
10/14/2024

1

1

The C Programming Language
Chapter 4

(material from Dr. Michael Lewis, William & Mary Computer Science)

2

Overview

 Pointers and Addresses

 Swap Function

 Pointer Arithmetic

 Pointers and Arrays and Strings

 Function Pointers

 Dynamic Memory Allocation

3

Python vs. C vs. C++ vs. Java

4

Indirection
 ability to refer to an object indirectly through some other

mechanism than the object itself

 suppose we wish to sort large, heavy rocks in order of
ascending weight; the swaps of adjacent rocks would be
onerous work, so instead we will use indirection

▪ label the rocks (in no particular order) 1 to n

▪ for each rock, use a piece of paper to record the rock's weight and label

▪ sort the pieces of paper so they are sorted in order of increasing weight

▪ after sorting, look up the rocks using the labels and assemble them in
sorted order

 using labels rather than the rocks themselves for sorting is an
example of indirection

▪ it allows us to move the heavy rocks exactly one time each

5

Pointers and Addresses
 one of C's strengths is the ability manipulate objects using

indirection via their addresses in memory

 pointer: variable that can hold a memory address

 declaration

 type *var;

 where type is the type we’re pointing to

 examples

 the * modifies the variable, not the type

 int* p, q;

 int *p, q; // equivalent declaration

▪ p is a pointer to an int; q is an int

 use & to get the address of a variable

6

Pointers and Addresses
 example

1 2

3 4

5 6

10/14/2024

2

7

Pointers and Addresses
 line 11 sets p to the address of n

▪ p now points to n

 line 12 prints the value of the pointer using %p

▪ address begins with 0x, indicating hexadecimal (base 16)

 access the value of n through p by dereferencing

▪ *p means the value at the address p points to

▪ go to the location in memory stored in p

▪ read one int’s worth of bits (32 bits)

▪ interpret those bits as int

 line 16 writes to location p, thereby changing n

 multiple pointers can point to the same location (e.g., lines 20-
21)

8

Pointers and Addresses
 pointers can be confusing

 pointer = location in memory

 overloaded *

▪ in declaration, * means the variable is a pointer

▪ for dereferencing, * means the value stored in location p

9

Pointers and Addresses
 recall references from Python

▪ two variables that refer to the same object

 references are like pointers, but without the need to
dereference a pointer

 in practice, references are implemented with pointers that
point to the same object in memory

10

Swap Function
 swap the values of two integers

 good example of using pointers

11

Swap Function
 C uses call by value, so swap function doesn’t work

 the solution is to pass addresses of x and y and swap the values
found at those addresses

▪ we are still passing by value, but this time it’s the copy of a
pointer

 using pointers allows functions to change values of variables

▪ these changes persist after returning from the function

12

Swap Function

7 8

9 10

11 12

10/14/2024

3

13

Pointer Arithmetic
 if p is a pointer to an int, p + i refers to a memory location i

integers past p

▪ in terms of bytes, p + i = p + i * sizeof (int) or p + i * 4

 pointer arithmetic depends on the type

▪ if p is a pointer to short int’s (size 2 bytes)

▪ p + i = p + i * sizeof (short) or p + i * 2

▪ similar for char (1 byte), float (4 bytes), and double (8 bytes)

▪ also works for struct’s

 usually we don’t care about the actual value of pointers, but
we do care about the relative locations of pointers and how far
apart they are

14

Pointer Arithmetic

15

Pointers and Arrays and Strings
 very close connection in C between pointers, arrays, and

strings (which are just arrays of characters)

 an array without an index represents the base address of an
array, so it is a pointer

16

Pointers and Arrays

17

Pointers and Arrays
 line 11 uses array indexing to access the elements of the array

int’s

 line 16 sets the integer pointer p to numbers

▪ since numbers is an array, p points to the beginning of
numbers in memory

 in line 18, *(p + i) refers to the int that is i integers past the
beginning of the array numbers

▪ p + i points to the location that is i * sizeof(int) bytes past the
beginning of numbers

▪ *(p + i) dereferences the address p + i as an int and is
equivalent to p[i]

 line 24 pointer p uses array indexing, as in line 11

18

Pointers and Arrays
 in C, arrays are really just pointers (and vice-versa)

 an array is really just a pointer to the beginning of the array

 the type of the pointer (e.g. int*, double*) determines how the
bytes at that location and subsequent locations are interpreted

 the programmer is responsible for keeping track of the length
of the array

 pointers allow programmers to write terse and cryptic (but
powerful) code

▪ C idioms

13 14

15 16

17 18

10/14/2024

4

19

Pointers and Arrays

20

Pointers and Arrays and Strings
 in line 18, numbers + 10 means the address plus 10 int’s past

the start of numbers

 in line 19, we encounter *p++, which is evaluated as

▪ use the value of the int that p points to (*p)

▪ increment p (p++); i.e., advance p to point to the next int

 for loop that begins at line 25 is equivalent to the while loop at
line 18

21

Pointers and Strings
 a string in C is an array of characters

▪ terminated by an ASCII NULL character ('\0')

▪ strings are really just pointers of type char* that point to the
first character in the string

▪ to read the string, go to that starting address and read bytes
until you encounter the terminating ASCII NULL

22

Pointers and Strings

23

Pointers and Strings
 on line 6

 for (count = 0; *s; s++, count++);

 is equivalent to

 count = 0;

 while (*s) {

 s = s + 1; // advance one character

 count = count + 1; // increment count

 }

 we start with the pointer s at the beginning of the string

 the increment s++ moves us across the string

 *s will not be zero until we reach the ASCII NULL that
terminates the string so the non-zero value *s is interpreted as
"true" and the loop continues

24

Pointers and Strings
 can we declare count inside the for statement?

 int strlen(char *s)

 {

 for (int count = 0; *s; s++, count++);

 return count;

 }

 count would be local to the for statement so it would not be
available to return

19 20

21 22

23 24

10/14/2024

5

25

Function Pointers
 pointers to functions are also available in C

▪ pass functions as parameters

▪ assign functions to variables

 e.g., pass a comparison function to a sorting algorithm to
achieve polymorphism

26

Function Pointers
 function pointer declarations require careful use of

parentheses

 double (*fun_pt)(double, double);

▪ defines a pointer to a function with two double parameters
which returns a double

 double *fun_pt(double, double);

▪ defines a function prototype for a function with two double
parameters which returns a pointer to a double

27

Function Pointers
 a function name can be implicitly converted to a function

pointer when needed

 here we convert pow() from the C math library to a pointer

28

Dynamic Memory Allocation
 in C/C++/Java, you can dynamically allocate new objects in

memory

 when running a program, there are two types of memory

▪ stack memory for function calls, static variables, etc.

▪ heap memory for dynamically allocated memory whose
contents persist

 each computational process on the computer has its own stack
memory

 a family of functions in C are used to dynamically allocate
memory to create new arrays and other objects

▪ the most commonly used memory allocation function is
malloc()

29

Dynamic Memory Allocation
 malloc()

▪ allocates a contiguous region of memory and returns a
pointer to the beginning of the region

▪ it does not initialize the allocated memory

▪ prototype: void *malloc (size_t bytes);

 calloc()

▪ does the same thing as malloc()

▪ but also clears the allocated region by initializing all the bytes
to be zero

▪ prototype: void *calloc (size_t bytes, int num_of items);

 since both return void*, casting to a different pointer is
recommended

30

Dynamic Memory Allocation

25 26

27 28

29 30

10/14/2024

6

31

Dynamic Memory Allocation
 if the memory cannot be allocated (e.g., no memory is left),

NULL is returned

▪ need to include stdlib.h

▪ really just 0

 NULL also used for initializing a pointer variable to indicate it
does not currently hold a valid address

32

Dynamic Memory Allocation

33

Dynamic Memory Allocation
 common C practice for checking error for malloc

34

Dynamic Memory Allocation
 call free to return memory to the system

35

Dynamic Memory Allocation
 C does not perform garbage collection

▪ it is up to the programmer to clean up and release memory
when it is no longer needed

▪ otherwise, may run out of memory causing your program to
crash

▪ memory leak results from a failure to properly manage
memory usage

 all allocated memory is typically released when a program ends

31 32

33 34

35

	Slide 1
	Slide 2: Overview
	Slide 3: Python vs. C vs. C++ vs. Java
	Slide 4: Indirection
	Slide 5: Pointers and Addresses
	Slide 6: Pointers and Addresses
	Slide 7: Pointers and Addresses
	Slide 8: Pointers and Addresses
	Slide 9: Pointers and Addresses
	Slide 10: Swap Function
	Slide 11: Swap Function
	Slide 12: Swap Function
	Slide 13: Pointer Arithmetic
	Slide 14: Pointer Arithmetic
	Slide 15: Pointers and Arrays and Strings
	Slide 16: Pointers and Arrays
	Slide 17: Pointers and Arrays
	Slide 18: Pointers and Arrays
	Slide 19: Pointers and Arrays
	Slide 20: Pointers and Arrays and Strings
	Slide 21: Pointers and Strings
	Slide 22: Pointers and Strings
	Slide 23: Pointers and Strings
	Slide 24: Pointers and Strings
	Slide 25: Function Pointers
	Slide 26: Function Pointers
	Slide 27: Function Pointers
	Slide 28: Dynamic Memory Allocation
	Slide 29: Dynamic Memory Allocation
	Slide 30: Dynamic Memory Allocation
	Slide 31: Dynamic Memory Allocation
	Slide 32: Dynamic Memory Allocation
	Slide 33: Dynamic Memory Allocation
	Slide 34: Dynamic Memory Allocation
	Slide 35: Dynamic Memory Allocation

