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Chapter 6:: Control Flow 

Programming Language Pragmatics 

Michael L. Scott 
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Control Flow 

• control flow or ordering 

– fundamental to most models of computing 

– determines ordering of tasks in a program 

Copyright © 2009 Elsevier 

Control Flow 

• basic categories for control flow: 

– sequencing: order of execution 

– selection (also alternation): choice among two 

or more statements or expressions 

• if or case statements 

– iteration: loops  

• for, do, while, repeat 

– procedural abstraction: parameterized 

subroutines 
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Control Flow 

• basic categories for control flow (cont.): 

– recursion: expression defined in terms of 

(simpler versions of) itself 

– concurrency: two or more program fragments 

are executed at the same time 

• in parallel on separate processors 

• interleaved on a single processor 

– exception handling and speculation 

– nondeterminacy: order or choice is deliberately 

left unspecified 

Copyright © 2009 Elsevier 

Control Flow 

• previous eight categories cover all of the 

control-flow constructs in most 

programming languages 

• better to think in these categories rather 

than the specifics of a single programming 

language 

– easier to learn new languages 

– evaluate tradeoffs among languages 

– design and evaluate algorithms 
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Control Flow 

• importance of different categories varies 

across programming language paradigms 

– sequencing central in imperative and objected-

oriented languages, but less important in 

functional languages 

– functional languages use recursion heavily, 

while imperative languages focus more on 

iteration 

– logic languages hide control flow entirely and 

allow the system to find an order in which to 

apply inference rules 
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Expression Evaluation  

• expression consists of a simple object 

(literal, variable, constant) or an operator or 

function call 

– function: my_func (A, B, C) 

– operators: simple syntax, one or two operands 

• a + b 

• -c 

– sometimes operators are syntactic sugar 

• in C++, a + b short for a.operator+(b) 
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Prefix, Infix, and Postfix Notation 

• some languages impose an ordering for 

operators and their operands 

– prefix: op a b or op(a,b) 

• Lisp: (* (+ 1 3) 2) 

• Cambridge prefix: function name inside parentheses; also used 

with multiple operands: (+ 2 4 5 1) 

– infix: a op b 

• standard method 

• C: a = b != 0 ? a/b : 0 
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Prefix, Infix, and Postfix Notation 

• some languages impose an ordering for 

operators and their operands (cont.) 

– postfix: a b op 

• least common - used in Postscript, Forth, and intermediate code 

of some compilers 

• C (and its descendants): x++ 

• Pascal: pointer dereferencing operator (^)  

– prefix and postfix sometimes referred to as Polish 

prefix and Polish postfix after Polish logicians who 

studied and popularized them 
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Expression Evaluation  

• arithmetic and logic operations may be 

ambiguous without parentheses 

– Fortran: a + b * c**d**e/f 

• languages set precedence and associativity 

rules to determine order of operations 

– precedence rules: order of types of operations 

• 2 + 3 * 4     (14 or 20?) 

– associativity rules: order of operations at same 

precedence 

• 9 – 3 – 2     (4 or 8?) 
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Expression Evaluation  

• languages have individual precedence and 

associativity rules 

– C has 15 levels – too many to remember 

– Pascal has 3 levels – too few for good 

semantics 

– Fortran has 8 

– Ada has 6 

– when unsure, use parentheses 
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Expression Evaluation  

Figure 6.1 Operator precedence levels in Fortran, Pascal, C, and Ada. The operator s at the top of the figure group most tightly.  
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Expression Evaluation  

• example: 

– Fortran: 3 + 2**2**3 

• exponentiation has higher precedence than addition 

• exponentiation has right to left associativity 

– use parentheses to force other interpretations 

• 3 + 2**(2**3) 

• (3 + 2)**2**3 
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Assignment 

• typically, a variable takes on a new value 

• assignment is a side effect (or, something 

that influences later computation or output 

and is not a return value) 

– C: assignment does yield a value 

• l-value: term on left side of = 

• r-value: term on right side of = 
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Assignment 

• ordering of operand evaluation (generally 

none) 

• application of arithmetic identities 

– commutativity is assumed to be safe 

– associativity (known to be dangerous) 

a + (b + c) works if a~=maxint and b~=minint and c<0 

(a + b) + c does not 

• this type of operation can be useful, though, for code 

optimization 
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Expression Evaluation  

•  short-circuiting 

– consider (a < b) && (b < c): 

• If a >= b there is no point evaluating whether b < c 

because (a < b) && (b < c) is automatically false 

– other similar situations 

  if (b != 0 && a/b == c) ... 

  if (*p && p->foo) ... 

  if (unlikely_condition &&    

 very_expensive function()) ... 

• be cautious - need to be sure that your second half 

is valid, or else coder could miss a runtime error 

without proper testing. 
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Expression Evaluation  

• variables as values vs. variables as references 

– value-oriented languages 

• C, Pascal, Ada 

– reference-oriented languages 

• most functional languages (Lisp, Scheme, ML) 

• Clu, Smalltalk 

– Algol-68 is halfway in-between 

– Java deliberately in-between 

• built-in types are values 

• user-defined types are objects - references 
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Expression versus statements 

• most languages distinguish between expressions 

and statements. 

– expressions always produce a value, and may or may 

not have a side effect. 

• Python: b + c 

– statements are executed solely for their side effects, and 

return no useful value 

• Python: mylist.sort() 

• a construct has a side effect if it influences 

subsequent computation in some way (other than 

simply returning a value) 
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Expression Evaluation  

• expression-oriented vs. statement-oriented 

languages 

– expression-oriented: 

• functional languages (Lisp, Scheme, ML) 

• Algol-68 

– statement-oriented: 

• most imperative languages 

– C halfway in-between (distinguishes) 

• allows expression to appear instead of statement, but not the 

reverse 
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Algol 68  

• orthogonality 

– features that can be used in any combination 

– Algol 68: everything is an expression (there is no 

separate notion of statements) 

• example: 

begin 

 a := if b<c then d else e; 

 a := begin f(b); g(c); end; 

 g(d); 

 2+3; 

end 
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Assignment shortcuts  

• assignment 

– statement (or expression) executed for its side 

effect - key to most programming languages you 

have seen so far 

– assignment operators (+=, -=, etc) 

• handy shortcuts 

• avoid redundant work (or need for optimization) 

• perform side effects exactly once 

– example: A[index_fn(i)]++;  

– vs. A[index_fn(i)] = A[index_fn(i)] + 1; 
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Multiway Assignment  

• some languages (including ML, Perl, 

Python and Ruby) allow multiway 

assignment. 

– example: a,b = c,d; 

– defines a tuple, equivalent to a = c; b = d; 

• this feature can simplify computation 

– a,b = b,a  (no need for an aux variable) 

– a,b,c = foo(d,e,f) (allows a single return) 
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C and assignments within expressions  

• combining expressions with assignments can have 

unfortunate side effects, depending on the 

language. 

– pathological example: C has no true boolean type (just 

uses int’s or their equivalents), and allows assignments 

within expressions. 

– example: 

• if (a = b) { 

 … 

} 

What does this do? 
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Expression Evaluation  

• side effects are a fundamental aspect of the 

whole von Neumann model of 

computation. 

– what is the von Neumann architecture? 

• in (pure) functional, logic, and dataflow 

languages, there are no such changes 

– single-assignment languages 

– very different 
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Expression Evaluation  

• several languages outlaw side effects for 

functions 

– easier to prove things about programs 

– closer to Mathematical intuition 

– easier to optimize 

– (often) easier to understand 

• but side effects can be nice 

– consider rand() 
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More on Side Effects  

• side effects are a particular problem if they affect 

state used in other parts of the expression in which a 

function call appears  

– example: a - f(b) - c*d  OK? 

– good not to specify an order, because it makes it easier to 

optimize 

– Fortran allows side effects 

• but they are not allowed to change other parts of the expression 

containing the function call 

• unfortunately, compilers can't check this completely, and most 

don't at all 
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Code optimization  

• most compilers attempt to optimize code 

– example: a = b + c, then d = c + e + b 

• evaluating part of each statement can speed up code 

– a = b / c / d then e = f / d / c 

– t = c * d and then a = b / t and e = f / t 

• arithmetic overflow can really become a problem 

here 

– can be dependent on implementation and local setup 

– checking provides more work for compiler, so slower 

– with no checks, these can be hard to find 
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• sequencing 

– specifies a linear ordering on statements 

• one statement follows another 

– very imperative, Von-Neuman 

• in assembly, the only way to “jump” around is 

to use branch statements. 

• early programming languages mimicked this, 

such as Fortran (and even Basic and C) 

Sequencing  
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• in 1968, Edsger Dijkstra wrote an article 

condemning the goto statement 

• while hotly debated, goto’s have essentially 

disappeared from modern programming language 

• structured programming: a model which took off in 

the 1970’s 

– top down design 

– modularization of code 

– structured types 

– descriptive variables 

– iteration 

The End of goto  
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• getting rid of goto was actually fairly easy, 

since it was usually used in certain ways 

– goto to jump to end of current subroutine: use 

return instead 

– goto to escape from the middle of a loop: use exit 

or break 

– goto to repeat sections of code: loops 

Alternatives to goto  
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• several settings are very useful for gotos, 

however 

– to end a procedure/loop early (for example, if 

target value is found). 

• solution: break or continue 

– problem: bookkeeping   

• breaking out of code might end a scope - need to call destructors, 

deallocate variables, etc.  

• adds overhead to stack control - must be support for “unwinding 

the stack” 

Biggest need for goto  
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• another example: exceptions  

• goto was generally used as error handling, to 

exit a section of code without continuing 

• modern languages generally throw and catch 

exceptions instead 

– adds overhead 

– but allows more graceful recovery if a section of 

code is unable to fulfill its contract 

Biggest Need for goto  
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• blocks of code are executed in a sequence 

• blocks are generally indicated by { … } or similar construct 

• interesting note: without side effects (as in Agol 68), blocks 

are essentially useless - the value is just the last return 

• in other languages, such as Euclid and Turing, functions 

which return a value are not allowed to have a side effect at 

all 

– main advantage: these are idempotent - any function call will 

have the same value, no matter when it occurs 

• clearly, that is not always desirable, of course   

– rand function definitely should not return the same thing every time! 

Sequencing 
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• selection: introduced in Algol 60 

– sequential if statements 

  if ... then ... else 

  if ... then ... elsif ... else 

– Lisp variant: 

 (cond 

   (C1) (E1) 

   (C2) (E2) 

   ... 

   (Cn) (En) 

  (T)  (Et)  

  ) 

 

 

 

Selection  
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• Algol 60 example 
 if a = b then PROC := 2 

 elsif a = c then PROC := 3 

 elsif a = d then PROC := 4 

 else PROC := 1 

 end; 

• Lisp variant 

 (cond 

    ((= A B) (2)) 

    ((= A C) (3)) 

    ((= A D) (4)) 

   (T       (1))  

 ) 

 

 

 

Selection  
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• selection 

– Fortran computed gotos 

– jump code 

• for selection and logically-controlled loops 

• no point in computing a Boolean value into a register, then 

testing it 

• instead of passing register containing Boolean out of 

expression as a synthesized attribute, pass inherited 

attributes INTO expression indicating where to jump to if 

true, and where to jump to if false 

Selection  
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• jump is especially useful in the presence of short-

circuiting 

• example: suppose code is generated for the 

following: 

 

if ((A > B) and (C > D)) or (E <> F) then 

  then_clause 

 else 

  else_clause 

Selection  
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• code generated w/o short-circuiting (Pascal) 
    r1 := A  -- load 

   r2 := B 

   r1 := r1 > r2 

   r2 := C 

  r3 := D 

  r2 := r2 > r3 

   r1 := r1 & r2 

   r2 := E 

   r3 := F 

   r2 := r2 <> r3 

   r1 := r1 | r2 

   if r1 = 0 goto L2 

  L1:  then_clause -- label not actually used 

   goto L3 

  L2:  else_clause 

   L3: 

Selection  
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• code generated w/ short-circuiting (C) 
    r1 := A 

   r2 := B 

   if r1 <= r2 goto L4 

   r1 := C 

  r2 := D 

  if r1 > r2 goto L1 

  L4:  r1 := E 

   r2 := F 

     if r1 = r2 goto L2 

 L1:  then_clause 

    goto L3 

   L2:  else_clause 

 L3: 

Selection  
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• the case/switch statement was introduced in Algol W to 

simplify certain if-else situations 

• useful when comparing the same integer to a large variety 

of possibilities 

Selection: case/switch  
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• Modula-2 example: 

 

 

 

 

 

   can be re-written as 

Selection: case/switch  
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• labels and arms must be disjoint 

• label type must be discrete 

• integer, character, enumeration, subrange 

• case/switch statements enhance code aesthetics, but 

principal motivation is to generate efficient target code 

 

Selection: case/switch  
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• case can be translated as 

 

 

 

 

 

Selection: case/switch  
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• can use an array of jump addresses (jump table) instead 

 

 

 

 

 

Selection: case/switch  
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• jump tables can take a lot of space if case covers large 

ranges or values or non-dense 

• alternative methods 

• sequential testing: useful if number of case statements is small 

• hashing: useful if range of label values is large, but with many 

missing values 

• binary search: good for large ranges 

Selection: case/switch  
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• languages differ in  

• syntax 

• punctuation 

• label ranges 

• default clause 

• Modula: else 

• Ada: all values must be covered 

• handling of match failures 

• some languages will require program failure for unmatched value 

• C and Fortran 90: no effect 

Selection: case/switch  
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• C/C++/Java switch 

 

 

 

 

 

Selection: case/switch  
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• C/C++/Java switch 

• each value must have its own label; no ranges allowed 

• lists of labels not allowed, but empty arms that fall through OK 

• break required at end of each arm that terminates 

• fall-through can cause unintentional hard-to-find bugs 

• C# requires each non-empty arm to end with break, goto, continue, or 

return 

• fall-through convenient at times 

 

 

 

 

 

 

Selection: case/switch  
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• ability to perform some set of operations repeatedly 

– loops 

– recursion 

• without iteration, all code would run in linear time 

• most powerful component of programming 

• in general, loops are more common in imperative 

languages, while recursion is more common in 

functional languages 

– loops generally executed for their side effects 

Iteration  
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• enumeration-controlled loop 

– originated in Fortran 

– Pascal or Fortran-style for loops 
   do i = 1, 10, 2    -- index i, init val, bound, step 

   …               -- body will execute 5 times 

enddo 

 

– changed to standard for loops later, eg Modula-2 

     FOR i := first TO last BY step DO 

          … 

  END  

  

Iteration  
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• none of these initial loops allow anything other than 

enumeration over a preset, fixed number of values 

• results in efficient code generation 

     R1 := first 

   R2 := step 

   R3 := last 

    goto L2 

L1: …     --loop body, use R1 for i 

    R1 := R1 + R2 

L2: if R1 <= R3 goto L1 

 

  

Iteration: Code Generation 
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• translation can be optimized if the number of iterations can 

be precomputed, although need to be careful of overflow 

– precompute total count, and subtract 1 each time until we hit 0 

– often used in early Fortran compilers 

– we must be able to precompute 

• always possible in Fortran or Ada, but C (and its descendants) are quite 

different. 

  

Iteration: Code Generation 
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• can control enter or leave the loop other than through enumeration 

mechanism? 

– break, continue, exit   

– Fortran allowed goto to jump inside a loop 

• what happens if the loop body alters variables used to compute end-of-

loop condition? 

– some languages only compute the bound once  (not C) 

• what happens if the loop modifies the index variable itself? 

– most languages prohibit this entirely, although some leave it up to the 

programmer 

• can the program read the index after the loop has been completed, and 

if so, what is its value? 

– ties into issue of scope, and is very language-dependent 

  

Iteration: Some Issues 
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• example: what happens if the loop modifies the index variable itself? 

 for i := 1 to 10 by 2 

    … 

    if i = 3 

       i = 6 

 

• example: can the program read the index after the loop has been 

completed, and if so, what is its value? 

  

Iteration: Some Issues 
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• the for loop in C is called a combination loop - it allows one to use 

more complex structures in the for loop 

• the Modula-2 loop 

 

 

     becomes 

 

 

     which is equivalent to  

 

 

 

Iteration: Combination Loops 
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• for loop useful in its compactness of clarity over while loop 

• convenient to make loop iterator local to body of loop 

   for (int i = first; i <= last; i += step)  

• essentially, for loops are another variant of while loops, with more 

complex updates and true/false evaluations each time 

• operator overloading (such as operator++) combined with iterators 

actually allow highly non-enumerative for loops 

• example: 

for (list<int>::iterator it = mylist.begin();  

     it != mylist.end(); it++) { 

 … 

} 

  

Iteration: Combination Loops 
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• languages such as Ruby, Python, and C# require any 

container to provide an iterator that enumerates items in 

that class 

• extremely high-level, and relatively new 

• example 

  for item in mylist: 

 #code to look at items 

  

Iteration: Iterators 

Copyright © 2009 Elsevier 

• while loops are different than the standard, Fortran-style 

for loops, since no set number of enumerations is 

predefined 

• these are inherently strong - closer to if statements, in 

some ways, but with repetition built in also 

• down side: much more difficult to code properly, and more 

difficult to debug 

• code optimization is also (in some sense) harder - none of 

the for loop tricks will work 

  

Iteration: Logically Controlled Loops 
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Recursion  

• recursion 

– equally powerful to iteration 

– mechanical transformations back and forth 

– often more intuitive (sometimes less) 

– naïve implementation less efficient 

• no special syntax required 

• fundamental to functional languages like Scheme 
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Recursion: Slower?  

• many criticize that recursion is slower and less 

efficient than iteration, since you have to alter the 

stack when calling a function 

• a bit inaccurate – naively written iteration is probably 

more efficient than naively written recursion 

• in particular, if the recursion is tail recursion, the 

execution on the stack for the recursive call will 

occupy the exact same spot as the previous method 
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Recursion  

• tail recursion 

– no computation follows recursive call 
     int gcd (int a, int b) { 

       /* assume a, b > 0 */ 

        if (a == b) return a; 

     else if (a > b) return gcd (a - b, b) 

        else return gcd (a, b – a); 

     } 

– a good compiler will translate this to machine code that 

runs “in place”, essentially returning to the start of the 

function with new a,b values  
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Recursion: Continuations  

• even if not initially tail recursive, simple 

transformations can often produce tail-recursive code 

• continuation-passing  (more in a later chapter) 

• additionally, clever tricks - such as computing 

Fibonacci numbers in an increasing fashion, rather 

than via two recursive calls - can make recursion 

comparable 
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Order of Evaluation 

• generally, we assume that arguments are evaluated before 

passing to a subroutine, in applicative order evaluations 

• not always the case: lazy evaluation or normal order evaluation 

pass unevaluated arguments to functions, and value is only 

computed if and when it is necessary 

• applicative order is preferable for clarity and efficiency, but 

sometimes normal order can lead to faster code or code that 

won’t give as many run-time errors 

• in particular, for list-type structures in functional languages, this 

lazy evaluation can be key 

 

 


