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The C Programming Language
Chapter 4

(material from Dr. Michael Lewis, William & Mary Computer Science)
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Overview

 Pointers and Addresses

 Swap Function

 Pointer Arithmetic

 Pointers and Arrays and Strings

 Function Pointers

 Dynamic Memory Allocation
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Python vs. C vs. C++ vs. Java
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Indirection
 ability to refer to an object indirectly through some other 

mechanism than the object itself

 suppose we wish to sort large, heavy rocks in order of 
ascending weight; the swaps of adjacent rocks would be 
onerous work, so instead we will use indirection

▪ label the rocks (in no particular order) 1 to n

▪ for each rock, use a piece of paper to record the rock's weight and label

▪ sort the pieces of paper so they are sorted in order of increasing weight

▪ after sorting, look up the rocks using the labels and assemble them in 
sorted order

 using labels rather than the rocks themselves for sorting is an 
example of indirection

▪ it allows us to move the heavy rocks exactly one time each
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Pointers and Addresses
 one of C's strengths is the ability manipulate objects using 

indirection via their addresses in memory

 pointer: variable that can hold a memory address

 declaration

 type *var;

     where type is the type we’re pointing to

 examples

 the * modifies the variable, not the type

 int* p, q;

 int *p, q;   // equivalent declaration

▪ p is a pointer to an int; q is an int

 use & to get the address of a variable
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Pointers and Addresses
 example
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Pointers and Addresses
  line 11 sets p to the address of n

▪ p now points to n

 line 12 prints the value of the pointer using %p 

▪ address begins with 0x, indicating hexadecimal (base 16)

 access the value of n through p by dereferencing

▪ *p means the value at the address p points to

▪ go to the location in memory stored in p

▪ read one int’s worth of bits (32 bits)

▪ interpret those bits as int

 line 16 writes to location p, thereby changing n

 multiple pointers can point to the same location (e.g., lines 20-
21)
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Pointers and Addresses
 pointers can be confusing

 pointer = location in memory

 overloaded *

▪ in declaration, * means the variable is a pointer

▪ for dereferencing, * means the value stored in location p
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Pointers and Addresses
 recall references from Python

▪ two variables that refer to the same object

 references are like pointers, but without the need to 
dereference a pointer

 in practice, references are implemented with pointers that 
point to the same object in memory
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Swap Function
 swap the values of two integers

 good example of using pointers
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Swap Function
 C uses call by value, so swap function doesn’t work

 the solution is to pass addresses of x and y and swap the values 
found at those addresses

▪ we are still passing by value, but this time it’s the copy of a 
pointer

 using pointers allows functions to change values of variables

▪ these changes persist after returning from the function
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Swap Function
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Pointer Arithmetic
 if p is a pointer to an int, p + i refers to a memory location i 

integers past p

▪ in terms of bytes, p + i = p + i * sizeof (int)   or p + i * 4

 pointer arithmetic depends on the type

▪ if p is a pointer to short int’s (size 2 bytes)

▪ p + i = p + i * sizeof (short)    or p + i * 2

▪ similar for char (1 byte), float (4 bytes), and double (8 bytes)

▪ also works for struct’s

 usually we don’t care about the actual value of pointers, but 
we do care about the relative locations of pointers and how far 
apart they are
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Pointer Arithmetic

15

Pointers and Arrays and Strings
 very close connection in C between pointers, arrays, and 

strings (which are just arrays of characters)

 an array without an index represents the base address of an 
array, so it is a pointer
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Pointers and Arrays
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Pointers and Arrays
 line 11 uses array indexing to access the elements of the array 

int’s

 line 16 sets the integer pointer p to numbers

▪ since numbers is an array, p points to the beginning of 
numbers in memory

 in line 18, *(p + i) refers to the int that is i integers past the 
beginning of the array numbers

▪ p + i points to the location that is i * sizeof(int) bytes past the 
beginning of numbers

▪ *(p + i) dereferences the address p + i as an int and is 
equivalent to p[i]

 line 24 pointer p uses array indexing, as in line 11
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Pointers and Arrays
 in C, arrays are really just pointers (and vice-versa)

 an array is really just a pointer to the beginning of the array

 the type of the pointer (e.g. int*, double*) determines how the 
bytes at that location and subsequent locations are interpreted

 the programmer is responsible for keeping track of the length 
of the array

 pointers allow programmers to write terse and cryptic (but 
powerful) code

▪ C idioms
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Pointers and Arrays
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Pointers and Arrays and Strings
 in line 18, numbers + 10 means the address plus 10 int’s past 

the start of numbers

 in line 19, we encounter *p++, which is evaluated as

▪     use the value of the int that p points to (*p)

▪     increment p (p++); i.e., advance p to point to the next int

 for loop that begins at line 25 is equivalent to the while loop at 
line 18
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Pointers and Strings
 a string in C is an array of characters 

▪ terminated by an ASCII NULL character ('\0')

▪ strings are really just pointers of type char* that point to the 
first character in the string

▪ to read the string, go to that starting address and read bytes 
until you encounter the terminating ASCII NULL

22

Pointers and Strings
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Pointers and Strings
 on line 6

        for (count = 0; *s; s++, count++);

   is equivalent to

   count = 0;

   while (*s) {

      s = s + 1;    // advance one character

      count = count + 1;  // increment count

   }

 we start with the pointer s at the beginning of the string

  the increment s++ moves us across the string

 *s will not be zero until we reach the ASCII NULL that 
terminates the string so the non-zero value *s is interpreted as 
"true" and the loop continues
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Pointers and Strings
 can we declare count inside the for statement?

   int strlen(char *s)

   {

      for (int count = 0; *s; s++, count++);

      return count;

   }

 count would be local to the for statement so it would not be 
available to return
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Function Pointers
 pointers to functions are also available in C

▪ pass functions as parameters

▪ assign functions to variables

 e.g., pass a comparison function to a sorting algorithm to 
achieve polymorphism
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Function Pointers
 function pointer declarations require careful use of 

parentheses

      double (*fun_pt)(double, double);

▪ defines a pointer to a function with two double parameters 
which returns a double

    double *fun_pt(double, double);

▪ defines a function prototype for a function with two double 
parameters which returns a pointer to a double
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Function Pointers
 a function name can be implicitly converted to a function 

pointer when needed

 here we convert pow() from the C math library to a pointer 
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Dynamic Memory Allocation
 in C/C++/Java, you can dynamically allocate new objects in 

memory

 when running a program, there are two types of memory

▪ stack memory for function calls, static variables, etc.

▪ heap memory for dynamically allocated memory whose 
contents persist

 each computational process on the computer has its own stack 
memory

 a family of functions in C are used to dynamically allocate 
memory to create new arrays and other objects

▪ the most commonly used memory allocation function is 
malloc()
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Dynamic Memory Allocation
 malloc() 

▪ allocates a contiguous region of memory and returns a 
pointer to the beginning of the region

▪ it does not initialize the allocated memory

▪ prototype: void *malloc (size_t bytes);

 calloc()

▪ does the same thing as malloc() 

▪ but also clears the allocated region by initializing all the bytes 
to be zero

▪ prototype: void *calloc (size_t bytes, int num_of items);

 since both return void*, casting to a different pointer is 
recommended
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Dynamic Memory Allocation
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Dynamic Memory Allocation
 if the memory cannot be allocated (e.g., no memory is left), 

NULL is returned

▪ need to include stdlib.h

▪ really just 0

 NULL also used for initializing a pointer variable to indicate it 
does not currently hold a valid address
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Dynamic Memory Allocation
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Dynamic Memory Allocation
 common C practice for checking error for malloc
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Dynamic Memory Allocation
 call free to return memory to the system
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Dynamic Memory Allocation
 C does not perform garbage collection

▪ it is up to the programmer to clean up and release memory 
when it is no longer needed

▪ otherwise, may run out of memory causing your program to 
crash

▪ memory leak results from a failure to properly manage 
memory usage

 all allocated memory is typically released when a program ends
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