only

spaces not allowed — use underscores instead
float your_boat;

long john_silver;
short bread_cookie;

variable names should be mnemonic, but not ridiculously long
first 31 characters significant for function names and global variables
first 63 characters for other variables

avoid _ as beginning character, as could collide with standard C
library names

avoid CamelCase, as it is an abomination

C Keywords

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do 1¥f static while

keywords are reserved words, and may not be used as identifiers
reserves a word or identifier to have a particular meaning

meaning of keywords — and, indeed, the meaning of the notion of keyword
differs widely from language to language.

do not use them for any other purpose in a C program
allowed, of course, within double quotation marks

Type Declarations

in C/C++/Java, you must declare the type of a variable before
using it
unlike Python, which infers the type

C is not happy if we try to change the type of a variable, or
declare its type twice (even if the type is the same)

Type Declarations

cat -n ch@l/buggy types.c

#include <stdio.h>

int main(int argc, char **argv)

{
n =42; /* n is used without declaration. */
int m;
int m; /* Redefinition of m. */
printf("Th-th-th-that's all, folks!\n");
return 9;

1
2
3
4
5
6
7
8
9

1Y
®

gcc chel/buggy_types.c

chel/buggy types.c:5:3: error: use of undeclared identifier 'n’
n=42; /* n is used without declaration. */
M
chel/buggy types.c:7:7: error: redefinition of 'm’
int m; /* Redefinition of m. */
M
chel/buggy types.c:6:7: note: previous definition is here
int m;
M

2 errors generated.

Type Declarations

corrected version

cat -n chel/types.c

#include <stdio.h>

int main(int argc, char **argv)
{
int n = 42;
int m;
printf("Th-th-th-that's all, folks!\n");
return 6,

1
2
3
4
5
6
7
8
9

gcc -Wall chel/types.c # The -Wall option tells gcc to show us all warnings.

ch@l/types.c:5:7: warning: unused variable 'n' [-Wunused-variable]
int n = 42;
N
ch@l/types.c:6:7: warning: unused variable 'm' [-Wunused-variable]
int m;
N

2 warnings generated.

Type Declarations

warnings are not errors, but may indicate a bug
executable will be generated and program will run

./a.out

Th-th-th-that's all, folks!

Type Declarations

printf is similar to Python print, but insists on formal strings
e.g., %f interprets the bits of the variable as a float

ch@l/printf.c

#include <stdio.h>

int main(int argc, char **argv)
{
float x = 54.80;
printf("%f\n", x);
return @;

}

1
2
3
4
5
6
7
8

gcc -Wall chel/printf.c

./a.out

54 .0eeoeeo

Type Declarations

C has many format codes

Python originally used printf() style strings and continues to

support them

cat -n chel/printfl.c

#include <stdio.h>

int main(int argc, char **argv)
{
float x = 54.0;
printf("%d\n", x);
return 9;

}

1
2
3
a
5
6
7
8

gcc -Wall chel/printfl.c

ch@l/printfl.c:6:18: warning: format specifies type
printf("%d\n", x);
Lt N
%t
1 warning generated.

'int' but the argument has type 'float' [-Wformat]

Type Declarations

note in previous example, only a warning was generated
C trusts you know what you’re doing and that you have a good
reason to interpret the bits of a float as an int

./a.out

e

Primitive Data Types

integer
char — smallest addressable unit; each byte has its own address
short — short int; not used as much
int — default type for an integer constant value
long — do you really need it?

floating point
inexact
float — single precision (about 6 decimal digits of precision)

double — double precision (about 15 decimal digits of precision)
default for literal unless suffixed with ‘f’

no Boolean or string types

no high-level types, such as lists, dictionaries, etc., but can be
built

Type Declarations

sizeof() determines byte size of variable or type

cat -n chel/int_widths.c

#include <stdio.h>

int main(int argc, char **argv)

{

1
2
3
4
5 int n;
6
7
8
9

/* sizeof() applied to types. */
printf("Sizes (in bytes) of different flavors of integers:\n");
printf("A char is %lu byte long.\n", sizeof(char));
18 printf("A signed char is %lu byte long.\n", sizeof(signed char));
11 printf("An unsigned char is %lu byte long.\n\n", sizeof(unsigned char));
12
13 printf("A short int is %lu bytes long.\n", sizeof(short int));
14 printf("An unsigned short int is %lu bytes long.\n\n", sizeof(unsigned short int));
15
16 printf("An int is %lu bytes long.\n", sizeof(int));
17 printf("An unsigned int is %lu bytes long.\n\n", sizeof(unsigned int));
18
19 printf("A long int is %lu bytes long.\n", sizeof(long int));
28 printf("An unsigned long int is %lu bytes long.\n\n", sizeof(unsigned long int));
21
22 printf("A long long int is %lu bytes long.\n", sizeof(long long int));
23 printf("An unsigned long long int is %lu bytes long.\n\n", sizeof(unsigned long long int));
24
25 printf("Sizes (in bytes) of different flavors of floating-point numbers:\n");
26 printf("A float is %lu bytes long.\n", sizeof(float));
27 printf("A double is %lu bytes long.\n", sizeof(double));
28 printf("A long double is %lu bytes long.\n\n", sizeof(long double));
29
30 printf("A pointer is %lu bytes long.\n", sizeof(int*));
31 return 8;
32

Type Declarations

sizeof () is notlike 1len (), but sys.getsizeof ()

gcc chel/int_widths.c

./a.out

Sizes (in bytes) of different flavors of integers:
A char is 1 byte long.
A signed char is 1 byte long.
An unsigned char is 1 byte long.

A short int is 2 bytes long.
An unsigned short int is 2 bytes long.

An int is 4 bytes long.
An unsigned int is 4 bytes long.

A long int is 8 bytes long.
An unsigned long int is 8 bytes long.

A long long int is 8 bytes long.
An unsigned long long int is 8 bytes long.

Sizes (in bytes) of different flavors of floating-point numbers:
A float is 4 bytes long.
A double is 8 bytes long.
A long double is 8 bytes long.

A pointer is 8 bytes long.

Basic Data Types

char

unsigned char
short

unsigned short
int

unsigned int
long

unsigned long
float

double

bytes -128 to 127 Type bytes bits

bytes 0 to 255 - 1 8
bytes -32768 to 32767
bytes 0 to 65535 short 2
bytes -2147483648 to 2147483647)

bytes 0 to 4294967295 int 4
bytes -2147483648 to 2147483647 long

bytes 0 to 4294967295
bytes 1.175494e-38 to 3.402823e+38 long long
bytes 2.225074e-308 to 1.797693e+308

16

OO s i B B B DD B

char guaranteed to be one byte
no maximum size for a type, but the following relationships
must hold:

sizeof (short) <= sizeof (int) <= sizeof (long)

sizeof (float) <= sizeof (double) <= sizeof (long double)

Type Declarations

C/C++ have a variety of integers which differ in number of bits

integers in Python implemented in software and are
unbounded

C/C++ integers depend on hardware and may behave
differently across machines, but hardware becoming more
standardized

integers can be signed or unsigned
signed: negative or non-negative; 1 bit is sign bit
unsigned: always non-negative (>=0); no sign bit, extra bit doubles range

integers used in different ways

color channels in pixels: 8-bits to fill one unsigned char; three channels, so
total number of colors 2224

Type Declarations - Integers

signed integer: int
unsigned integer: unsigned int
literal for unsigned int: u or U

signed and unsigned int same size, but bit pattern is
determined differently

signed int: %d
unsigned int: %u

short int (2 bytes)
long and long long types (I/L and lI/LL) (8 bytes and 8 bytes)

Type Declarations - Integers

example

cat -n chel/int_format.c

#include <stdio.h>

int main(int argc, char **argv)

{

int n = -1;

/* %d is the format code for signed int */
printf("The bits in n interpreted as a signed int: %d\n", n);

1
2
3
a4
5
6
7
8
9

=
@

/* %u is the format code for unsigned int */
printf("The bits in n interpreted as an unsigned int: %u\n", n);

PR R
w M=

return 9;

|_I
'S

-Wall chel/int_format.c

.out

bits in n interpreted as a signed int: -1
bits in n interpreted as an unsigned int: 4294967295

Integer Ranges

C Language Variable Types

Whether you're working with regular or unsigned variables in your C program, you need to know a bit

about those various variables. The following table show C variable types, their value ranges, and a
few helpful comments:

Type Value Range Comments
char -128 to 127
unsigned char 0 to 255
int -32,768 to 32,767

-2,147,483,648 to 2,147,483,647
unsigned int 0 to 65,535

0 to 4,294,967,295

short int -32,768 to 32,767
unsigned short int 0 to 65,535
long int -2,147,483,648 to 2,147,483,647
unsigned long int 0 to 4,294,967,295
float 1.17x10* to 3.40x10* 6-digit precision
double 2.22x10* to 1.79x10°*® 15-digit precision

Type Declarations - Integers

integers can overflow

cat -n ch@l/int_overflow.c

#include <stdio.h>

int main(int argc, char **argv)

{

int n;

/* A quiet integer overflow. */
n = +2147483647; /* 2*%*31 - 1 is the maximum for 32 bit signed integers *#*/
printf("n = %+d\n", n);

W~k wNRE

B
ko

n=n+1;
printf("n + 1 = %+d\n\n", n);

BoR R
BN

/* A noisier integer overflow. */
n = 4294967295; /* 2%%32 - 1 */
printf("As a signed int, 4294967295 = %d !\n", n);

PR R
00N v

return @;

[
O

gcc chel/int_overflow.c

ch@l/int_overflow.c:15:7: warning: implicit conversion from 'long' to 'int' changes value from 4294967295 to -1 [-Wconstant-con
version]
n = 4294967295; /* 2**32 - 1 */
~ ANNNNMMNNN

1 warning generated.

Type Declarations - Integers

integers can overflow

./a.out

n +2147483647

n + 1 = -2147483648

As a signed int, 4294967295 = -1 !

overflow errors can be

amusing: https://www.cbc.ca/news/entertainment/psy-s-gangnam-style-
breaks-the-limit-of-youtube-s-video-counter-1.2860186

disruptive:https://www.bleepingcomputer.com/news/microsoft/microsoft
-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/

dangerous:

https://www.cs.wm.edu/~rml/teaching/c/docs/787 overflow.pdf

https://www.cbc.ca/news/entertainment/psy-s-gangnam-style-breaks-the-limit-of-youtube-s-video-counter-1.2860186
https://www.cbc.ca/news/entertainment/psy-s-gangnam-style-breaks-the-limit-of-youtube-s-video-counter-1.2860186
https://www.bleepingcomputer.com/news/microsoft/microsoft-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/
https://www.bleepingcomputer.com/news/microsoft/microsoft-exchange-year-2022-bug-in-fip-fs-breaks-email-delivery/
https://www.cs.wm.edu/~rml/teaching/c/docs/787_overflow.pdf

Type Declarations - Floats

no industry standard for floating point numbers before 1985

each hardware vendor had its own system

1985 — IEEE 754 floating point standard

C/C++ have three types of floats
float: 32 bits
double : 64 bits
long: 80 bits

two special float values
inf
infinity, larger than all other numbers (except itself) (division by 0)
nan
not a number (divide 0.0 by itself)
not equal to any number, even itself!

Type Declarations - Floats

cat -n chel/inf_nan.c

#include <stdio.h>

int main(void)

{
double inf =

double nan

printf("Here is an Inf: %1f\n", inf);
printf("Here is a NaN: %1f\n\n", nan);

W oSN R wNR

PR
[

printf("1/inf = %1f\n", 1.8/inf);
printf("inf - inf = %1f\n", inf - inf);

PR R
B w N

if (nan != nan) {
printf("Yow! nan != nan!\n");

}

PR R R
0N oW

return ©;

=
Le]

gcc chel/inf_nan.c

./a.out

Here is an Inf: inf
Here is a NaN: nan

1/inf = ©.000000
inf - inf = nan
Yow! nan != nan!

Type Declarations - Characters

unlike Python, C distinguishes between characters and strings
delimited by single quotes

char’s arereally int’s
index in the ASCII table
similar to ord and chr in Python

we can use char’s in mathematical expressions:
c - '0' =50 - 48 = 2 if ¢ == '2!

Type Declarations - Characters

cat -n ch@l/char_int.c

1
2
3
4
5
6
7
3
9

10
11
12

#include <stdio.h>

int main(void)

{

printf("'@' as an int: %d\n", '@'); /* print '@' as an int */
printf("'2' as an int: %d\n", '2'); /* print '2' as an int */
printf("'2' - '@': %d\n", '2' - '@"');

printf("48 as a char: %c\n", 48); /* print 48 as a character */
printf("54 as a char: %c\n", 54); /* print 54 as a character */

return @;

chel/char_int.c

./a.out

'®@' as an int: 48
'2' as an int: 5@

I2I

'e':

2

48 as a char: ©
54 as a char: 6

Type Declarations - Arrays

an array is like Python’s arrayor 1list

contiguous chunk of memory to hold a number of variables of
the same type

use an index to specify a single element in an array
sample declarations

int n[42]; /* An array that can hold 42 ints. */
float x[54]; /* An array that can hold 54 floats. */

sample code with arrays

cat -n ch@l/variable_size.c

int main(void)

{
int n = 42;
int a[n]; /* The same as int a[42], an array of 42 int. */

a[@] = 54;

W e NP wmpeR

return ©;

}

Type Declarations - Arrays

often need to keep length of array in a variable

no len () function, as in Python

differences between C arrays and Python lists

arrays span contiguous regions of memory, while lists can be scattered
across memory

contiguity allows C to work creatively with data

all items in arrays are the same type, unlike Python lists
must know width of each element to find it in the array

no checking for out of bounds indices for speed

Type Declarations - Strings

C has no string type
string: array of characters terminated by '\0'

cat -n ch@l/string.c

#include <stdio.h>

1
2
3 int main(void)
4 {
5
6
7
8

char ¢ = 'a'; // Character literal.
char s[] = "a"; // String as an array of characters.

printf("sizeof(c): %lu bytes\n", sizeof(c));
9 printf("sizeof(s): %lu bytes\n", sizeof(s));

1e

11 return ©;

12

gcc chel/string.c

./a.out

sizeof(c): 1 bytes
sizeof(s): 2 bytes

Type Declarations - Strings

use strlen () to find the length of a string

if string has no NULL character at end, C will keep reading past
the end of the string until it finds a one

cat -n chel/strlen.c

#include <stdio.h>
#include <strings.h>

int main(void)

{

char s[] = "a"; // String as an array of characters.

1
2
3
4
5
6
7
8

printf("sizeof(s): %lu bytes\n", sizeof(s));
printf("strlen(s): %lu bytes\n", strlen(s));

return 9;

}

chel/strlen.c

./a.out

sizeof(s): 2 bytes
strlen(s): 1 bytes

Type Conversions

types can converted explicitly or implicitly
cast to convert the type

implicit conversion when using variables of different types in
expressions

int n;
double x;
X = (double) n;

More on Assignment

in C, assignments are expressions, not statements
allows multiple assignmenta=b=c=1;
assignment operators
same precedence: right to left
= assighment
== comparison

perform the indicated operation between the left and right operands, then
assign the result to the left operand

+=add to

-= subtract from
*= multiply by
/= divide by

%= modulo by

C Operators

C Language Operators

In programming with C, you occasionally want to use common mathematical operators for common
mathematical functions and not-so-common cperators for logic and sequence functions. Here's a
look at C language operators to use:

Operator, Category, Duty

, Assignment, Equals

. Mathematical, Addition
. Mathematical, Subtraction
* Mathematical, Multiplication

/, Mathematical, Division

%, Mathematical, Modulo

= Comparison, Greater than

== Comparison, Greater than

or equal to

<, Comparison, Less than

==, Comparison, Less than or

equal to

==, Comparison, Is equal to

Operator, Category, Duty

I=_ Comparison, Is not equal
to

&&, Logical, AND
||, Logical, OR
! Logical, NOT

++ Mathematical, Increment
by 1

--, Mathematical, Decrement
by 1

&, Bitwise, AND

|, Bitwise, Inclusive OR

* Bitwise, Exclusive OR

(XOR or EOR)

=< Bitwise, Shift bits left

Operator, Category, Duty

=, Bitwise, Shift bits right

~, Bitwise, One’s complement
+ Unary, Positive
-, Unary, Negative

*. Unary, Pointer

&, Unary, Address

sizeof, Unary, Returns the size
of an object

., Structure, Element access

-= Structure, Pointer element
access

?-, Conditional , Funky if
operator expression

Boolean Operators

C does not have a distinct boolean type

int is used instead

treats integer 0 as FALSE and all non-zero values as TRUE
i =0;
while (i-10){ ... }
will execute until the variable i takes on the value 10 at which time the
expression (i - 10) will become false (i.e., 0)
a sampling of Logical/Boolean Operators:
&&, ||, and ! = AND, OR, and NOT in Python

&&: is used as logical and
x1=0&&Yy!=0

short-circuit evaluation: above example, if x != 0 evaluates to
false, the whole statement is false regardless of the outcome of
y != 0 (same for or if first condition is true)

Increment Operators

prefix/postfix

Example 1 Example 2

X 3; X = 3;

y ++x; y = X++;

// x contains 4, y contains 4|// x contains 4, y contains 3

Printing Decimal and Floating Point

= integers: %nd
“ n = width of the whole number portion for decimal integers

w float: %m.nf
“ m = total character width, including decimal point
“ n = precision width after decimal

Escape Sequences

Escape code

Description

\n

newline

\r

carriage return

\t

tab

\Vv

vertical tab

\b

backspace

\f

form feed (page feed)

\a

alert (beep)

\l'

single quote (')

\'ll'

double quote (")

\?

question mark (?)

\\

backslash (\)

WWW.cpp.com

Formatted I/O

printf and scanf

both formatted I/O
both use standard 1/O location

printf
converts values to character form according to format string
outputs to stdout

scanf

converts characters according to the format string, followed by pointer
arguments indicating where the resulting values are stored

inputs from stdin

scanf

requires two parameters
format string argument with specifiers
set of variable pointers to store corresponding values

format string
skips over all leading white space (spaces, tabs, newlines)
% and type indicator

in between: maximum field-width, type indicator modifier, or * (input
suppression)

input stops at end of format string, type mismatch in reading
next call to scanf resume searching for input of correct type where
previous scanf left off
return value

of values converted

Basic 1/0

#include <stdio.h>

int main ()

{

int x;
scanf ("%d", &x); /* why need & ? */
printf ("%d\n", x);

float var;

scanf ("%f", &var); printf ("%f\n", var);
scanf ("%d", &var); printf ("%d\n", var);
scanf ("%If", &var); printf ("%If\n", var);

int first, second;
scanf ("%d %d", &first, &second);

inti, j;
scanf (" %d %*d %*d %*d %d ", &i, &j);

	Slide 1
	Slide 2: Overview
	Slide 3: About C
	Slide 4: About C
	Slide 5: Python vs. C vs. C++ vs. Java
	Slide 6: Transitioning to C from Python
	Slide 7: Programming in C
	Slide 8: Hello, world!
	Slide 9: Hello world!
	Slide 10: Hello world!
	Slide 11: Header Files
	Slide 12: Coding Style
	Slide 13: Compilation and Linking
	Slide 14: Compilation and Linking
	Slide 15: Statements and Comments
	Slide 16: Statements and Comments
	Slide 17: Statements and Comments
	Slide 18: Variable Names
	Slide 19: C Keywords
	Slide 20: Type Declarations
	Slide 21: Type Declarations
	Slide 22: Type Declarations
	Slide 23: Type Declarations
	Slide 24: Type Declarations
	Slide 25: Type Declarations
	Slide 26: Type Declarations
	Slide 27: Primitive Data Types
	Slide 28: Type Declarations
	Slide 29: Type Declarations
	Slide 30: Basic Data Types
	Slide 31: Type Declarations
	Slide 32: Type Declarations - Integers
	Slide 33: Type Declarations - Integers
	Slide 34: Integer Ranges
	Slide 35: Type Declarations - Integers
	Slide 36: Type Declarations - Integers
	Slide 37: Type Declarations - Floats
	Slide 38: Type Declarations - Floats
	Slide 39: Type Declarations - Characters
	Slide 40: Type Declarations - Characters
	Slide 41: Type Declarations - Arrays
	Slide 42: Type Declarations - Arrays
	Slide 43: Type Declarations - Strings
	Slide 44: Type Declarations - Strings
	Slide 45: Type Conversions
	Slide 46: More on Assignment
	Slide 47: C Operators
	Slide 48: Boolean Operators
	Slide 49: Increment Operators
	Slide 50: Printing Decimal and Floating Point
	Slide 51: Escape Sequences
	Slide 52: Formatted I/O
	Slide 53: scanf
	Slide 54: Basic I/O

