
4/19/2018

1

Chapter 11 ::

Functional Languages

Programming Language Pragmatics

Michael L. Scott

Copyright © 2016 Elsevier

Historical Origins

• The imperative and functional models grew out

of work undertaken by Alan Turing, Alonzo

Church, Stephen Kleene, Emil Post, etc. ~1930s

– different formalizations of the notion of an algorithm,

or effective procedure, based on automata, symbolic

manipulation, recursive function definitions, and

combinatorics

• These results led Church to conjecture that any

intuitively appealing model of computing would

be equally powerful as well

– this conjecture is known as Church’s thesis

Historical Origins

• Turing’s model of computing was the Turing

machine a sort of pushdown automaton using

an unbounded storage “tape”

– the Turing machine computes in an imperative

way, by changing the values in cells of its tape –

like variables just as a high level imperative

program computes by changing the values of

variables

Historical Origins

• Church’s model of computing is called the

lambda calculus

– based on the notion of parameterized expressions

(with each parameter introduced by an occurrence of

the letter λ—hence the notation’s name.

– Lambda calculus was the inspiration for functional

programming

– one uses it to compute by substituting parameters

into expressions, just as one computes in a high level

functional program by passing arguments to

functions

Historical Origins

• Mathematicians established a distinction

between

– constructive proof (one that shows how to obtain a

mathematical object with some desired property)

– nonconstructive proof (one that merely shows that

such an object must exist, e.g., by contradiction)

• Logic programming is tied to the notion of

constructive proofs, but at a more abstract level

– the logic programmer writes a set of axioms that

allow the computer to discover a constructive proof

for each particular set of inputs

Functional Programming Concepts

• Functional languages such as Lisp, Scheme,

FP, ML, Miranda, and Haskell are an

attempt to realize Church's lambda calculus

in practical form as a programming language

• The key idea: do everything by composing

functions

– no mutable state

– no side effects

4/19/2018

2

Functional Programming Concepts

• Necessary features, many of which are

missing in some imperative languages

– 1st class and high-order functions

– serious polymorphism

– powerful list facilities

– structured function returns

– fully general aggregates

– garbage collection

Functional Programming Concepts

• So how do you get anything done in a functional

language?

– Recursion (especially tail recursion) takes the place of

iteration

– In general, you can get the effect of a series of
assignments

 x := 0 ...

 x := expr1 ...

 x := expr2 ...

from f3(f2(f1(0))), where each f expects the value of x

as an argument, f1 returns expr1, and f2 returns expr2

Functional Programming Concepts

• Recursion even does a nifty job of replacing
looping

 x := 0; i := 1; j := 100;

 while i < j do

 x := x + i*j;

 i := i + 1;

 j := j - 1

 end while

 return x

 becomes f(0,1,100), where

 f(x,i,j) == if i < j then

 f (x+i*j, i+1, j-1) else x

Functional Programming Concepts

• Thinking about recursion as a direct,

mechanical replacement for iteration,

however, is the wrong way to look at things

– One has to get used to thinking in a recursive

style

• Even more important than recursion is the

notion of higher-order functions

– Take a function as argument, or return a

function as a result

– Great for building things

Functional Programming Concepts

•Lisp also has the following (which are not

necessarily present in other functional languages)

–homo-iconography

–self-definition

–read-evaluate-print

•Variants of LISP

–Pure (original) Lisp

–Interlisp, MacLisp, Emacs Lisp

–Common Lisp

–Scheme

Functional Programming Concepts

• Pure Lisp is purely functional; all other Lisps
have imperative features

• All early Lisps dynamically scoped
– Not clear whether this was deliberate or if it happened

by accident

• Scheme and Common Lisp statically scoped
– Common Lisp provides dynamic scope as an option

for explicitly-declared special functions

– Common Lisp now THE standard Lisp

• Very big; complicated (The Ada of functional
programming)

4/19/2018

3

Functional Programming Concepts

• Scheme is a particularly elegant Lisp

• Other functional languages

– ML

– Miranda

– Haskell

– FP

• Haskell is the leading language for research

in functional programming

A Bit of Scheme

• As mentioned earlier, Scheme is a particularly
elegant Lisp
– Interpreter runs a read-eval-print loop

– Things typed into the interpreter are evaluated
(recursively) once

– Anything in parentheses is a function call (unless
quoted)

– Parentheses are NOT just grouping, as they are in
Algol-family languages

• Adding a level of parentheses changes meaning

(+ 3 4) ⇒ 7
((+ 3 4))) ⇒ error
(the ' ⇒' arrow means 'evaluates to‘)

A Bit of Scheme

• Scheme:

– Boolean values #t and #f

– Numbers

– Lambda expressions

– Quoting

 (+ 3 4) ⇒ 7

 (quote (+ 3 4)) ⇒ (+ 3 4)

 '(+ 3 4) ⇒ (+ 3 4)

– Mechanisms for creating new scopes

 (let ((square (lambda (x) (* x x))) (plus +))

 (sqrt (plus (square a) (square b))))

A Bit of Scheme

• Scheme:

– conditional expressions

 (if (< x 0) (- 0 x)) ; if-then

 (if (< x y) x y) ; if-then-else

 (if (< 2 3) 4 5) ⇒ 4

 (cond

 ((< 3 2) 1)

 ((< 4 3) 2)

 (else 3)) ⇒ 3

– case selection

 (case month

((sep apr jun nov) 30)

 (feb) 28)

 (else 31)

)

A Bit of Scheme

• Scheme:

– Imperative stuff

• assignments

• sequencing (begin)

• iteration

• I/O (read, display)

A Bit of Scheme

•Scheme standard functions (this is not a complete

list):
–arithmetic

–boolean operators

–equivalence

–list operators

–symbol?

–number?

–complex?

–real?

–rational?

–integer?

4/19/2018

4

A Bit of Scheme

•expressions
–Cambridge prefix notation for all Scheme expressions:

 (f x1 x2 … xn)

 (+ 2 2) ; evaluates to 4

 (+ (* 5 4) (- 6 2)) ; means 5*4 + (6-2)

 (define (Square x) (* x x)) ; defines a fn

 (define f 120) ; defines a global

–Note: Scheme comments begin with ;

Source: Tucker & Noonan (2007)

A Bit of Scheme

•expression evaluation

• three steps:

1. Replace names of symbols by their current bindings.

2. Evaluate lists as function calls in Cambridge prefix.

3. Constants evaluate to themselves.

 e.g.,

 x ; evaluates to 5

 (+ (* x 4) (- 6 2)) ; evaluates to 24

 5 ; evaluates to 5

 ‘red ; evaluates to ‘red

Source: Tucker & Noonan (2007)

A Bit of Scheme

• lists
–series of expressions enclosed in parentheses

–represent both functions and data

–empty list written as ()

–e.g., (0 2 4 6 8) is a list of even numbers

– stored as

Source: Tucker & Noonan (2007)

A Bit of Scheme

• list transforming functions
–using cons (construct):

 (cons 8 ()) ; gives (8)

 (cons 6 (cons 8 ())) ; gives (6 8)

 (cons 4 (cons 6 (cons 8 ()))) ; gives (4 6 8)

 (cons 4 (cons 6 (cons 8 9))) ; gives (4 6 8 . 9)

–Note: the last element of a list should be a null list

Source: Tucker & Noonan (2007)

A Bit of Scheme

• list transforming functions
–suppose we define the list evens to be (0 2 4 6 8), i.e., we write (define

evens ‘(0 2 4 6 8)). Then,

 (car evens) ; gives 0

 (cdr evens) ; gives (2 4 6 8)

 (cons 1 (cdr evens)) ; gives (1 2 4 6 8)

 (null? ‘()) ; gives #t, or true

 (equal? 5 ‘(5)) ; gives #f, or false

 (append ‘(1 3 5) evens) ; gives (1 3 5 0 2 4 6 8)

 (list ‘(1 3 5) evens) ; gives ((1 3 5) (0 2 4 6 8))

 Note: the last two lists are different!

Source: Tucker & Noonan (2007)

A Bit of Scheme

•more on car/cdr

(car (cdr (evens)) ; gives 2

(cadr evens) ; gives 2

(cdr (cdr (evens)) ; gives (4, 6, 8)

(cddr (evens) ; gives (4, 6, 8)

(car ‘(6 8)) ; gives 6

(car (cons 6 8)) ; gives 6

(car ‘(8)) ; gives 8

(cdr ‘(8)) ; gives ()

Source: Tucker & Noonan (2007)

4/19/2018

5

A Bit of Scheme

•defining functions

(define (name arguments) function-body)

(define (min x y) (if (< x y) x y))

(define (abs x) (if (< x 0) (- 0 x) x))

define (factorial n)

 (if (< n 1) 1 (* n (factorial (- n 1)))

))

Note: be careful to match all parentheses

Source: Tucker & Noonan (2007)

A Bit of Scheme

•even simple tasks are accomplished recursively
((define (mystery1 alist)

 (if (null? alist) 0

 (+ (car alist) (mystery1 (cdr alist)))

))

(define (mystery2 alist)

 (if (null? alist) 0 (+ 1 (mystery2 (cdr

 alist)))

))

Source: Tucker & Noonan (2007)

A Bit of Scheme

•subst function

(define (subst y x alist)

 (if (null? alist) ‘())

 (if (equal? x (car alist))

 (cons y (subst y x (cdr alist)))

 (cons (car alist) (subst y x (cdr alist)))

)))

e.g., (subst ‘x 2 ‘(1 (2 3) 2))

 returns (1 (2 3) x)

Source: Tucker & Noonan (2007)

A Bit of Scheme

•let expressions allow simplification of function

definitions by defining intermediate expressions

(define (subst y x alist)

 (if (null? alist) ‘()

 (let ((head (car alist)) (tail (cdr alist)))

 (if (equal? x head)

 (cons y (subst y x tail))

 (cons head (subst y x tail))

)))

Source: Tucker & Noonan (2007)

A Bit of Scheme

• functions as arguments

• mapcar applies the function to each member of a list

(define (mapcar fun alist)

 (if (null? alist) ‘()

 (cons (fun (car alist))

 (mapcar fun (cdr alist)))

))

e.g., if (define (square x) (* x x)) then

 (mapcar square ‘(2 3 5 7 9)) returns

 (4 9 25 49 81)

 Source: Tucker & Noonan (2007)

A Bit of Scheme

 Example program - Symbolic Differentiation

•Symbolic Differentiation Rules



d

dx
(c)  0 c is a constant

d

dx
(x) 1

d

dx
(u v) 

du

dx

dv

dx
u and v are functions of x

d

dx
(u v) 

du

dx

dv

dx
d

dx
(uv)  u

dv

dx
 v
du

dx
d

dx
(u /v)  v

du

dx
 u
dv

dx









/v

2

Source: Tucker & Noonan (2007)

4/19/2018

6

A Bit of Scheme

 Example program - Symbolic Differentiation

•Scheme encoding

1. Uses Cambridge Prefix notation

 e.g., 2x + 1 is written as (+ (* 2 x) 1)

2. Function diff incorporates these rules.

 e.g., (diff ‘x ‘(+ (* 2 x) 1)) should give

 an answer.

3. However, no simplification is performed.

 e.g. the answer for (diff ‘x ‘(+ (* 2 x) 1)) is

 (+ (+ (* 2 1) (* x 0)) 0)

 which is equivalent to the simplified answer, 2

Source: Tucker & Noonan (2007)

A Bit of Scheme

 Example program - Symbolic Differentiation

•Scheme program
 (define (diff x expr)

 (if (not (list? expr))

 (if (equal? x expr) 1 0)

 (let ((u (cadr expr)) (v (caddr expr)))

 (case (car expr)

 ((+) (list ‘+ (diff x u) (diff x v)))

 ((-) (list ‘- (diff x u) (diff x v)))

 ((*) (list ‘+ (list ‘* u (diff x v))

 (list ‘* v (diff x u))))

 ((/) (list ‘div (list ‘- (list ‘* v (diff x u))

 (list ‘* u (diff x v)))

 (list ‘* u v)))

))))

Source: Tucker & Noonan (2007)

A Bit of Scheme

 Example program - Symbolic Differentiation

• trace of the program
 (diff ‘x ‘(+ ‘(* 2 x) 1))

 = (list ‘+ (diff ‘x ‘(*2 x)) (diff ‘x 1))

 = (list ‘+ (list ‘+ (list ‘* 2 (diff ‘x ‘x))

 (list ‘* x (diff ‘x 2)))

 (diff ‘x 1))

 = (list ‘+ (list ‘+ (list ‘* 2 1) (list ‘* x (diff ‘x 2)))

 (diff ‘x 1))

 = (list ‘+ (list ‘+ ‘(* 2 1) (list ‘* x (diff ‘x 2)))

 (diff ‘x 1))

 = (list ‘+ (list ‘+ ‘(* 2 1) (list ‘* x 0))(diff ‘x 1))

 = (list ‘+ (list ‘+ ‘(* 2 1) ‘(* x 0)(diff ‘x 1))

 = (list ‘+ ‘(‘+ ‘(* 2 1) ‘(* x 0))(diff ‘x 1))

 = (list ‘+ ‘(‘+ ‘(* 2 1) ‘(* x 0)) 0)

 = ‘(+ (+ (* 2 1) ‘(* x 0)) 0)

 Source: Tucker & Noonan (2007)

A Bit of Scheme

 Example program - Simulation of DFA

• We'll invoke the program by calling a function called

'simulate', passing it a DFA description and an input

string

– The automaton description is a list of three items:

• start state

• the transition function

• the set of final states

– The transition function is a list of pairs

• the first element of each pair is a pair, whose first element is a state

and whose second element in an input symbol

• if the current state and next input symbol match the

first element of a pair, then the finite automaton enters

the state given by the second element of the pair

A Bit of Scheme

 Example program - Simulation of DFA

A Bit of Scheme

 Example program - Simulation of DFA

4/19/2018

7

A Bit of OCaml

• OCaml is a descendent of ML, and cousin to
Haskell, F#
– “O” stands for objective, referencing the object

orientation introduced in the 1990s
– Interpreter runs a read-eval-print loop like in

Scheme

– Things typed into the interpreter are evaluated
(recursively) once

– Parentheses are NOT function calls, but indicate
tuples

A Bit of OCaml

• Ocaml:

– Boolean values

– Numbers

– Chars

–Strings

–More complex types created by lists, arrays, records,

objects, etc.

–(+ - * /) for ints, (+. -. *. /.) for floats

– let keyword for creating new names

 let average = fun x y -> (x +. y) /. 2.;;

A Bit of OCaml

• Ocaml:
–Variant Types

 type 'a tree = Empty | Node of 'a * 'a tree * 'a tree;;

–Pattern matching

 let atomic_number (s, n, w) = n;;

 let mercury = ("Hg", 80, 200.592);;

 atomic_number mercury;; ⇒ 80

A Bit of OCaml

• OCaml:

– Different assignments for references ‘:=’ and array

elements ‘<-’

 let insertion_sort a =

 for i = 1 to Array.length a - 1 do

 let t = a.(i) in

 let j = ref i in

 while !j > 0 && t < a.(!j - 1) do

 a.(!j) <- a.(!j - 1);

 j := !j - 1

 done;

 a.(!j) <- t

 done;;

A Bit of OCaml

 Example program - Simulation of DFA

• We'll invoke the program by calling a function called

'simulate', passing it a DFA description and an input

string

– The automaton description is a record with three fields:

• start state

• the transition function

• the list of final states

– The transition function is a list of triples

• the first two elements are a state and an input symbol

•if these match the current state and next input, then the automaton

enters a state given by the third element

A Bit of OCaml

 Example program - Simulation of DFA

4/19/2018

8

A Bit of OCaml

 Example program - Simulation of DFA Evaluation Order Revisited

• Applicative order

– what you're used to in imperative languages

– usually faster

• Normal order

– like call-by-name: don't evaluate arg until you

need it

– sometimes faster

– terminates if anything will (Church-Rosser

theorem)

Evaluation Order Revisited

• In Scheme

– functions use applicative order defined with

lambda

– special forms (aka macros) use normal order

defined with syntax-rules

• A strict language requires all arguments to be

well-defined, so applicative order can be used

• A non-strict language does not require all

arguments to be well-defined; it requires

normal-order evaluation

Evaluation Order Revisited

• Lazy evaluation gives the best of both

worlds

• But not good in the presence of side effects.

– delay and force in Scheme

– delay creates a "promise"

High-Order Functions

• Higher-order functions

– Take a function as argument, or return a function

as a result

– Great for building things

– Currying (after Haskell Curry, the same guy

Haskell is named after)

• For details see Lambda calculus on CD

• ML, Miranda, OCaml, and Haskell have especially nice

syntax for curried functions

Functional Programming in Perspective

• Advantages of functional languages

– lack of side effects makes programs easier to

understand

– lack of explicit evaluation order (in some

languages) offers possibility of parallel evaluation

(e.g. MultiLisp)

– lack of side effects and explicit evaluation order

simplifies some things for a compiler (provided

you don't blow it in other ways)

– programs are often surprisingly short

– language can be extremely small and yet powerful

4/19/2018

9

Functional Programming in Perspective

•Problems

–difficult (but not impossible!) to implement efficiently

on von Neumann machines

•lots of copying of data through parameters

•(apparent) need to create a whole new array in order to change

one element

•heavy use of pointers (space/time and locality problem)

•frequent procedure calls

•heavy space use for recursion

•requires garbage collection

•requires a different mode of thinking by the programmer

•difficult to integrate I/O into purely functional model

