The C Programming Language
Chapter 4

(material from Dr. Michael Lewis, William & Mary Computer Science)

Overview

Pointers and Addresses

Swap Function

Pointer Arithmetic

Pointers and Arrays and Strings
Function Pointers

Dynamic Memory Allocation

Python vs. C vs. C++ vs. Java

Python C C++
pointer type * type *
address of var &var &var
memory allocation malloc() , calloc() new same as C++

memory deallocation free() delete sameasC++

Indirection

ability to refer to an object indirectly through some other
mechanism than the object itself

suppose we wish to sort large, heavy rocks in order of
ascending weight; the swaps of adjacent rocks would be
onerous work, so instead we will use indirection
label the rocks (in no particular order) 1ton
for each rock, use a piece of paper to record the rock's weight and label
sort the pieces of paper so they are sorted in order of increasing weight
after sorting, look up the rocks using the labels and assemble them in
sorted order
using labels rather than the rocks themselves for sorting is an
example of indirection

it allows us to move the heavy rocks exactly one time each

Pointers and Addresses
one of C's strengths is the ability manipulate objects using
indirection via their addresses in memory
pointer: variable that can hold a memory address
declaration
type *var;
where type is the type we’re pointing to
examples

the * modifies the variable, not the type

int* p, qgq;
int *p, q; // equivalent declaration
p is a pointer to an int; q is an int
use & to get the address of a variable

Pointers and Addresses

example

./a.out
cat -n che4/pt_intro.c

n =42
address of n: @x7fff3e2ddfl18
int main(void) p dereferences to: 42

1

2

3

4 1 n = 54
5 int n = 42;
6

7

2]

9

#include <stdio.h>

n =42

int *p;
int *q;

printf("n = %d\n", n);
1e
11 p = &n; /* Set p to point at n. */
12 printf("address of n: %p\n", (void*) p);
13
14 printf("p dereferences to: %d\n", *p); /* Display the integer value p points to. */
15
16 *pn = 54; /* Since p points to n, this changes the value of n! */
17
18 printf("n = %d\n", n);
19
20 q = &n; /* Both p and q point to n. */
21 *q = 42; /* Change n through q. */
22
23 printf("n = %d\n", n);
24
25 return @;
26

Pointers and Addresses

line 11 sets p to the address of n
p how points to n
line 12 prints the value of the pointer using %p

address begins with 0x, indicating hexadecimal (base 16)

access the value of n through p by dereferencing
*p means the value at the address p points to
go to the location in memory stored in p
read one int’s worth of bits (32 bits)
interpret those bits as int
line 16 writes to location p, thereby changing n

multiple pointers can point to the same location (e.g., lines 20-
21)

Pointers and Addresses

pointers can be confusing

pointer = location in memory

overloaded *
in declaration, * means the variable is a pointer
for dereferencing, * means the value stored in location p
double x = 54; /* A double. */

double *p = &« /* A pointer to x. */
double y; /* Another double. */

y = *p; /* Equivalent toy = x. */

p 2; /* Equivalent to x = 42. */

p = 42; /* Sets p to point to the address 42, which is probably invalid! */

Pointers and Addresses

recall references from Python
two variables that refer to the same object

cat -n che4/reference.py

a [1, 2, 3, 4]
b a

print("b:", b)

a[e] = 42

1
2
3
4
5
6
7
8

print("b:", b)

python che4/reference.py

b: [1, 2, 3, 4]
b: [42, 2, 3, 4]

references are like pointers, but without the need to
dereference a pointer

in practice, references are implemented with pointers that
point to the same object in memory

Swap Function

swap the values of two integers

good example of using pointers

cat -n che2/bad_swap.c

9
10
11

13
14
15
16
17
18
19
20
21
22
23 }

#include <stdio.h>

1
2
3 void swap(int m, int n)
4 {
5
6
7
8

int temp;

temp = m;

m=n;

n = temp;

main(void)

int m = 42, n = 54;

printf("before the call to swap(): m = %d, n = %d\n", m, n);
swap(m, n); /* Only copies of m, n are passed. */
printf("after the call to swap(): m = %d, n = %d\n", m, n);

return 8;

gce che2/bad_swap.c

./a.out

before the call to swap(): m
after the call to swap(): m

Swap Function

C uses call by value, so swap function doesn’t work
the solution is to pass addresses of x and y and swap the values
found at those addresses
we are still passing by value, but this time it’s the copy of a
pointer
using pointers allows functions to change values of variables

these changes persist after returning from the function

Swap Function

cat ch@4/swap.c

#include <stdio.h>

void swap(int *m, int *n)

{

int temp;

temp = *m; /* Set temp = the value that x points to. */
*m = *n; /* Set the int that x points to = the int that y points to. */
n = temp; / Set the location y points to = the value in temp. */

}

int main(void)
{
int m = 42, n = 54;
printf("before the call to swap(): m = %d, n = %d\n", m, n);

swap(&m, &n); /* Copies of the addresses are passed. */

printf("after the call to swap(): m = %d, n = %d\n", m, n);

return 9;

gce ched/swap.c

.fa.out

before the call to swap(): m =
after the call to swap(): m

Pointer Arithmetic

if p is a pointer to an int, p + i refers to a memory location i
integers past p

in terms of bytes, p+i=p +i * sizeof (int) orp+i*4
pointer arithmetic depends on the type
if p is a pointer to short int’s (size 2 bytes)
p+i=p+i*sizeof (short) orp+i*2
similar for char (1 byte), float (4 bytes), and double (8 bytes)
also works for struct’s

usually we don’t care about the actual value of pointers, but
we do care about the relative locations of pointers and how far
apart they are

Pointer Arithmetic

cat -n che4/pt_arith.c

1 #include <stdio.h>
2
3 int main(void)
4 {
int n = 42;
int *p;

p = &n;

10 printf("%p\n", p);
11 printf("%p\n", p + 1);

12

13 printf("Number of ints between %p and %p: %ld\n", p, (p + 1), (p + 1) - p);

14 printf("Number of bytes between %p and %p: %1d\n", p, (p + 1), ((p + 1) - p) * sizeof(int));
15

16 return @;

17 }

gcc ched/pt_arith.c

./a.out

Ox7ffele96adec
Ox7ffele96ad7e
Number of ints between @x7ffele96ad6c and @x7ffel@96ad70: 1
Number of bytes between @x7ffele96adéc and @x7ffele9ead7e: 4

Pointers and Arrays and Strings

very close connection in C between pointers, arrays, and
strings (which are just arrays of characters)

an array without an index represents the base address of an
array, so it is a pointer

Pointers and Arrays

gcc ched/arrays.c

cat -n ché4/arrays.c

1 #include <stdio.h>

2 ./a.out

3 int main(void)

4 { © 149 16 25 36 49 64 81

5 %"t]”°E= 1 . e e s Done with loop 1.

3 i:E ::I:l ers[18]; /* An array of 1@ int. */ 0149 16 25 36 49 64 81

8 Done with loop 2, p - numbers
9 for (int i =19; 3 <10; i) { @149 16 25 36 49 64 81

18 numbers[i] = i * 1i;

11 printf("%d ", numbers[i]);

12}

13 printf("\n");

14 printf("Done with loop %d.\n", loop++);
15

16 p = numbers; /* p points to numbers. */
17 for (int 1 = ©; 1 < 10; i++) {

18 printf("%d ", *(p + 1));

19 }

20 printf("\n");

21 printf("Done with loop %d, p - numbers = %ld.\n", loop++, p - numbers);
22

23 for (int 1 = ©; 1 < 18; i++) {

24 printf("%d ", p[i]);

25}

26 printf("\n");

27 printf("Done with loop %d, p - numbers = %1ld.\n", loop++, p - numbers);
28

29 return @;

30

Done with loop 3, p - numbers

Pointers and Arrays

line 11 uses array indexing to access the elements of the array
int’s
line 16 sets the integer pointer p to numbers

since numbers is an array, p points to the beginning of
numbers in memory

in line 18, *(p + i) refers to the int that is i integers past the
beginning of the array numbers

p + i points to the location that is i * sizeof(int) bytes past the
beginning of numbers

*(p + i) dereferences the address p +ias anintand is
equivalent to p[i]

line 24 pointer p uses array indexing, as in line 11

Pointers and Arrays

in C, arrays are really just pointers (and vice-versa)
an array is really just a pointer to the beginning of the array

the type of the pointer (e.g. int*, double*) determines how the
bytes at that location and subsequent locations are interpreted

the programmer is responsible for keeping track of the length
of the array

pointers allow programmers to write terse and cryptic (but
powerful) code

C idioms

Pointers and Arrays

cat -n che4/arrays2.c

#include <stdio.h>

1

2

3 int main(void)

4 {

5 int loop = 1;

6 int numbers[1@]; // An array of 1@ int.
7 int *p;

8

9

/* The original loop. */
1@ for (int i = @; 1 < 18; i++) {
11 numbers[i] = i * i;
12 printf("%d ", numbers[i]);
13}
14 printf("\n");
15 printf("Done with loop %d.\n", loop++);
16
17 p = numbers;
18 while (p < numbers + 10) {
19 printf("%d ", *p++);
20}
21 printf("\n");

gce ched/arrays.c

./a.out

@ 149 16 25 36 49 64 81
Done with loop 1.

@ 149 16 25 36 49 64 81
Done with loop 2, p - numbers
@149 16 25 36 49 64 81
Done with loop 3, p - numbers

22 printf("Done with loop %d, p - numbers = %1d.\n", loop++, p - numbers);

23

24 p = numbers;

25 for (p = numbers; p < numbers + 18; p++) {
26 printf("%d ", *p);

27 }

28 printf("\n");

29 printf("Done with loop %d, p - numbers = %ld.\n", loop++, p - numbers);

30
31 return 9;
32

Pointers and Arrays and Strings

in line 18, numbers + 10 means the address plus 10 int’s past
the start of numbers

in line 19, we encounter *p++, which is evaluated as

use the value of the int that p points to (*p)
increment p (p++); i.e., advance p to point to the next int

for loop that begins at line 25 is equivalent to the while loop at
line 18

Pointers and Strings

a string in Cis an array of characters
terminated by an ASCIlI NULL character (' \0')

strings are really just pointers of type char* that point to the
first character in the string

to read the string, go to that starting address and read bytes
until you encounter the terminating ASCIl NULL

Pointers and Strings

cat -n ché4/strlen.c

#include <stdio.h>

int my_strlen(char *s)

{
int count;
for (count = @; *s; s++, count++);
return count;

}

O o0~ v bw

=
[uv]

int main(void)

{

Sl
(N

char s[] "Hello, world!";
char t[] = "You're a lying dog-faced pony soldier!";

Tl I
n koW

printf("The string '%s' contains %d characters + an ASCII null.\n", s, my_strlen(s));
printf("The string '%s' contains %d characters + an ASCII null.\n", t, my_strlen(t));

o
00~ O

return @;

=
0

}

gce ched/strlen.c

./a.out

The string 'Hello, world!' contains 13 characters + an ASCII null.
The string 'You're a lying dog-faced pony soldier!' contains 38 characters + an ASCII null.

Pointers and Strings

on line 6
for (count = 0; *s; s++, count++);
is equivalent to

count = 0;

while (*s) {
s =s + 1; // advance one character
count = count + 1; // increment count

}

we start with the pointer s at the beginning of the string

the increment s++ moves us across the string

*s will not be zero until we reach the ASCII NULL that
terminates the string so the non-zero value *s is interpreted as
"true" and the loop continues

Pointers and Strings

can we declare count inside the for statement?

int strlen (char *s)

{

for (int count = 0; *s; s++, count++);
return count;

count would be local to the for statement so it would not be
available to return

Function Pointers

pointers to functions are also available in C

pass functions as parameters
assign functions to variables

e.g., pass a comparison function to a sorting algorithm to
achieve polymorphism

Function Pointers

function pointer declarations require careful use of
parentheses

double (*fun pt) (double, double);

defines a pointer to a function with two double parameters
which returns a double

double *fun pt(double, double);

defines a function prototype for a function with two double
parameters which returns a pointer to a double

Function Pointers

a function name can be implicitly converted to a function
pointer when needed

here we convert pow() from the C math library to a pointer

cat -n ché4/fun_pt.c

#include <math.h> /* For pow(). */
#include <stdio.h>
int main(int argc, char **argv)

double (*fun_pt)(double, double) = pow;
printf("%e\n", (*fun_pt)(2, ©.5));

1
2
3
4 A
5
6
7

}

gcec che4/fun_pt.c -1m # -Lm tells gcc to Link in pow() from the math Library.

./a.out

1.414214e+00

Dynamic Memory Allocation

in C/C++/Java, you can dynamically allocate new objects in
memory

when running a program, there are two types of memory
stack memory for function calls, static variables, etc.

heap memory for dynamically allocated memory whose
contents persist

each computational process on the computer has its own stack
memory

a family of functions in C are used to dynamically allocate
memory to create new arrays and other objects

the most commonly used memory allocation function is
malloc()

Dynamic Memory Allocation

malloc()

allocates a contiguous region of memory and returns a
pointer to the beginning of the region

it does not initialize the allocated memory
prototype: void *malloc (size_t bytes);
calloc()

does the same thing as malloc()

but also clears the allocated region by initializing all the bytes
to be zero

prototype: void *calloc (size_t bytes, int num_of items);

since both return void*, casting to a different pointer is
recommended

Dynamic Memory Allocation

cat -n ched4/alloc.c

1 #include <stdio.h>
2 #include <stdlib.h> /* You need this to use malloc() and calloc(). */
3
int main(void)
{
unsigned int n = 42;
double *x;
int *a;

4
5
6
7
8
9

10 x = (double*) malloc(n * sizeof(double)); /* Space for n doubles. */
11 free(x);

12

13 a = (int*) calloc(n, sizeof(int)); /* Space for n integers. */

14 free(a);

15

16 a = calloc(n, sizeof(int)); /* Implicit pointer type conversion! */
17 free(a);

18

19 return 9;

20 }

clang -Weverything -Wall -pedantic che4/alloc.c

./a.out

Dynamic Memory Allocation

if the memory cannot be allocated (e.g., no memory is left),
NULL is returned
need to include stdlib.h

really just 0

NULL also used for initializing a pointer variable to indicate it
does not currently hold a valid address

Dynamic Memory Allocation

cat -n che4/null.c

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)

{
int *n = NULL;

*n = 42;
printf("n: %d\n", *n);

W oo~ v W

=
R ©

return 9;

(=Y
[

}

clang -Weverything che4/null.c

ch@4/null.c:4:14: warning: unused parameter ‘'argc' [-Wunused-parameter]
int main(int argc, char **argv)

Fa

ch®4/null.c:4:27: warning: unused parameter ‘'argv' [-Wunused-parameter]
int main(int argc, char **argv)

A

2 warnings generated.

./a.out

Segmentation fault (core dumped)

Dynamic Memory Allocation

common C practice for checking error for malloc

cat -n che4/allocl.c

#include <stdio.h>
#include <stdlib.h> /* You need this to use malloc() and calloc(). */

int main(void)
{
int n = 42;
double *x;

1
2
3
a
5
6
7
8
9

if ((x = (double*) malloc(n * sizeof(double))) == NULL) {
fprintf("Allocation of x failed!\n");

}
else {

free(x);

}

P RPRPRRPPRPRBRE
OVl h W R ®

return ©6;

=
|

Dynamic Memory Allocation

call free to return memory to the system

cat -n ché4/free.c

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)
{
int *n = (int*) malloc(42 * sizeof(int));

free(n + 3); /* n no longer points to the start of the buffer.

1
2
3
4
5
6
7
8
9

[
@

return ©;

}

=
=

clang -Weverything che4/free.c

che4/free.c:4:14: warning: unused parameter ‘argc' [-Wunused-parameter]
int main(int argc, char **argv)

A

che4/free.c:4:27: warning: unused parameter ‘argv' [-Wunused-parameter]
int main(int argc, char **argv)

A
2 warnings generated.
./a.out

free(): invalid pointer
Aborted (core dumped)

Dynamic Memory Allocation

C does not perform garbage collection

it is up to the programmer to clean up and release memory
when it is no longer needed

otherwise, may run out of memory causing your program to
crash

memory leak results from a failure to properly manage
memory usage

all allocated memory is typically released when a program ends

	Slide 1
	Slide 2: Overview
	Slide 3: Python vs. C vs. C++ vs. Java
	Slide 4: Indirection
	Slide 5: Pointers and Addresses
	Slide 6: Pointers and Addresses
	Slide 7: Pointers and Addresses
	Slide 8: Pointers and Addresses
	Slide 9: Pointers and Addresses
	Slide 10: Swap Function
	Slide 11: Swap Function
	Slide 12: Swap Function
	Slide 13: Pointer Arithmetic
	Slide 14: Pointer Arithmetic
	Slide 15: Pointers and Arrays and Strings
	Slide 16: Pointers and Arrays
	Slide 17: Pointers and Arrays
	Slide 18: Pointers and Arrays
	Slide 19: Pointers and Arrays
	Slide 20: Pointers and Arrays and Strings
	Slide 21: Pointers and Strings
	Slide 22: Pointers and Strings
	Slide 23: Pointers and Strings
	Slide 24: Pointers and Strings
	Slide 25: Function Pointers
	Slide 26: Function Pointers
	Slide 27: Function Pointers
	Slide 28: Dynamic Memory Allocation
	Slide 29: Dynamic Memory Allocation
	Slide 30: Dynamic Memory Allocation
	Slide 31: Dynamic Memory Allocation
	Slide 32: Dynamic Memory Allocation
	Slide 33: Dynamic Memory Allocation
	Slide 34: Dynamic Memory Allocation
	Slide 35: Dynamic Memory Allocation

