
1

1

Copyright © 2005 Elsevier

Chapter 9 :: Data Abstraction and

Object Orientation

Programming Language Pragmatics

Michael L. Scott

2

Copyright © 2005 Elsevier

Object-Oriented Programming

• Control or PROCESS abstraction is a very old

idea (subroutines!), though few languages

provide it in a truly general form (Scheme

comes close)

• Data abstraction is somewhat newer, though its

roots can be found in Simula67

– An Abstract Data Type is one that is defined in

terms of the operations that it supports (i.e., that

can be performed upon it) rather than in terms of its

structure or implementation

3

Copyright © 2005 Elsevier

Object-Oriented Programming

• Why abstractions?

– easier to think about - hide what doesn't matter

– protection - prevent access to things you

shouldn't see

– plug compatibility

• replacement of pieces, often without recompilation,

definitely without rewriting libraries

• division of labor in software projects

4

Copyright © 2005 Elsevier

Object-Oriented Programming

• We talked about data abstraction some back in
the unit on naming and scoping

• Recall that we traced the historical
development of abstraction mechanisms

– Static set of var Basic

– Locals Fortran

– Statics Fortran, Algol 60, C

– Modules Modula-2, Ada 83

– Module types Euclid

– Objects Smalltalk, C++, Eiffel,
 Java, Oberon, Modula-3, Ada 95

5

Copyright © 2005 Elsevier

Object-Oriented Programming

• By deriving new classes

from old ones, the

programmer can create

arbitrarily deep class

hierarchies, with

additional functionality

at every level of the tree.

• The Smalltalk class

hierarchy for Smalltalk

has as many as seven

levels of derivation (see

attached Figure 9.2)

6

Copyright © 2005 Elsevier

Object-Oriented Programming

• Statics allow a subroutine to retain values

from one invocation to the next, while

hiding the name in-between

• Modules allow a collection of subroutines to

share some statics, still with hiding

– If you want to build an abstract data type,

though, you have to make the module a

manager

2

7

Copyright © 2005 Elsevier

Object-Oriented Programming

• Module types allow the module to be the
abstract data type - you can declare
a bunch of them

– This is generally more intuitive

• It avoids explicit object parameters to many
operations

• One minor drawback: If you have an operation
that needs to look at the innards of two different
types, you'd define both types in the same manager
module in Modula-2

• In C++ you need to make one of the classes (or
some of its members) "friends" of the other class

8

Copyright © 2005 Elsevier

Object-Oriented Programming

• Objects add inheritance and dynamic

method binding

• Simula 67 introduced these, but didn't have

data hiding

• The 3 key factors in OO programming

– Encapsulation (data hiding)

– Inheritance

– Dynamic method binding

9

Copyright © 2005 Elsevier

Encapsulation and Inheritance

• Visibility rules

– Public and Private parts of an object
declaration/definition

– 2 reasons to put things in the declaration

• so programmers can get at them

• so the compiler can understand them

– At the very least the compiler needs to know
the size of an object, even though the
programmer isn't allowed to get at many or
most of the fields (members) that contribute to
that size

• That's why private fields have to be in declaration

10

Copyright © 2005 Elsevier

Encapsulation and Inheritance

Classes (C++)

• C++ distinguishes among

– public class members

• accessible to anybody

– protected class members

• accessible to members of this or derived classes

– private

• accessible just to members of this class

• A C++ structure (struct) is simply a class
whose members are public by default

• C++ base classes can also be public, private,
or protected

11

Copyright © 2005 Elsevier

Encapsulation and Inheritance

Classes (C++)

• C++ access specifiers

12

Copyright © 2005 Elsevier

Encapsulation and Inheritance

Classes (C++)

• Example:
class circle : public shape { ...

anybody can convert (assign) a circle* into a shape*

class circle : protected shape {

...

only members and friends of circle or its derived classes
can convert (assign) a circle* into a shape*

class circle : private shape { ...

only members and friends of circle can convert (assign) a
circle* into a shape*

3

13

Copyright © 2005 Elsevier

Encapsulation and Inheritance

Classes (C++)

− inheritance example

−derived classes contain

 width, height,

 set_values

−output

14

Copyright © 2005 Elsevier

Encapsulation and Inheritance

Classes (C++)

− inheritance

−access types and inheritance

− inherited members have same access permissions as

in base class

since

15

Copyright © 2005 Elsevier

Encapsulation and Inheritance

Classes (C++)

• Disadvantage of the module-as-manager approach:
include explicit create/initialize & destroy/finalize
routines for every abstraction

– Even w/o dynamic allocation inside module, users don't
have necessary knowledge to do initialization

– Ada 83 is a little better here: you can provide initializers
for pieces of private types, but this is NOT a general
approach

– Object-oriented languages often give you constructors
and maybe destructors

• Destructors are important primarily in the absence of garbage
collection

16

Copyright © 2005 Elsevier

Encapsulation and Inheritance

Classes (C++)

• A few C++ features you may not have learned:

– classes as members
foo::foo (args0) : member1 (args1),

member2 (args2) { ...

args1 and args2 need to be specified in terms of

args0

• The reason these things end up in the header of foo is that

they get executed before foo's constructor does, and the

designers consider it good style to make that clear in the

header of foo::foo

17

Copyright © 2005 Elsevier

Encapsulation and Inheritance

Classes (C++)

• A few C++ features (2):

– initialization v. assignment
foo::operator=(&foo) v.

foo::foo(&foo)

 foo b;

 foo f = b;

 // calls constructor

 foo b, f;

 // calls no-argument constructor

 f = b;

 // calls operator=

18

Copyright © 2005 Elsevier

Encapsulation and Inheritance

Classes (C++)

−example

 notes:

 results same as before

 set_values omitted

 values passed to constructor

− output:
 rect area: 12

 rectb area: 30

4

19

Copyright © 2005 Elsevier

Encapsulation and Inheritance

Classes (C++)

• A few C++ features (3):

– virtual functions (see the next dynamic method

binding section for details):

Key question: if child is derived from parent

and I have a parent* p (or a parent& p) that

points (refers) to an object that's actually a

child, what member function do I get when I

call p->f (p.f)?

• Normally I get p's f, because p's type is parent*.

• But if f is a virtual function, I get c's f.

20

Copyright © 2005 Elsevier

Encapsulation and Inheritance

Classes (C++)

• A few C++ features (4):

– virtual functions (continued)

• If a virtual function has a "0" body in the parent

class, then the function is said to be a pure virtual

function and the parent class is said to be abstract

• You can't declare objects of an abstract class; you

have to declare them to be of derived classes

• Moreover any derived class must provide a body for

the pure virtual function(s)

• multiple inheritance in Standard C++ (see next)

– friends

• functions

• classes

21

Copyright © 2005 Elsevier

Initialization and Finalization

• In Section 3.2, we defined the lifetime of an

object to be the interval during which it

occupies space and can hold data

– Most object-oriented languages provide some

sort of special mechanism to initialize an object

automatically at the beginning of its lifetime

• When written in the form of a subroutine, this

mechanism is known as a constructor

• A constructor does not allocate space

– A few languages provide a similar destructor

mechanism to finalize an object automatically at

the end of its lifetime

22

Copyright © 2005 Elsevier

Initialization and Finalization

Issues

• choosing a constructor

• references and values

– If variables are references, then every object must be

created explicitly - appropriate constructor is called

– If variables are values, then object creation can happen

implicitly as a result of elaboration

• execution order

– When an object of a derived class is created in C++, the

constructors for any base classes will be executed before

the constructor for the derived class

• garbage collection

23

Copyright © 2005 Elsevier

Dynamic Method Binding

• Virtual functions in C++ are an example of

dynamic method binding

– you don't know at compile time what type the

object referred to by a variable will be at run

time

• Simula also had virtual functions (all of

which are abstract)

• In Smalltalk, Eiffel, Modula-3, and Java all

member functions are virtual

24

Copyright © 2005 Elsevier

Dynamic Method Binding

• Note that inheritance does not obviate the

need for generics

– You might think: hey, I can define an abstract

list class and then derive int_list, person_list,

etc. from it, but the problem is you won't

be able to talk about the elements because you

won't know their types

– That's what generics are for: abstracting over

types

• Java doesn't have generics, but it does have

(checked) dynamic casts

5

25

Copyright © 2005 Elsevier

Dynamic Method Binding

• Data members of classes are implemented

just like structures (records)

– With (single) inheritance, derived classes have

extra fields at the end

– A pointer to the parent and a pointer to the child

contain the same address - the child just knows

that the struct goes farther than the parent does

26

Copyright © 2005 Elsevier

Dynamic Method Binding

• Non-virtual functions require no space at run

time; the compiler just calls the appropriate

version, based on type of variable

– Member functions are passed an extra, hidden, initial

parameter: this (called current in Eiffel and self in

Smalltalk)

• C++ philosophy is to avoid run-time overhead

whenever possible (sort of the legacy from C)

– Languages like Smalltalk have (much) more run-time

support

27

Copyright © 2005 Elsevier

Dynamic Method Binding

• Virtual functions are the only thing that requires
any trickiness (Figure 9.4)

– They are implemented by creating a dispatch table
(vtable) for the class and putting a pointer to that
table in the data of the object

– Objects of a derived class have a different dispatch
table (Figure 10.5)

• In the dispatch table, functions defined in the parent come
first, though some of the pointers point to overridden
versions

• You could put the whole dispatch table in the object itself

– That would save a little time, but potentially waste a LOT of
space

28

Copyright © 2005 Elsevier

Dynamic Method Binding

29

Copyright © 2005 Elsevier

Dynamic Method Binding
30

Copyright © 2005 Elsevier

Dynamic Method Binding

• Note that if you can query the type of an

object, then you need to be able to get from

the object to run-time type info

– The standard implementation technique is to

put a pointer to the type info at the beginning of

the vtable

– Of course you only have a vtable in C++ if your

class has virtual functions

• That's why you can't do a dynamic_cast on a pointer

whose static type doesn't have virtual functions

6

31

Copyright © 2005 Elsevier

Multiple Inheritance

• In C++, you can say
class professor : public

teacher, public researcher {

 ...

 }

Here you get all the members of teacher

and all the members of researcher

– If there's anything that's in both (same name

and argument types), then calls to the member

are ambiguous; the compiler disallows them

32

Copyright © 2005 Elsevier

Multiple Inheritance

• You can of course create your own member in
the merged class
 professor::print () {
 teacher::print ();

 researcher::print (); ...

 }

Or you could get both:
 professor::tprint () {
 teacher::print ();

 }

 professor::rprint () {

 researcher::print ();

 }

33

Copyright © 2005 Elsevier

Multiple Inheritance

• Virtual base classes: In the usual case if you

inherit from two classes that are both

derived from some other class B, your

implementation includes two copies of B's

data members

• That's often fine, but other times you want a

single copy of B

– For that you make B a virtual base class

34

Copyright © 2005 Elsevier

Object-Oriented Programming

• Anthropomorphism is central to the OO

paradigm - you think in terms of real-world

objects that interact to get things done

• Many OO languages are strictly sequential, but

the model adapts well to parallelism as well

• Strict interpretation of the term

– uniform data abstraction - everything is an object

– inheritance

– dynamic method binding

35

Copyright © 2005 Elsevier

Object-Oriented Programming

• Lots of conflicting uses of the term out there

object-oriented style available in many

languages

– data abstraction crucial

– inheritance required by most users of the term O-O

– centrality of dynamic method binding a matter of

dispute

36

Copyright © 2005 Elsevier

Object-Oriented Programming

• SMALLTALK is the canonical object-

oriented language

– It has all three of the characteristics listed above

– It's based on the thesis work of Alan Kay at Utah

in the late 1960‘s

– It went through 5 generations at Xerox PARC,

where Kay worked after graduating

– Smalltalk-80 is the current standard

7

37

Copyright © 2005 Elsevier

Object-Oriented Programming

• Other languages are described in what

follows:

• Modula-3

– single inheritance

– all methods virtual

– no constructors or destructors

38

Copyright © 2005 Elsevier

Object-Oriented Programming

• Ada 95

– tagged types

– single inheritance

– no constructors or destructors

– class-wide parameters:

• methods static by default

• can define a parameter or pointer that grabs the object-

specific version of all methods

– base class doesn't have to decide what will be virtual

– notion of child packages as an alternative to

friends

39

Copyright © 2005 Elsevier

Object-Oriented Programming

• Java

– interfaces, mix-in inheritance

– alternative to multiple inheritance

• basically you inherit from one real parent and one or

more interfaces, each of which contains only virtual

functions and no data

• this avoids the contiguity issues in multiple inheritance

above, allowing a very simple implementation

– all methods virtual

40

Copyright © 2005 Elsevier

Object-Oriented Programming

• Is C++ object-oriented?

– Uses all the right buzzwords

– Has (multiple) inheritance and generics

(templates)

– Allows creation of user-defined classes that look

just like built-in ones

– Has all the low-level C stuff to escape the

paradigm

– Has friends

– Has static type checking

41

Copyright © 2005 Elsevier

Object-Oriented Programming

• In the same category of questions:

– Is Prolog a logic language?

– Is Common Lisp functional?

• However, to be more precise:

– Smalltalk is really pretty purely object-oriented

– Prolog is primarily logic-based

– Common Lisp is largely functional

– C++ can be used in an object-oriented style

