
1

Chapter 11 ::

Functional Languages

Programming Language Pragmatics

Michael L. Scott

Copyright © 2016 Elsevier

2

Historical Origins

• The imperative and functional models grew out

of work undertaken by Alan Turing, Alonzo

Church, Stephen Kleene, Emil Post, etc. ~1930s

– different formalizations of the notion of an algorithm,

or effective procedure, based on automata, symbolic

manipulation, recursive function definitions, and

combinatorics

• These results led Church to conjecture that any

intuitively appealing model of computing would

be equally powerful as well

– this conjecture is known as Church’s thesis

3

Historical Origins

• Turing’s model of computing was the Turing

machine a sort of pushdown automaton using

an unbounded storage “tape”

– the Turing machine computes in an imperative

way, by changing the values in cells of its tape –

like variables just as a high level imperative

program computes by changing the values of

variables

4

Historical Origins

• Church’s model of computing is called the

lambda calculus

– based on the notion of parameterized expressions

(with each parameter introduced by an occurrence of

the letter λ—hence the notation’s name.

– Lambda calculus was the inspiration for functional

programming

– one uses it to compute by substituting parameters

into expressions, just as one computes in a high level

functional program by passing arguments to

functions

5

Historical Origins

• Mathematicians established a distinction

between

– constructive proof (one that shows how to obtain a

mathematical object with some desired property)

– nonconstructive proof (one that merely shows that

such an object must exist, e.g., by contradiction)

• Logic programming is tied to the notion of

constructive proofs, but at a more abstract level

– the logic programmer writes a set of axioms that

allow the computer to discover a constructive proof

for each particular set of inputs

6

Functional Programming Concepts

• Functional languages such as Lisp, Scheme,

FP, ML, Miranda, and Haskell are an

attempt to realize Church's lambda calculus

in practical form as a programming language

• The key idea: do everything by composing

functions

– no mutable state

– no side effects

7

Functional Programming Concepts

• Necessary features, many of which are

missing in some imperative languages

– 1st class and high-order functions

– serious polymorphism

– powerful list facilities

– structured function returns

– fully general aggregates

– garbage collection

8

Functional Programming Concepts

• So how do you get anything done in a functional

language?

– Recursion (especially tail recursion) takes the place of

iteration

– In general, you can get the effect of a series of

assignments

 x := 0 ...

 x := expr1 ...

 x := expr2 ...

from f3(f2(f1(0))), where each f expects the value of x

as an argument, f1 returns expr1, and f2 returns expr2

9

Functional Programming Concepts

• Recursion even does a nifty job of replacing
looping

 x := 0; i := 1; j := 100;

 while i < j do

 x := x + i*j;

 i := i + 1;

 j := j - 1

 end while

 return x

 becomes f(0,1,100), where

 f(x,i,j) == if i < j then

 f (x+i*j, i+1, j-1) else x

10

Functional Programming Concepts

• Thinking about recursion as a direct,

mechanical replacement for iteration,

however, is the wrong way to look at things

– One has to get used to thinking in a recursive

style

• Even more important than recursion is the

notion of higher-order functions

– Take a function as argument, or return a

function as a result

– Great for building things

11

Functional Programming Concepts

•Lisp also has the following (which are not

necessarily present in other functional languages)

–homo-iconography

–self-definition

–read-evaluate-print

•Variants of LISP

–Pure (original) Lisp

–Interlisp, MacLisp, Emacs Lisp

–Common Lisp

–Scheme

12

Functional Programming Concepts

• Pure Lisp is purely functional; all other Lisps
have imperative features

• All early Lisps dynamically scoped
– Not clear whether this was deliberate or if it happened

by accident

• Scheme and Common Lisp statically scoped
– Common Lisp provides dynamic scope as an option

for explicitly-declared special functions

– Common Lisp now THE standard Lisp

• Very big; complicated (The Ada of functional
programming)

13

Functional Programming Concepts

• Scheme is a particularly elegant Lisp

• Other functional languages

– ML

– Miranda

– Haskell

– FP

• Haskell is the leading language for research

in functional programming

14

A Bit of Scheme

• As mentioned earlier, Scheme is a particularly
elegant Lisp
– Interpreter runs a read-eval-print loop

– Things typed into the interpreter are evaluated
(recursively) once

– Anything in parentheses is a function call (unless
quoted)

– Parentheses are NOT just grouping, as they are in
Algol-family languages

• Adding a level of parentheses changes meaning

(+ 3 4) ⇒ 7
((+ 3 4))) ⇒ error
(the ' ⇒' arrow means 'evaluates to‘)

15

A Bit of Scheme

• Scheme:

– Boolean values #t and #f

– Numbers

– Lambda expressions

– Quoting

 (+ 3 4) ⇒ 7

 (quote (+ 3 4)) ⇒ (+ 3 4)

 '(+ 3 4) ⇒ (+ 3 4)

– Mechanisms for creating new scopes

 (let ((square (lambda (x) (* x x))) (plus +))

 (sqrt (plus (square a) (square b))))

16

A Bit of Scheme

• Scheme:

– conditional expressions

 (if (< x 0) (- 0 x)) ; if-then

 (if (< x y) x y) ; if-then-else

 (if (< 2 3) 4 5) ⇒ 4

 (cond

 ((< 3 2) 1)

 ((< 4 3) 2)

 (else 3)) ⇒ 3

– case selection

 (case month

((sep apr jun nov) 30)

 (feb) 28)

 (else 31)

)

17

A Bit of Scheme

• Scheme:

– Imperative stuff

• assignments

• sequencing (begin)

• iteration

• I/O (read, display)

18

A Bit of Scheme

•Scheme standard functions (this is not a complete

list):
–arithmetic

–boolean operators

–equivalence

–list operators

–symbol?

–number?

–complex?

–real?

–rational?

–integer?

19

A Bit of Scheme

•expressions
–Cambridge prefix notation for all Scheme expressions:

 (f x1 x2 … xn)

 (+ 2 2) ; evaluates to 4

 (+ (* 5 4) (- 6 2)) ; means 5*4 + (6-2)

 (define (Square x) (* x x)) ; defines a fn

 (define f 120) ; defines a global

–Note: Scheme comments begin with ;

Source: Tucker & Noonan (2007)

20

A Bit of Scheme

•expression evaluation

• three steps:

1. Replace names of symbols by their current bindings.

2. Evaluate lists as function calls in Cambridge prefix.

3. Constants evaluate to themselves.

 e.g.,

 x ; evaluates to 5

 (+ (* x 4) (- 6 2)) ; evaluates to 24

 5 ; evaluates to 5

 ‘red ; evaluates to ‘red

Source: Tucker & Noonan (2007)

21

A Bit of Scheme

• lists
–series of expressions enclosed in parentheses

–represent both functions and data

–empty list written as ()

–e.g., (0 2 4 6 8) is a list of even numbers

– stored as

Source: Tucker & Noonan (2007)

22

A Bit of Scheme

• list transforming functions
–using cons (construct):

 (cons 8 ()) ; gives (8)

 (cons 6 (cons 8 ())) ; gives (6 8)

 (cons 4 (cons 6 (cons 8 ()))) ; gives (4 6 8)

 (cons 4 (cons 6 (cons 8 9))) ; gives (4 6 8 . 9)

–Note: the last element of a list should be a null list

Source: Tucker & Noonan (2007)

23

A Bit of Scheme

• list transforming functions
–suppose we define the list evens to be (0 2 4 6 8), i.e., we write (define

evens ‘(0 2 4 6 8)). Then,

 (car evens) ; gives 0

 (cdr evens) ; gives (2 4 6 8)

 (cons 1 (cdr evens)) ; gives (1 2 4 6 8)

 (null? ‘()) ; gives #t, or true

 (equal? 5 ‘(5)) ; gives #f, or false

 (append ‘(1 3 5) evens) ; gives (1 3 5 0 2 4 6 8)

 (list ‘(1 3 5) evens) ; gives ((1 3 5) (0 2 4 6 8))

 Note: the last two lists are different!

Source: Tucker & Noonan (2007)

24

A Bit of Scheme

•more on car/cdr

(car (cdr (evens)) ; gives 2

(cadr evens) ; gives 2

(cdr (cdr (evens)) ; gives (4, 6, 8)

(cddr (evens) ; gives (4, 6, 8)

(car ‘(6 8)) ; gives 6

(car (cons 6 8)) ; gives 6

(car ‘(8)) ; gives 8

(cdr ‘(8)) ; gives ()

Source: Tucker & Noonan (2007)

25

A Bit of Scheme

•defining functions

(define (name arguments) function-body)

(define (min x y) (if (< x y) x y))

(define (abs x) (if (< x 0) (- 0 x) x))

define (factorial n)

 (if (< n 1) 1 (* n (factorial (- n 1)))

))

Note: be careful to match all parentheses

Source: Tucker & Noonan (2007)

26

A Bit of Scheme

•even simple tasks are accomplished recursively
((define (mystery1 alist)

 (if (null? alist) 0

 (+ (car alist) (mystery1 (cdr alist)))

))

(define (mystery2 alist)

 (if (null? alist) 0 (+ 1 (mystery2 (cdr

 alist)))

))

Source: Tucker & Noonan (2007)

27

A Bit of Scheme

•subst function

(define (subst y x alist)

 (if (null? alist) ‘())

 (if (equal? x (car alist))

 (cons y (subst y x (cdr alist)))

 (cons (car alist) (subst y x (cdr alist)))

)))

e.g., (subst ‘x 2 ‘(1 (2 3) 2))

 returns (1 (2 3) x)

Source: Tucker & Noonan (2007)

28

A Bit of Scheme

•let expressions allow simplification of function

definitions by defining intermediate expressions

(define (subst y x alist)

 (if (null? alist) ‘()

 (let ((head (car alist)) (tail (cdr alist)))

 (if (equal? x head)

 (cons y (subst y x tail))

 (cons head (subst y x tail))

)))

Source: Tucker & Noonan (2007)

29

A Bit of Scheme

• functions as arguments

• mapcar applies the function to each member of a list

(define (mapcar fun alist)

 (if (null? alist) ‘()

 (cons (fun (car alist))

 (mapcar fun (cdr alist)))

))

e.g., if (define (square x) (* x x)) then

 (mapcar square ‘(2 3 5 7 9)) returns

 (4 9 25 49 81)

 Source: Tucker & Noonan (2007)

30

A Bit of Scheme

 Example program - Symbolic Differentiation

•Symbolic Differentiation Rules



d

dx
(c)  0 c is a constant

d

dx
(x) 1

d

dx
(u v) 

du

dx

dv

dx
u and v are functions of x

d

dx
(u v) 

du

dx

dv

dx
d

dx
(uv)  u

dv

dx
 v
du

dx
d

dx
(u /v)  v

du

dx
 u
dv

dx









/v

2

Source: Tucker & Noonan (2007)

31

A Bit of Scheme

 Example program - Symbolic Differentiation

•Scheme encoding

1. Uses Cambridge Prefix notation

 e.g., 2x + 1 is written as (+ (* 2 x) 1)

2. Function diff incorporates these rules.

 e.g., (diff ‘x ‘(+ (* 2 x) 1)) should give

 an answer.

3. However, no simplification is performed.

 e.g. the answer for (diff ‘x ‘(+ (* 2 x) 1)) is

 (+ (+ (* 2 1) (* x 0)) 0)

 which is equivalent to the simplified answer, 2

Source: Tucker & Noonan (2007)

32

A Bit of Scheme

 Example program - Symbolic Differentiation

•Scheme program
 (define (diff x expr)

 (if (not (list? expr))

 (if (equal? x expr) 1 0)

 (let ((u (cadr expr)) (v (caddr expr)))

 (case (car expr)

 ((+) (list ‘+ (diff x u) (diff x v)))

 ((-) (list ‘- (diff x u) (diff x v)))

 ((*) (list ‘+ (list ‘* u (diff x v))

 (list ‘* v (diff x u))))

 ((/) (list ‘div (list ‘- (list ‘* v (diff x u))

 (list ‘* u (diff x v)))

 (list ‘* u v)))

))))

33

A Bit of Scheme

 Example program - Symbolic Differentiation

• trace of the program
 (diff ‘x ‘(+ ‘(* 2 x) 1))

 = (list ‘+ (diff ‘x ‘(*2 x)) (diff ‘x 1))

 = (list ‘+ (list ‘+ (list ‘* 2 (diff ‘x ‘x))

 (list ‘* x (diff ‘x 2)))

 (diff ‘x 1))

 = (list ‘+ (list ‘+ (list ‘* 2 1) (list ‘* x (diff ‘x 2)))

 (diff ‘x 1))

 = (list ‘+ (list ‘+ ‘(* 2 1) (list ‘* x (diff ‘x 2)))

 (diff ‘x 1))

 = (list ‘+ (list ‘+ ‘(* 2 1) (list ‘* x 0))(diff ‘x 1))

 = (list ‘+ (list ‘+ ‘(* 2 1) ‘(* x 0)(diff ‘x 1))

 = (list ‘+ ‘(‘+ ‘(* 2 1) ‘(* x 0))(diff ‘x 1))

 = (list ‘+ ‘(‘+ ‘(* 2 1) ‘(* x 0)) 0)

 = ‘(+ (+ (* 2 1) ‘(* x 0)) 0)

 Source: Tucker & Noonan (2007)

34

A Bit of Scheme

 Example program - Simulation of DFA

• We'll invoke the program by calling a function called

'simulate', passing it a DFA description and an input

string

– The automaton description is a list of three items:

• start state

• the transition function

• the set of final states

– The transition function is a list of pairs

• the first element of each pair is a pair, whose first element is a state

and whose second element in an input symbol

• if the current state and next input symbol match the

first element of a pair, then the finite automaton enters

the state given by the second element of the pair

35

A Bit of Scheme

 Example program - Simulation of DFA

36

A Bit of Scheme

 Example program - Simulation of DFA

37

A Bit of OCaml

• OCaml is a descendent of ML, and cousin to
Haskell, F#
– “O” stands for objective, referencing the object

orientation introduced in the 1990s
– Interpreter runs a read-eval-print loop like in

Scheme

– Things typed into the interpreter are evaluated
(recursively) once

– Parentheses are NOT function calls, but indicate
tuples

38

A Bit of OCaml

• Ocaml:

– Boolean values

– Numbers

– Chars

–Strings

–More complex types created by lists, arrays, records,

objects, etc.

–(+ - * /) for ints, (+. -. *. /.) for floats

– let keyword for creating new names

 let average = fun x y -> (x +. y) /. 2.;;

39

A Bit of OCaml

• Ocaml:
–Variant Types

 type 'a tree = Empty | Node of 'a * 'a tree * 'a tree;;

–Pattern matching

 let atomic_number (s, n, w) = n;;

 let mercury = ("Hg", 80, 200.592);;

 atomic_number mercury;; ⇒ 80

40

A Bit of OCaml

• OCaml:

– Different assignments for references ‘:=’ and array

elements ‘<-’

 let insertion_sort a =

 for i = 1 to Array.length a - 1 do

 let t = a.(i) in

 let j = ref i in

 while !j > 0 && t < a.(!j - 1) do

 a.(!j) <- a.(!j - 1);

 j := !j - 1

 done;

 a.(!j) <- t

 done;;

41

A Bit of OCaml

 Example program - Simulation of DFA

• We'll invoke the program by calling a function called

'simulate', passing it a DFA description and an input

string

– The automaton description is a record with three fields:

• start state

• the transition function

• the list of final states

– The transition function is a list of triples

• the first two elements are a state and an input symbol

•if these match the current state and next input, then the automaton

enters a state given by the third element

42

A Bit of OCaml

 Example program - Simulation of DFA

43

A Bit of OCaml

 Example program - Simulation of DFA

44

Evaluation Order Revisited

• Applicative order

– what you're used to in imperative languages

– usually faster

• Normal order

– like call-by-name: don't evaluate arg until you

need it

– sometimes faster

– terminates if anything will (Church-Rosser

theorem)

45

Evaluation Order Revisited

• In Scheme

– functions use applicative order defined with

lambda

– special forms (aka macros) use normal order

defined with syntax-rules

• A strict language requires all arguments to be

well-defined, so applicative order can be used

• A non-strict language does not require all

arguments to be well-defined; it requires

normal-order evaluation

46

Evaluation Order Revisited

• Lazy evaluation gives the best of both

worlds

• But not good in the presence of side effects.

– delay and force in Scheme

– delay creates a "promise"

47

High-Order Functions

• Higher-order functions

– Take a function as argument, or return a function

as a result

– Great for building things

– Currying (after Haskell Curry, the same guy

Haskell is named after)

• For details see Lambda calculus on CD

• ML, Miranda, OCaml, and Haskell have especially nice

syntax for curried functions

48

Functional Programming in Perspective

• Advantages of functional languages

– lack of side effects makes programs easier to

understand

– lack of explicit evaluation order (in some

languages) offers possibility of parallel evaluation

(e.g. MultiLisp)

– lack of side effects and explicit evaluation order

simplifies some things for a compiler (provided

you don't blow it in other ways)

– programs are often surprisingly short

– language can be extremely small and yet powerful

49

Functional Programming in Perspective

•Problems

–difficult (but not impossible!) to implement efficiently

on von Neumann machines

•lots of copying of data through parameters

•(apparent) need to create a whole new array in order to change

one element

•heavy use of pointers (space/time and locality problem)

•frequent procedure calls

•heavy space use for recursion

•requires garbage collection

•requires a different mode of thinking by the programmer

•difficult to integrate I/O into purely functional model

