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Historical Origins 

• The imperative and functional models grew out 

of work undertaken by Alan Turing, Alonzo 

Church, Stephen Kleene, Emil Post, etc. ~1930s 

– different formalizations of the notion of an algorithm, 

or effective procedure, based on automata, symbolic 

manipulation, recursive function definitions, and 

combinatorics 

• These results led Church to conjecture that any 

intuitively appealing model of computing would 

be equally powerful as well 

– this conjecture is known as Church’s thesis 
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Historical Origins 

• Turing’s model of computing was the Turing 

machine a sort of pushdown automaton using 

an unbounded storage “tape” 

– the Turing machine computes in an imperative 

way, by changing the values in cells of its tape – 

like variables just as a high level imperative 

program computes by changing the values of 

variables 
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Historical Origins 

• Church’s model of computing is called the 

lambda calculus 

– based on the notion of parameterized expressions 

(with each parameter introduced by an occurrence of 

the letter λ—hence the notation’s name. 

– Lambda calculus was the inspiration for functional 

programming 

– one uses it to compute by substituting parameters 

into expressions, just as one computes in a high level 

functional program by passing arguments to 

functions 
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Historical Origins 

• Mathematicians established a distinction 

between 

– constructive proof (one that shows how to obtain a 

mathematical object with some desired property) 

– nonconstructive proof (one that merely shows that 

such an object must exist, e.g., by contradiction)  

• Logic programming is tied to the notion of 

constructive proofs, but at a more abstract level 

– the logic programmer writes a set of axioms that 

allow the computer to discover a constructive proof 

for each particular set of inputs 
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Functional Programming Concepts 

• Functional languages such as Lisp, Scheme, 

FP, ML, Miranda, and Haskell are an 

attempt to realize Church's lambda calculus 

in practical form as a programming language 

• The key idea: do everything by composing 

functions 

– no mutable state 

– no side effects 
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Functional Programming Concepts 

• Necessary features, many of which are 

missing in some imperative languages 

– 1st class and high-order functions 

– serious polymorphism 

– powerful list facilities 

– structured function returns 

– fully general aggregates 

– garbage collection 
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Functional Programming Concepts 

• So how do you get anything done in a functional 

language? 

– Recursion (especially tail recursion) takes the place of 

iteration 

– In general, you can get the effect of a series of 

assignments 

        x := 0   ... 

        x := expr1  ... 

        x := expr2   ... 

from f3(f2(f1(0))), where each f expects the value of x 

as an argument, f1 returns expr1, and f2 returns expr2 
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Functional Programming Concepts 

• Recursion even does a nifty job of replacing 
looping 

 

 x := 0; i := 1; j := 100; 

 while i < j do 

  x := x + i*j;  

   i := i + 1;  

  j := j - 1 

 end while 

 return x 

 

    becomes f(0,1,100), where 
 

  f(x,i,j) == if i < j then  

  f (x+i*j, i+1, j-1) else x 
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Functional Programming Concepts 

• Thinking about recursion as a direct, 

mechanical replacement for iteration, 

however, is the wrong way to look at things 

– One has to get used to thinking in a recursive 

style 

• Even more important than recursion is the 

notion of higher-order functions 

– Take a function as argument, or return a 

function as a result 

– Great for building things 



11 
 

Functional Programming Concepts  

•Lisp also has the following (which are not 

necessarily present in other functional languages) 

–homo-iconography 

–self-definition 

–read-evaluate-print 

•Variants of LISP 

–Pure (original) Lisp 

–Interlisp, MacLisp, Emacs Lisp 

–Common Lisp 

–Scheme 
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Functional Programming Concepts  

• Pure Lisp is purely functional; all other Lisps 
have imperative features 

• All early Lisps dynamically scoped 
– Not clear whether this was deliberate or if it happened 

by accident 

• Scheme and Common Lisp statically scoped 
– Common Lisp provides dynamic scope as an option 

for explicitly-declared special functions 

– Common Lisp now THE standard Lisp 

• Very big; complicated (The Ada of functional 
programming) 
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Functional Programming Concepts  

• Scheme is a particularly elegant Lisp 

• Other functional languages 

– ML 

– Miranda 

– Haskell 

– FP 

• Haskell is the leading language for research 

in functional programming 
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A Bit of Scheme  

• As mentioned earlier, Scheme is a particularly 
elegant Lisp 
– Interpreter runs a read-eval-print loop 

– Things typed into the interpreter are evaluated 
(recursively) once 

– Anything in parentheses is a function call (unless 
quoted) 

– Parentheses are NOT just grouping, as they are in 
Algol-family languages 

• Adding a level of parentheses changes meaning 

(+ 3 4) ⇒ 7 
((+ 3 4))) ⇒ error  
(the ' ⇒' arrow means 'evaluates to‘) 
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A Bit of Scheme  

• Scheme: 

– Boolean values #t and #f 

– Numbers 

– Lambda expressions 

– Quoting 

  (+ 3 4) ⇒ 7 

  (quote (+ 3 4)) ⇒ (+ 3 4) 

  '(+ 3 4) ⇒ (+ 3 4) 

– Mechanisms for creating new scopes 

  (let ((square (lambda (x) (* x x))) (plus +)) 

  (sqrt (plus (square a) (square b)))) 
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A Bit of Scheme  

• Scheme: 

–  conditional expressions 

 (if (< x 0) (- 0 x))  ; if-then 

 (if  (< x y)  x  y)  ; if-then-else  

 (if (< 2 3) 4 5) ⇒ 4 

 (cond 

  ((< 3 2) 1) 

  ((< 4 3) 2) 

  (else 3)) ⇒ 3 

– case selection 

 (case month 

((sep apr jun nov)  30) 

  (feb) 28) 

  (else 31) 

 ) 
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A Bit of Scheme  

• Scheme: 

– Imperative stuff 

• assignments 

• sequencing  (begin) 

• iteration 

• I/O  (read, display) 
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A Bit of Scheme  

•Scheme standard functions (this is not a complete 

list): 
–arithmetic 

–boolean operators 

–equivalence 

–list operators 

–symbol? 

–number? 

–complex? 

–real? 

–rational? 

–integer? 
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A Bit of Scheme  

•expressions 
–Cambridge prefix notation for all Scheme expressions: 

 

 (f x1 x2 … xn) 

 

 (+ 2 2)        ; evaluates to 4 

 (+ (* 5 4) (- 6 2))  ; means 5*4 + (6-2) 

 (define (Square x) (* x x)) ; defines a fn 

 (define f 120)   ; defines a global 

 

–Note: Scheme comments begin with ; 

 

Source: Tucker & Noonan (2007) 
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A Bit of Scheme  

•expression evaluation 

• three steps: 

1. Replace names of symbols by their current bindings. 

2. Evaluate lists as function calls in Cambridge prefix. 

3. Constants evaluate to themselves. 

 e.g., 

 x    ; evaluates to 5 

 (+ (* x 4) (- 6 2)) ; evaluates to 24 

 5    ; evaluates to 5 

 ‘red   ; evaluates to ‘red 

Source: Tucker & Noonan (2007) 
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A Bit of Scheme  

• lists 
–series of expressions enclosed in parentheses 

–represent both functions and data 

–empty list written as () 

–e.g., (0 2 4 6 8) is a list of even numbers   

– stored as 

 

  

Source: Tucker & Noonan (2007) 
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A Bit of Scheme  

• list transforming functions 
–using cons (construct): 

 

 (cons 8 ())      ; gives (8) 

 (cons 6 (cons 8 ()))   ; gives (6 8) 

 (cons 4 (cons 6 (cons 8 ())))    ; gives (4 6 8) 

 (cons 4 (cons 6 (cons 8 9))) ; gives (4 6 8 . 9) 

 

–Note: the last element of a list should be a null list 

 

Source: Tucker & Noonan (2007) 
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A Bit of Scheme  

• list transforming functions 
–suppose we define the list evens to be (0 2 4 6 8), i.e., we write (define 

evens ‘(0 2 4 6 8)).  Then, 

 

 (car evens)     ; gives 0 

 (cdr evens)    ; gives (2 4 6 8) 

 (cons 1 (cdr evens))  ; gives (1 2 4 6 8) 

 (null? ‘())   ; gives #t, or true 

 (equal? 5 ‘(5))        ; gives #f, or false 

 (append ‘(1 3 5) evens) ; gives (1 3 5 0 2 4 6 8) 

 (list ‘(1 3 5) evens)   ; gives ((1 3 5) (0 2 4 6 8)) 

 

 Note: the last two lists are different! 

 
Source: Tucker & Noonan (2007) 
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A Bit of Scheme  

•more on car/cdr 
 

(car (cdr (evens))    ; gives 2 

(cadr evens)    ; gives 2 

(cdr (cdr (evens))    ; gives (4, 6, 8) 

(cddr (evens)   ; gives (4, 6, 8) 

(car ‘(6 8))    ; gives 6 

(car (cons 6 8))   ; gives 6 

(car ‘(8))   ; gives 8 

(cdr ‘(8))   ; gives () 

 

Source: Tucker & Noonan (2007) 
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A Bit of Scheme  

•defining functions 
 

(define (name  arguments) function-body) 

 

(define (min x y) (if (< x y) x y)) 

(define (abs x) (if (< x 0) (- 0 x) x)) 

 

define (factorial n) 

  (if (< n 1) 1 (* n (factorial (- n 1))) 

)) 

 

Note: be careful to match all parentheses 

Source: Tucker & Noonan (2007) 
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A Bit of Scheme  

•even simple tasks are accomplished recursively 
((define (mystery1 alist) 

 (if (null? alist) 0 

   (+ (car alist) (mystery1 (cdr alist))) 

)) 

 

 

(define (mystery2 alist) 

 (if (null? alist) 0 (+ 1 (mystery2 (cdr 

 alist))) 

)) 

 

Source: Tucker & Noonan (2007) 
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A Bit of Scheme  

•subst function 
 

(define (subst y x alist) 

 (if (null? alist) ‘()) 

    (if (equal? x (car alist)) 

       (cons y (subst y x (cdr alist))) 

       (cons (car alist) (subst y x (cdr alist))) 

))) 

 

e.g., (subst ‘x 2 ‘(1 (2 3) 2))      

   returns (1 (2 3) x) 

 

Source: Tucker & Noonan (2007) 
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A Bit of Scheme  

•let expressions allow simplification of function 

definitions by defining intermediate expressions 
 

(define (subst y x alist) 

   (if (null? alist) ‘() 

  (let ((head (car alist)) (tail (cdr alist))) 

     (if (equal? x head) 

    (cons y (subst y x tail)) 

    (cons head (subst y x tail)) 

))) 

 

Source: Tucker & Noonan (2007) 
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A Bit of Scheme  

• functions as arguments 

• mapcar applies the function to each member of a list 

 

(define (mapcar fun alist) 

    (if (null? alist) ‘() 

   (cons (fun (car alist)) 

    (mapcar fun (cdr alist))) 

)) 

 

e.g., if (define (square x) (* x x)) then  

  (mapcar square ‘(2 3 5 7 9))  returns  

   (4 9 25 49 81) 

 

 Source: Tucker & Noonan (2007) 
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A Bit of Scheme 

 Example program -  Symbolic Differentiation 

•Symbolic Differentiation Rules 



d

dx
(c)  0 c is a constant

d

dx
(x) 1

d

dx
(u v) 

du

dx

dv

dx
u and v are functions of x

d

dx
(u v) 

du

dx

dv

dx
d

dx
(uv)  u

dv

dx
 v
du

dx
d

dx
(u /v)  v

du

dx
 u
dv

dx









/v

2

Source: Tucker & Noonan (2007) 
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A Bit of Scheme 

 Example program -  Symbolic Differentiation 

•Scheme encoding 

1. Uses Cambridge Prefix notation 

  e.g.,  2x + 1 is written as (+ (* 2 x) 1) 

2. Function diff incorporates these rules. 

  e.g., (diff ‘x ‘(+ (* 2 x) 1)) should give  

    an answer. 

3. However, no simplification is performed. 

  e.g. the answer for (diff ‘x ‘(+ (* 2 x) 1)) is  

    (+ (+ (* 2 1) (* x 0)) 0)  

  which is equivalent to the simplified answer, 2 

Source: Tucker & Noonan (2007) 



32 
 

A Bit of Scheme 

 Example program -  Symbolic Differentiation 

•Scheme program 
 (define (diff x expr) 

    (if (not (list? expr)) 

       (if (equal? x expr) 1 0) 

      (let ((u (cadr expr)) (v (caddr expr))) 

   (case (car expr) 

      ((+) (list ‘+ (diff x u) (diff x v))) 

      ((-) (list ‘- (diff x u) (diff x v))) 

      ((*) (list ‘+ (list ‘* u (diff x v))  

    (list ‘* v (diff x u)))) 

      ((/) (list ‘div (list ‘- (list ‘* v (diff x u)) 

    (list ‘* u (diff x v))) 

    (list ‘* u v))) 

 )))) 
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A Bit of Scheme 

 Example program -  Symbolic Differentiation 

• trace of the program 
 (diff ‘x ‘(+ ‘(* 2 x) 1)) 

    = (list ‘+ (diff ‘x ‘(*2 x)) (diff ‘x 1)) 

    = (list ‘+ (list ‘+ (list ‘* 2 (diff ‘x ‘x)) 

      (list ‘* x (diff ‘x 2))) 

       (diff ‘x 1)) 

  = (list ‘+ (list ‘+ (list ‘* 2 1) (list ‘* x (diff ‘x 2))) 

      (diff ‘x 1)) 

  = (list ‘+ (list ‘+ ‘(* 2 1) (list ‘* x (diff ‘x 2))) 

      (diff ‘x 1)) 

  = (list ‘+ (list ‘+ ‘(* 2 1) (list ‘* x 0))(diff ‘x 1)) 

  = (list ‘+ (list ‘+ ‘(* 2 1) ‘(* x 0)(diff ‘x 1)) 

  = (list ‘+ ‘(‘+ ‘(* 2 1) ‘(* x 0))(diff ‘x 1)) 

  = (list ‘+ ‘(‘+ ‘(* 2 1) ‘(* x 0)) 0) 

  = ‘(+ (+ (* 2 1) ‘(* x 0)) 0) 

 Source: Tucker & Noonan (2007) 
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A Bit of Scheme 

 Example program -  Simulation of  DFA 

• We'll invoke the program by calling a function called 

'simulate', passing it a DFA description and an input 

string 

– The automaton description is a list of three items: 

• start state 

• the transition function 

• the set of final states  

– The transition function is a list of pairs 

• the first element of each pair is a pair, whose first element is a state 

and whose second element in an input symbol 

• if the current state and next input symbol match the  

first element of a pair, then the finite automaton enters  

the state given by the second element of the pair 
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A Bit of Scheme 

 Example program -  Simulation of  DFA 
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A Bit of Scheme 

 Example program -  Simulation of  DFA 
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A Bit of OCaml  

• OCaml is a descendent of ML, and cousin to 
Haskell, F# 
– “O” stands for objective, referencing the object 

orientation introduced in the 1990s 
– Interpreter runs a read-eval-print loop like in 

Scheme 

– Things typed into the interpreter are evaluated 
(recursively) once 

– Parentheses are NOT function calls, but indicate 
tuples 
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A Bit of OCaml 

• Ocaml: 

– Boolean values 

– Numbers 

– Chars 

–Strings 

–More complex types created by lists, arrays, records, 

objects, etc. 

–(+ - * /) for ints, (+. -. *. /.) for floats 

– let keyword for creating new names 

 let average = fun x y -> (x +. y) /. 2.;; 
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A Bit of OCaml 

• Ocaml: 
–Variant Types 

  type 'a tree = Empty | Node of 'a * 'a tree * 'a tree;; 

 

–Pattern matching 

   let atomic_number (s, n, w) = n;; 

  let mercury = ("Hg", 80, 200.592);; 

  atomic_number mercury;;  ⇒ 80 
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A Bit of OCaml  

• OCaml: 

– Different assignments for references ‘:=’ and array 

elements ‘<-’ 

  let insertion_sort a =  

   for i = 1 to Array.length a - 1 do 

    let t = a.(i) in 

    let j = ref i in 

    while !j > 0 && t < a.(!j - 1) do 

     a.(!j) <- a.(!j - 1); 

     j := !j - 1 

    done; 

    a.(!j) <- t 

   done;; 
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A Bit of OCaml 

 Example program -  Simulation of  DFA 

• We'll invoke the program by calling a function called 

'simulate', passing it a DFA description and an input 

string 

– The automaton description is a record with three fields: 

• start state 

• the transition function 

• the list of final states  

– The transition function is a list of triples 

• the first two elements are a state and an input symbol 

•if these match the current state and next input, then the automaton 

enters a state given by the third element 
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A Bit of OCaml 

 Example program -  Simulation of  DFA 
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A Bit of OCaml 

 Example program -  Simulation of  DFA 
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Evaluation Order Revisited 

• Applicative order  

– what you're used to in imperative languages 

– usually faster 

• Normal order 

– like call-by-name: don't evaluate arg until you 

need it 

– sometimes faster 

– terminates if anything will (Church-Rosser 

theorem) 
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Evaluation Order Revisited 

• In Scheme 

– functions use applicative order defined with 

lambda 

– special forms (aka macros) use normal order 

defined with syntax-rules 

• A strict language requires all arguments to be 

well-defined, so applicative order can be used 

• A non-strict language does not require all 

arguments to be well-defined; it requires 

normal-order evaluation 
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Evaluation Order Revisited 

• Lazy evaluation gives the best of both 

worlds 

• But not good in the presence of side effects. 

– delay and force in Scheme 

– delay creates a "promise" 
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High-Order Functions 

• Higher-order functions 

– Take a function as argument, or return a function 

as a result 

– Great for building things 

– Currying (after Haskell Curry, the same guy 

Haskell is named after) 

• For details see Lambda calculus on CD 

• ML, Miranda, OCaml, and Haskell have especially nice 

syntax for curried functions 
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Functional Programming in Perspective 

• Advantages of functional languages 

– lack of side effects makes programs easier to 

understand 

– lack of explicit evaluation order (in some 

languages) offers possibility of parallel evaluation 

(e.g. MultiLisp) 

– lack of side effects and explicit evaluation order 

simplifies some things for a compiler (provided 

you don't blow it in other ways) 

– programs are often surprisingly short 

– language can be extremely small and yet powerful 
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Functional Programming in Perspective 

•Problems 

–difficult (but not impossible!) to implement efficiently 

on von Neumann machines 

•lots of copying of data through parameters 

•(apparent) need to create a whole new array in order to change 

one element 

•heavy use of pointers (space/time and locality problem) 

•frequent procedure calls 

•heavy space use for recursion 

•requires garbage collection 

•requires a different mode of thinking by the programmer 

•difficult to integrate I/O into purely functional model 

 


