
1

Copyright © 2005 Elsevier

Chapter 8 :: Subroutines and

Control Abstraction

Programming Language Pragmatics

Michael L. Scott

2

Copyright © 2005 Elsevier

Introduction

• abstraction

– association of a name with a potentially

complicated program fragment that can be

considered in terms of its purpose or function

rather than its implementation

– most data abstractions include control

abstractions

3

Copyright © 2005 Elsevier

Introduction

• subroutines

– principal mechanism for control abstraction

– performs operations for caller

– most involve parameters

• actual parameters (arguments)

• formal parameters

– function: returns a value

– procedure: does not return a value

– most must be declared

4

Copyright © 2005 Elsevier

Review Of Stack Layout

• programs/subroutines use stack space

– static area

• code

• globals

• explicit constants (including strings, sets, other

aggregates)

• small scalars may be stored in the instructions

themselves

5

Copyright © 2005 Elsevier

Review Of Stack Layout

• stack frames

– also called activation records

– contains

• arguments/return values

• local variables

• temporaries

• bookkeeping information (return address and saved

registers)

– pushed and popped as subroutines called/return

6

Copyright © 2005 Elsevier

Review Of Stack Layout

• stack frames (cont.)

– sp: stack pointer

• register containing last used location, or first unused

location

– fp: frame pointer

• objects in the frame accessed by offset from frame

pointer

– variable sized objects placed at top of frame

• address and dope vector in fixed-size portion of

frame

• if none, all objects can be offset from sp and no fp is

needed

7

Copyright © 2005 Elsevier

Review Of Stack Layout

• subroutine nesting

– in a language with nested subroutines and static

scoping

• Pascal, Ada, list, Scheme

• static chain used to locate objects

• static links points to frame of surrounding

subroutine

• guaranteed surrounding subroutine active

• dynamic link: saved value of fp for return

8

Copyright © 2005 Elsevier

Review Of Stack Layout

9

Copyright © 2005 Elsevier

Calling Sequences

• maintenance of stack is responsibility of

calling sequence

– code executed by caller immediately before and

after a subroutine call

– subroutine prologue and epilogue

• code performed at beginning/end of subroutine

– sometimes calling sequence includes all three

10

Copyright © 2005 Elsevier

Calling Sequences

• tasks executed on the way into a subroutine

– passing parameters

– saving return address

– changing program counter

– changing stack pointer to allocate space

– save registers

– changing frame pointer to point to new frame

– executing initialization code for any new

objects

11

Copyright © 2005 Elsevier

Calling Sequences

• tasks executed on the way out of a

subroutine

– passing return parameters or function values

– executing finalization code for any objects

– deallocating the stack frame

– restoring saved registers

– restoring program counter

12

Copyright © 2005 Elsevier

Calling Sequences

• some tasks must be performed by the caller

because they differ from call to call

• other tasks may be performed by the callee

– space is saved by putting as much in the callee

prologue and epilogue as possible

• appear only once in target program

– time may be saved by assigning tasks to the

caller, where more information may be known

• e.g., there may be fewer registers in use at the point

of call than are used somewhere in the callee

13

Copyright © 2005 Elsevier

Calling Sequences

• maintaining the static chain

– in languages with nested subroutines, caller

must perform due to lexical nesting of the caller

• some registers saved by caller and some by

callee

14

Copyright © 2005 Elsevier

Calling Sequences

• typical calling sequence

15

Copyright © 2005 Elsevier

Calling Sequences

• many parts of the calling sequence,

prologue, and/or epilogue can be omitted in

common cases

– particularly LEAF routines (those that do not

call other routines)

• leaving things out saves time

• simple leaf routines do not use the stack – do not

even use memory – and are exceptionally fast

16

Copyright © 2005 Elsevier

Calling Sequences

• in-line expansion

– certain subroutines can be extended in-line at

the point of call

– a copy of the subroutine is placed in the caller

– avoids overhead

• space allocation

• branch delays from the call and return

• maintaining static chain

• saving/restoring registers

17

Copyright © 2005 Elsevier

Calling Sequences

• in-line expansion (cont.)

– allows compiler to perform code improvements

• global register allocation

• instruction scheduling

• common subexpression elimination

18

Copyright © 2005 Elsevier

Calling Sequences

• in-line expansion (cont.)

– compiler chooses which subroutine to expand

• some languages allow the programmer to suggest

that particular routines be in-lined (may be ignored)

• C/C++

• Ada

19

Copyright © 2005 Elsevier

Calling Sequences

• in-line expansion (cont.)

– preferable to macros

– disadvantages

• increases code size

• cannot be used for recursive subroutines

– one level can be expanded in-line

 string fringe (bin_tree *t) {

 // assume both children are nil or neither is

 if (t->left == 0) return t->val;

 return fringe(t->left) + fringe(t->right);

 }

20

Copyright © 2005 Elsevier

Parameter Passing

• formal parameters vs. actual parameters

• parameter passing modes

– value

– value/result (copying)

– reference (aliasing)

– closure/name

21

Copyright © 2005 Elsevier

Parameter Passing

• most languages use prefix notation for calls

– subroutine name followed by parenthesized
arguments

– List places the function name inside the
parentheses: (max a b)

• some languages (e.g., ML) allow infix
notation

– right-associative, binary, at precedence level 8

22

Copyright © 2005 Elsevier

Parameter Passing

• some languages (e.g., ML) allow infix
notation (cont.)

– Fortran: A .cross. B

• some languages use same syntax for control
expressions

23

Copyright © 2005 Elsevier

Parameter Passing

• parameter passing modes

– ex.: p(x)

– call-by-value: p gets a copy of x’s value

– call-by-reference: p gets a copy of x’s address

• introduces aliases in subroutines, which may be
tricky

24

Copyright © 2005 Elsevier

Parameter Passing

• parameter passing modes (cont.)

– call-by-value: prints 2 twice

– call-by-reference: prints 3 twice

25

Copyright © 2005 Elsevier

Parameter Passing

• parameter passing modes (cont.)

– call-by-value/result: copies the value into the
formal parameter at beginning and copies the
formal parameter back into the actual parameter
upon return

26

Copyright © 2005 Elsevier

Parameter Passing

• parameter passing modes (cont.)

– call by reference in C: typically, explicit, but
implicit with arrays

– Fortran: all parameters passed by value

– call-by-sharing: similar to call by reference,
though while values can change, the identity of
the object pointed to cannot

27

Copyright © 2005 Elsevier

Parameter Passing

• parameter passing modes (cont.)

– purpose of call-by-reference

• to change the value of an actual parameter

• to avoid time-consuming value copies

– for some parameters, copy may be preferable since after a
certain number of indirections, cost may be less

– may not be desirable if it leads to unanticipated
modification of actual parameters

28

Copyright © 2005 Elsevier

Parameter Passing

• parameter passing modes (cont.)

– read-only parameters

• Modula-3: READONLY parameters could not be
modified

• C: implemented with const

– points to record whose value is constant

– huge_record* const r; for constant pointer

29

Copyright © 2005 Elsevier

Parameter Passing

• Ada provides three parameter passing modes

– in: callee reads only

– out: callee writes and can then read; actual modified

– in out: callee reads and writes; actual modified

• Ada in/out is always implemented as

– value/result for scalars, and either

– value/result or reference for structured objects

30

Copyright © 2005 Elsevier

Parameter Passing

• C/C++: functions

– parameters passed by value (C)

– parameters passed by reference can be
simulated with pointers (C)
void proc(int* x,int y){*x = *x+y }

…

proc(&a,b);

– programmers did not like the extra syntax
required

• references introduced in C++

31

Copyright © 2005 Elsevier

Parameter Passing

• C/C++: functions

– references introduced in C++
void proc(int& x, int y)

{x = x + y }

proc(a,b);

– another example

32

Copyright © 2005 Elsevier

Parameter Passing

• C/C++: functions

– references can be used in other ways as well

– can also be used as return values

33Parameter Passing

• call-by-name

– Algol 60

– call by textual substitution (procedure with all
name parameters works like macro)

• conformant arrays

– arrays as parameters with some unspecified
bounds

Copyright © 2005 Elsevier

34Parameter Passing

• default parameters
– need not be provided by caller

Copyright © 2005 Elsevier

35Parameter Passing

• named parameters

– examples

– good for complex interfaces

Copyright © 2005 Elsevier

36Parameter Passing

• variable number of arguments

Copyright © 2005 Elsevier

37Parameter Passing

• function returns

– sometimes returned through function name

– return can use local variable

– Ada:

Copyright © 2005 Elsevier

38Parameter Passing

• function returns (cont.)

– SR:

Copyright © 2005 Elsevier

39

Copyright © 2005 Elsevier

Parameter Passing

40

Copyright © 2005 Elsevier

Generic Subroutines and Modules

• generic modules or classes

– allow a single copy of source code to handle a

variety of types

– parameter types incompletely specified

– type checking delayed until run time

• Ada: generics

• C++: templates

41

Copyright © 2005 Elsevier

Generic Subroutines and Modules

• generic modules or classes are particularly

valuable for creating containers

– data abstractions that hold a collection of

objects

– operations oblivious to type

– e.g., stack, queue, heap, set, dictionary

• generic subroutines (methods) are needed in

generic modules (classes), and may also be

useful in their own right (e.g., max)

42

Copyright © 2005 Elsevier

Generic Subroutines and Modules

• array-based queue template in C++

43

Copyright © 2005 Elsevier

Generic Subroutines and Modules

• generic implementation options

– Ada and C++: purely static

• compiler takes care of all instances

– C++: separate code for each instance of the template

– Java: all instances of generic share code

• similarities to macros, but

– generics integrated into language and understood by the

compiler

– generic parameters are type-checked

– names inside generics obey scoping rules

44

Copyright © 2005 Elsevier

Exception Handling

• exception

– a hardware-detected run-time error or
unusual condition detected by software

• examples

– arithmetic overflow

– end-of-file on input

– wrong type for input data

– user-defined conditions, not necessarily
errors

45

Copyright © 2005 Elsevier

Exception Handling

• exception handler

– code executed when exception occurs

– may need a different handler for each type of
exception

• advantages

– allow user to explicitly handle errors in a uniform
manner

– allow user to handle errors without having to
check these conditions explicitly in the program
everywhere they might occur

46

Copyright © 2005 Elsevier

Exception Handling

• exception handlers found in many languages

– Clu, Ada, Modula-3, Python, PHP, Ruby, C++,
Java, C#, and ML

47

Copyright © 2005 Elsevier

Exception Handling

• C++ example

– handlers examined in order

– first match is used by name or by parent class

– all other errors caught by …

– if no …, exception propagated up the dynamic chain

• if outermost level reached, predefined handler terminates

48

Copyright © 2005 Elsevier

Exception Handling

• three important operations performed by
exception handlers

– compensate for exception to allow program to
continue

• “out of memory” may request more memory

– if cannot be handled locally, handler may do local
clean-up

• e.g., call destructors

• re-raises the exception to propagate upward

– if recovery not possible, an error message can be
printed

49

Copyright © 2005 Elsevier

Coroutines

• coroutines

– execute one at a time and transfer control back and
forth explicitly by name

• coroutines can be used to implement

– iterators

– threads

– because they are concurrent (i.e., simultaneously
started but not completed), coroutines cannot share
a single stack

50

Copyright © 2005 Elsevier

Coroutines

• example

– screen saver program to prevent liquid crystal
burn-in

– file system checks for corrupted files (sanity
check)

– could be written as

• successive sanity checks may depend on each other

51

Copyright © 2005 Elsevier

Coroutines

• example (cont.)

– could be written with coroutines

52

Copyright © 2005 Elsevier

Coroutines

• coroutines

– allow explicit transfer between concurrently
running subroutines

– maintains small context block instead of activation
record

– could be implemented with threads

• cannot share the same stack

– non-LIFO

– disjoint, but share same static space

– use cactus stack instead

53

Copyright © 2005 Elsevier

Coroutines

• each branch to the side is coroutine (A,B,C,D)

• static nesting on right

• static links: arrows; dynamic links: vertical arrangement

54

Copyright © 2005 Elsevier

Events

• event

– something to which a program needs to respond

– occurs outside of program at unpredictable time
• GUI events: keystrokes, mouse motions, button clicks

• network operations: message arrival

• typically I/O performed synchronously with
blocking

• for events, usually want a handler

– event handler or callback function

55

Copyright © 2005 Elsevier

Events

• traditionally, events were handled by
interrupts

– an asynchronous event would trigger an interrupt

– registers saved

– jump to predefined address in OS kernel

• in modern systems, most events handled by
threads

– lightweight process

– threads can be synchronous

56

Copyright © 2005 Elsevier

Events

• interrupt handler and signal trampoline

	Slide 1
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Review Of Stack Layout
	Slide 5: Review Of Stack Layout
	Slide 6: Review Of Stack Layout
	Slide 7: Review Of Stack Layout
	Slide 8: Review Of Stack Layout
	Slide 9: Calling Sequences
	Slide 10: Calling Sequences
	Slide 11: Calling Sequences
	Slide 12: Calling Sequences
	Slide 13: Calling Sequences
	Slide 14: Calling Sequences
	Slide 15: Calling Sequences
	Slide 16: Calling Sequences
	Slide 17: Calling Sequences
	Slide 18: Calling Sequences
	Slide 19: Calling Sequences
	Slide 20: Parameter Passing
	Slide 21: Parameter Passing
	Slide 22: Parameter Passing
	Slide 23: Parameter Passing
	Slide 24: Parameter Passing
	Slide 25: Parameter Passing
	Slide 26: Parameter Passing
	Slide 27: Parameter Passing
	Slide 28: Parameter Passing
	Slide 29: Parameter Passing
	Slide 30: Parameter Passing
	Slide 31: Parameter Passing
	Slide 32: Parameter Passing
	Slide 33: Parameter Passing
	Slide 34: Parameter Passing
	Slide 35: Parameter Passing
	Slide 36: Parameter Passing
	Slide 37: Parameter Passing
	Slide 38: Parameter Passing
	Slide 39: Parameter Passing
	Slide 40: Generic Subroutines and Modules
	Slide 41: Generic Subroutines and Modules
	Slide 42: Generic Subroutines and Modules
	Slide 43: Generic Subroutines and Modules
	Slide 44: Exception Handling
	Slide 45: Exception Handling
	Slide 46: Exception Handling
	Slide 47: Exception Handling
	Slide 48: Exception Handling
	Slide 49: Coroutines
	Slide 50: Coroutines
	Slide 51: Coroutines
	Slide 52: Coroutines
	Slide 53: Coroutines
	Slide 54: Events
	Slide 55: Events
	Slide 56: Events

