
9/15/2020

1

Copyright © 2009 Elsevier

Chapter 6:: Control Flow

Programming Language Pragmatics

Michael L. Scott

Copyright © 2009 Elsevier

Control Flow

• control flow or ordering

– fundamental to most models of computing

– determines ordering of tasks in a program

Copyright © 2009 Elsevier

Control Flow

• basic categories for control flow:

– sequencing: order of execution

– selection (also alternation): choice among two

or more statements or expressions

• if or case statements

– iteration: loops

• for, do, while, repeat

– procedural abstraction: parameterized

subroutines

Copyright © 2009 Elsevier

Control Flow

• basic categories for control flow (cont.):

– recursion: expression defined in terms of

(simpler versions of) itself

– concurrency: two or more program fragments

are executed at the same time

• in parallel on separate processors

• interleaved on a single processor

– exception handling and speculation

– nondeterminacy: order or choice is deliberately

left unspecified

Copyright © 2009 Elsevier

Control Flow

• previous eight categories cover all of the

control-flow constructs in most

programming languages

• better to think in these categories rather

than the specifics of a single programming

language

– easier to learn new languages

– evaluate tradeoffs among languages

– design and evaluate algorithms
Copyright © 2009 Elsevier

Control Flow

• importance of different categories varies

across programming language paradigms

– sequencing central in imperative and objected-

oriented languages, but less important in

functional languages

– functional languages use recursion heavily,

while imperative languages focus more on

iteration

– logic languages hide control flow entirely and

allow the system to find an order in which to

apply inference rules

9/15/2020

2

Copyright © 2009 Elsevier

Expression Evaluation

• expression consists of a simple object

(literal, variable, constant) or an operator or

function call

– function: my_func (A, B, C)

– operators: simple syntax, one or two operands

• a + b

• -c

– sometimes operators are syntactic sugar

• in C++, a + b short for a.operator+(b)

Copyright © 2009 Elsevier

Prefix, Infix, and Postfix Notation

• some languages impose an ordering for

operators and their operands

– prefix: op a b or op(a,b)

• Lisp: (* (+ 1 3) 2)

• Cambridge prefix: function name inside parentheses; also used

with multiple operands: (+ 2 4 5 1)

– infix: a op b

• standard method

• C: a = b != 0 ? a/b : 0

Copyright © 2009 Elsevier

Prefix, Infix, and Postfix Notation

• some languages impose an ordering for

operators and their operands (cont.)

– postfix: a b op

• least common - used in Postscript, Forth, and intermediate code

of some compilers

• C (and its descendants): x++

• Pascal: pointer dereferencing operator (^)

– prefix and postfix sometimes referred to as Polish

prefix and Polish postfix after Polish logicians who

studied and popularized them

Copyright © 2009 Elsevier

Expression Evaluation

• arithmetic and logic operations may be

ambiguous without parentheses

– Fortran: a + b * c**d**e/f

• languages set precedence and associativity

rules to determine order of operations

– precedence rules: order of types of operations

• 2 + 3 * 4 (14 or 20?)

– associativity rules: order of operations at same

precedence

• 9 – 3 – 2 (4 or 8?)

Copyright © 2009 Elsevier

Expression Evaluation

• languages have individual precedence and

associativity rules

– C has 15 levels – too many to remember

– Pascal has 3 levels – too few for good

semantics

– Fortran has 8

– Ada has 6

– when unsure, use parentheses

Copyright © 2009 Elsevier

Expression Evaluation

Figure 6.1 Operator precedence levels in Fortran, Pascal, C, and Ada. The operator s at the top of the figure group most tightly.

9/15/2020

3

Copyright © 2009 Elsevier

Expression Evaluation

• example:

– Fortran: 3 + 2**2**3

• exponentiation has higher precedence than addition

• exponentiation has right to left associativity

– use parentheses to force other interpretations

• 3 + 2**(2**3)

• (3 + 2)**2**3

Copyright © 2009 Elsevier

Assignment

• typically, a variable takes on a new value

• assignment is a side effect (or, something

that influences later computation or output

and is not a return value)

– C: assignment does yield a value

• l-value: term on left side of =

• r-value: term on right side of =

Copyright © 2009 Elsevier

Assignment

• ordering of operand evaluation (generally

none)

• application of arithmetic identities

– commutativity is assumed to be safe

– associativity (known to be dangerous)

a + (b + c) works if a~=maxint and b~=minint and c<0

(a + b) + c does not

• this type of operation can be useful, though, for code

optimization

Copyright © 2009 Elsevier

Expression Evaluation

• short-circuiting

– consider (a < b) && (b < c):

• If a >= b there is no point evaluating whether b < c

because (a < b) && (b < c) is automatically false

– other similar situations

 if (b != 0 && a/b == c) ...

 if (*p && p->foo) ...

 if (unlikely_condition &&

 very_expensive function()) ...

• be cautious - need to be sure that your second half

is valid, or else coder could miss a runtime error

without proper testing.

Copyright © 2009 Elsevier

Expression Evaluation

• variables as values vs. variables as references

– value-oriented languages

• C, Pascal, Ada

– reference-oriented languages

• most functional languages (Lisp, Scheme, ML)

• Clu, Smalltalk

– Algol-68 is halfway in-between

– Java deliberately in-between

• built-in types are values

• user-defined types are objects - references
Copyright © 2009 Elsevier

Expression versus statements

• most languages distinguish between expressions

and statements.

– expressions always produce a value, and may or may

not have a side effect.

• Python: b + c

– statements are executed solely for their side effects, and

return no useful value

• Python: mylist.sort()

• a construct has a side effect if it influences

subsequent computation in some way (other than

simply returning a value)

9/15/2020

4

Copyright © 2009 Elsevier

Expression Evaluation

• expression-oriented vs. statement-oriented

languages

– expression-oriented:

• functional languages (Lisp, Scheme, ML)

• Algol-68

– statement-oriented:

• most imperative languages

– C halfway in-between (distinguishes)

• allows expression to appear instead of statement, but not the

reverse

Copyright © 2009 Elsevier

Algol 68

• orthogonality

– features that can be used in any combination

– Algol 68: everything is an expression (there is no

separate notion of statements)

• example:

begin

 a := if b<c then d else e;

 a := begin f(b); g(c); end;

 g(d);

 2+3;

end

Copyright © 2009 Elsevier

Assignment shortcuts

• assignment

– statement (or expression) executed for its side

effect - key to most programming languages you

have seen so far

– assignment operators (+=, -=, etc)

• handy shortcuts

• avoid redundant work (or need for optimization)

• perform side effects exactly once

– example: A[index_fn(i)]++;

– vs. A[index_fn(i)] = A[index_fn(i)] + 1;

Copyright © 2009 Elsevier

Multiway Assignment

• some languages (including ML, Perl,

Python and Ruby) allow multiway

assignment.

– example: a,b = c,d;

– defines a tuple, equivalent to a = c; b = d;

• this feature can simplify computation

– a,b = b,a (no need for an aux variable)

– a,b,c = foo(d,e,f) (allows a single return)

Copyright © 2009 Elsevier

C and assignments within expressions

• combining expressions with assignments can have

unfortunate side effects, depending on the

language.

– pathological example: C has no true boolean type (just

uses int’s or their equivalents), and allows assignments

within expressions.

– example:

• if (a = b) {

 …

}

What does this do?

Copyright © 2009 Elsevier

Expression Evaluation

• side effects are a fundamental aspect of the

whole von Neumann model of

computation.

– what is the von Neumann architecture?

• in (pure) functional, logic, and dataflow

languages, there are no such changes

– single-assignment languages

– very different

9/15/2020

5

Copyright © 2009 Elsevier

Expression Evaluation

• several languages outlaw side effects for

functions

– easier to prove things about programs

– closer to Mathematical intuition

– easier to optimize

– (often) easier to understand

• but side effects can be nice

– consider rand()

Copyright © 2009 Elsevier

More on Side Effects

• side effects are a particular problem if they affect

state used in other parts of the expression in which a

function call appears

– example: a - f(b) - c*d OK?

– good not to specify an order, because it makes it easier to

optimize

– Fortran allows side effects

• but they are not allowed to change other parts of the expression

containing the function call

• unfortunately, compilers can't check this completely, and most

don't at all

Copyright © 2009 Elsevier

Code optimization

• most compilers attempt to optimize code

– example: a = b + c, then d = c + e + b

• evaluating part of each statement can speed up code

– a = b / c / d then e = f / d / c

– t = c * d and then a = b / t and e = f / t

• arithmetic overflow can really become a problem

here

– can be dependent on implementation and local setup

– checking provides more work for compiler, so slower

– with no checks, these can be hard to find
Copyright © 2009 Elsevier

• sequencing

– specifies a linear ordering on statements

• one statement follows another

– very imperative, Von-Neuman

• in assembly, the only way to “jump” around is

to use branch statements.

• early programming languages mimicked this,

such as Fortran (and even Basic and C)

Sequencing

Copyright © 2009 Elsevier

• in 1968, Edsger Dijkstra wrote an article

condemning the goto statement

• while hotly debated, goto’s have essentially

disappeared from modern programming language

• structured programming: a model which took off in

the 1970’s

– top down design

– modularization of code

– structured types

– descriptive variables

– iteration

The End of goto

Copyright © 2009 Elsevier

• getting rid of goto was actually fairly easy,

since it was usually used in certain ways

– goto to jump to end of current subroutine: use

return instead

– goto to escape from the middle of a loop: use exit

or break

– goto to repeat sections of code: loops

Alternatives to goto

9/15/2020

6

Copyright © 2009 Elsevier

• several settings are very useful for gotos,

however

– to end a procedure/loop early (for example, if

target value is found).

• solution: break or continue

– problem: bookkeeping

• breaking out of code might end a scope - need to call destructors,

deallocate variables, etc.

• adds overhead to stack control - must be support for “unwinding

the stack”

Biggest need for goto

Copyright © 2009 Elsevier

• another example: exceptions

• goto was generally used as error handling, to

exit a section of code without continuing

• modern languages generally throw and catch

exceptions instead

– adds overhead

– but allows more graceful recovery if a section of

code is unable to fulfill its contract

Biggest Need for goto

Copyright © 2009 Elsevier

• blocks of code are executed in a sequence

• blocks are generally indicated by { … } or similar construct

• interesting note: without side effects (as in Agol 68), blocks

are essentially useless - the value is just the last return

• in other languages, such as Euclid and Turing, functions

which return a value are not allowed to have a side effect at

all

– main advantage: these are idempotent - any function call will

have the same value, no matter when it occurs

• clearly, that is not always desirable, of course

– rand function definitely should not return the same thing every time!

Sequencing

Copyright © 2009 Elsevier

• selection: introduced in Algol 60

– sequential if statements

 if ... then ... else

 if ... then ... elsif ... else

– Lisp variant:

 (cond

 (C1) (E1)

 (C2) (E2)

 ...

 (Cn) (En)

 (T) (Et)

)

Selection

Copyright © 2009 Elsevier

• Algol 60 example
 if a = b then PROC := 2

 elsif a = c then PROC := 3

 elsif a = d then PROC := 4

 else PROC := 1

 end;

• Lisp variant

 (cond

 ((= A B) (2))

 ((= A C) (3))

 ((= A D) (4))

 (T (1))

)

Selection

Copyright © 2009 Elsevier

• selection

– Fortran computed gotos

– jump code

• for selection and logically-controlled loops

• no point in computing a Boolean value into a register, then

testing it

• instead of passing register containing Boolean out of

expression as a synthesized attribute, pass inherited

attributes INTO expression indicating where to jump to if

true, and where to jump to if false

Selection

9/15/2020

7

Copyright © 2009 Elsevier

• jump is especially useful in the presence of short-

circuiting

• example: suppose code is generated for the

following:

if ((A > B) and (C > D)) or (E <> F) then

 then_clause

 else

 else_clause

Selection

Copyright © 2009 Elsevier

• code generated w/o short-circuiting (Pascal)
 r1 := A -- load

 r2 := B

 r1 := r1 > r2

 r2 := C

 r3 := D

 r2 := r2 > r3

 r1 := r1 & r2

 r2 := E

 r3 := F

 r2 := r2 <> r3

 r1 := r1 | r2

 if r1 = 0 goto L2

 L1: then_clause -- label not actually used

 goto L3

 L2: else_clause

 L3:

Selection

Copyright © 2009 Elsevier

• code generated w/ short-circuiting (C)
 r1 := A

 r2 := B

 if r1 <= r2 goto L4

 r1 := C

 r2 := D

 if r1 > r2 goto L1

 L4: r1 := E

 r2 := F

 if r1 = r2 goto L2

 L1: then_clause

 goto L3

 L2: else_clause

 L3:

Selection

Copyright © 2009 Elsevier

• the case/switch statement was introduced in Algol W to

simplify certain if-else situations

• useful when comparing the same integer to a large variety

of possibilities

Selection: case/switch

Copyright © 2009 Elsevier

• Modula-2 example:

 can be re-written as

Selection: case/switch

Copyright © 2009 Elsevier

• labels and arms must be disjoint

• label type must be discrete

• integer, character, enumeration, subrange

• case/switch statements enhance code aesthetics, but

principal motivation is to generate efficient target code

Selection: case/switch

9/15/2020

8

Copyright © 2009 Elsevier

• case can be translated as

Selection: case/switch

Copyright © 2009 Elsevier

• can use an array of jump addresses (jump table) instead

Selection: case/switch

Copyright © 2009 Elsevier

• jump tables can take a lot of space if case covers large

ranges or values or non-dense

• alternative methods

• sequential testing: useful if number of case statements is small

• hashing: useful if range of label values is large, but with many

missing values

• binary search: good for large ranges

Selection: case/switch

Copyright © 2009 Elsevier

• languages differ in

• syntax

• punctuation

• label ranges

• default clause

• Modula: else

• Ada: all values must be covered

• handling of match failures

• some languages will require program failure for unmatched value

• C and Fortran 90: no effect

Selection: case/switch

Copyright © 2009 Elsevier

• C/C++/Java switch

Selection: case/switch

Copyright © 2009 Elsevier

• C/C++/Java switch

• each value must have its own label; no ranges allowed

• lists of labels not allowed, but empty arms that fall through OK

• break required at end of each arm that terminates

• fall-through can cause unintentional hard-to-find bugs

• C# requires each non-empty arm to end with break, goto, continue, or

return

• fall-through convenient at times

Selection: case/switch

9/15/2020

9

Copyright © 2009 Elsevier

• ability to perform some set of operations repeatedly

– loops

– recursion

• without iteration, all code would run in linear time

• most powerful component of programming

• in general, loops are more common in imperative

languages, while recursion is more common in

functional languages

– loops generally executed for their side effects

Iteration

Copyright © 2009 Elsevier

• enumeration-controlled loop

– originated in Fortran

– Pascal or Fortran-style for loops
 do i = 1, 10, 2 -- index i, init val, bound, step

 … -- body will execute 5 times

enddo

– changed to standard for loops later, eg Modula-2

 FOR i := first TO last BY step DO

 …

 END

Iteration

Copyright © 2009 Elsevier

• none of these initial loops allow anything other than

enumeration over a preset, fixed number of values

• results in efficient code generation

 R1 := first

 R2 := step

 R3 := last

 goto L2

L1: … --loop body, use R1 for i

 R1 := R1 + R2

L2: if R1 <= R3 goto L1

Iteration: Code Generation

Copyright © 2009 Elsevier

• translation can be optimized if the number of iterations can

be precomputed, although need to be careful of overflow

– precompute total count, and subtract 1 each time until we hit 0

– often used in early Fortran compilers

– we must be able to precompute

• always possible in Fortran or Ada, but C (and its descendants) are quite

different.

Iteration: Code Generation

Copyright © 2009 Elsevier

• can control enter or leave the loop other than through enumeration

mechanism?

– break, continue, exit

– Fortran allowed goto to jump inside a loop

• what happens if the loop body alters variables used to compute end-of-

loop condition?

– some languages only compute the bound once (not C)

• what happens if the loop modifies the index variable itself?

– most languages prohibit this entirely, although some leave it up to the

programmer

• can the program read the index after the loop has been completed, and

if so, what is its value?

– ties into issue of scope, and is very language-dependent

Iteration: Some Issues

Copyright © 2009 Elsevier

• example: what happens if the loop modifies the index variable itself?

 for i := 1 to 10 by 2

 …

 if i = 3

 i = 6

• example: can the program read the index after the loop has been

completed, and if so, what is its value?

Iteration: Some Issues

9/15/2020

10

Copyright © 2009 Elsevier

• the for loop in C is called a combination loop - it allows one to use

more complex structures in the for loop

• the Modula-2 loop

 becomes

 which is equivalent to

Iteration: Combination Loops

Copyright © 2009 Elsevier

• for loop useful in its compactness of clarity over while loop

• convenient to make loop iterator local to body of loop

 for (int i = first; i <= last; i += step)

• essentially, for loops are another variant of while loops, with more

complex updates and true/false evaluations each time

• operator overloading (such as operator++) combined with iterators

actually allow highly non-enumerative for loops

• example:

for (list<int>::iterator it = mylist.begin();

 it != mylist.end(); it++) {

 …

}

Iteration: Combination Loops

Copyright © 2009 Elsevier

• languages such as Ruby, Python, and C# require any

container to provide an iterator that enumerates items in

that class

• extremely high-level, and relatively new

• example

 for item in mylist:

 #code to look at items

Iteration: Iterators

Copyright © 2009 Elsevier

• while loops are different than the standard, Fortran-style

for loops, since no set number of enumerations is

predefined

• these are inherently strong - closer to if statements, in

some ways, but with repetition built in also

• down side: much more difficult to code properly, and more

difficult to debug

• code optimization is also (in some sense) harder - none of

the for loop tricks will work

Iteration: Logically Controlled Loops

Copyright © 2009 Elsevier

Recursion

• recursion

– equally powerful to iteration

– mechanical transformations back and forth

– often more intuitive (sometimes less)

– naïve implementation less efficient

• no special syntax required

• fundamental to functional languages like Scheme

Copyright © 2009 Elsevier

Recursion: Slower?

• many criticize that recursion is slower and less

efficient than iteration, since you have to alter the

stack when calling a function

• a bit inaccurate – naively written iteration is probably

more efficient than naively written recursion

• in particular, if the recursion is tail recursion, the

execution on the stack for the recursive call will

occupy the exact same spot as the previous method

9/15/2020

11

Copyright © 2009 Elsevier

Recursion

• tail recursion

– no computation follows recursive call
 int gcd (int a, int b) {

 /* assume a, b > 0 */

 if (a == b) return a;

 else if (a > b) return gcd (a - b, b)

 else return gcd (a, b – a);

 }

– a good compiler will translate this to machine code that

runs “in place”, essentially returning to the start of the

function with new a,b values

Copyright © 2009 Elsevier

Recursion: Continuations

• even if not initially tail recursive, simple

transformations can often produce tail-recursive code

• continuation-passing (more in a later chapter)

• additionally, clever tricks - such as computing

Fibonacci numbers in an increasing fashion, rather

than via two recursive calls - can make recursion

comparable

Copyright © 2009 Elsevier

Order of Evaluation

• generally, we assume that arguments are evaluated before

passing to a subroutine, in applicative order evaluations

• not always the case: lazy evaluation or normal order evaluation

pass unevaluated arguments to functions, and value is only

computed if and when it is necessary

• applicative order is preferable for clarity and efficiency, but

sometimes normal order can lead to faster code or code that

won’t give as many run-time errors

• in particular, for list-type structures in functional languages, this

lazy evaluation can be key

