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Programming Languages
2nd edition

Tucker and Noonan

Chapter 15
Logic Programming

Q: How many legs does a dog have if you call its tail a leg?

A: Four.  Calling a tail a leg doesn’t make it one.

Abraham Lincoln
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15.1  Logic and Horn Clauses

A Horn clause has a head h, which is a predicate, and a 
body, which is a list of predicates p1, p2, …, pn.  

 It is written as:

   h  p1, p2, …, pn

This means, “h is true only if p1, p2, …, and pn are 
simultaneously true.”

E.g., the Horn clause:

    snowing(C)  precipitation(C), freezing(C) 

 says, “it is snowing in city C only if there is 
precipitation in city C and it is freezing in city C.”
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Horn Clauses and Predicates

Any Horn clause 

   h  p1, p2, …, pn

can be written as a predicate:

    p1  p2  …  pn → h

or equivalently:

    (p1  p2  …  pn)  h

But not every predicate can be written as a Horn clause.  

E.g., literate(x) → reads(x)  writes(x)
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Resolution and Unification

If h is the head of a Horn clause 

   h  terms

 and it matches one of the terms of another Horn clause:

   t  t1, h, t2 

 then that term can be replaced by h’s terms to form:

   t  t1, terms, t2 

During resolution, assignment of variables to values is 
called instantiation.

Unification is a pattern-matching process that determines 
what particular instantiations can be made to variables 
during a series of resolutions.
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Example

The two clauses: 

  speaks(Mary, English)

  talkswith(X, Y)  speaks(X, L), speaks(Y, L), XY

can resolve to:

  talkswith(Mary, Y)  speaks(Mary, English), 

         speaks(Y, English), MaryY

The assignment of values Mary and English to the 
variables X and L is an instantiation for which this 
resolution can be made.
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15.2 Logic Programming in Prolog

In logic programming the program declares the goals of 
the computation, not the method for achieving them.

Logic programming has applications in AI and databases.

– Natural language processing (NLP)

– Automated reasoning and theorem proving

– Expert systems (e.g., MYCIN)

– Database searching, as in SQL (Structured Query Language)

Prolog emerged in the 1970s.  Distinguishing features:

–  Nondeterminism

–  Backtracking
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15.2.1 Prolog Program Elements

Prolog programs are made from terms, which can be:

– Variables

– Constants

– Structures

Variables begin with a capital letter, like Bob.

Constants are either integers, like 24, or atoms, like the, zebra, 

‘Bob’, and ‘.’.

Structures are predicates with arguments, like:

  n(zebra), speaks(Y, English), and np(X, Y)

– The arity of a structure is its number of arguments (1, 2, and 2 

for these examples).
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Facts, Rules, and Programs

A Prolog fact is a Horn clause without a right-hand side.  Its form 

is (note the required period .):

   term.

A Prolog rule is a Horn clause with a right-hand side.  Its form is 

(note :- represents  and the required period .):

  term :- term1, term2, … termn.

A Prolog program is a collection of facts and rules.
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Example Program

speaks(allen, russian).

speaks(bob, english).

speaks(mary, russian).

speaks(mary, english).

talkswith(X, Y) :- speaks(X, L), speaks(Y, L), X \= Y.

This program has four facts and one rule.  

The rule succeeds for any instantiation of its variables in which all 

the terms on the right of := are simultaneously true. E.g., this 

rule succeeds for the instantiation X=allen, Y=mary, and 

L=russian.

For other instantiations, like X=allen and Y=bob, the rule fails.
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Searching for Success: Queries

A query is a fact or rule that initiates a search for success in a Prolog 

program. It specifies a search goal by naming variables that are 

of interest.   E.g.,

   ?- speaks(Who, russian).

 asks for an instantiation of the variable Who for which the query 

speaks(Who, russian) succeeds.

A program is loaded by the query consult, whose argument names 

the program.  E.g.,

   ?- consult(speaks).

 loads the program named speaks, given on the previous slide.
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Answering the Query: Unification

To answer the query:

  ?- speaks(Who, russian).

Prolog considers every fact and rule whose head is speaks.  
(If more than one, consider them in order.)

Resolution and unification locate all the successes:

 Who = allen ;

 Who = mary ;

 No

– Each semicolon (;) asks, “Show me the next success.”
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Search Trees

First attempt to satisfy the query ?- talkswith(Who, allen).

Fig 15.2
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Database Search - The Family Tree
Fig 15.4
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Prolog Program
Fig 15.3

mother(mary, sue).

mother(mary, bill).

mother(sue, nancy).

mother(sue, jeff).

mother(jane, ron).

parent(A,B) :- father(A,B).

parent(A,B) :- mother(A,B).

grandparent(C,D) :- parent(C,E), parent(E,D).

father(john, sue).

father(john, bill).

father(bob, nancy).

father(bob, jeff).

father(bill, ron).
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Some Database Queries

Who are the parents of jeff?

 ?- parent(Who, jeff).

 Who = bob;

 Who = sue

Find all the grandparents of Ron.

 ?- grandparent(Who, ron).

 

What about siblings?  Those are the pairs who have the 
same parents.

 ?- sibling(X, Y) :- parent(W, X), parent(W, Y), X\=Y.
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Lists

A list is a series of terms separated by commas and 
enclosed in brackets.

– The empty list is written [].

– The sentence “The giraffe dreams” can be written as a list: 

[the, giraffe, dreams]

– A “don’t care” entry is signified by _, as in

[_, X, Y] 

– A list can also be written in the form:

  [Head | Tail]

– The functions

 append joins two lists, and 

 member tests for list membership.
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append Function

append(X, [], X).

append([Head | Tail], Y, [Head | Z]) :-  append(Tail, Y, Z).

This definition says:

  1.  Appending the empty list to any list (X) returns an 

     unchanged list (X again).

 2.  If Y is appended to Tail to get Z, then a list one element

          larger [Head | Tail] can be appended with Y to get 

           [Head | Z].

Note: The last parameter designates the result of the function.  So a 

variable must be passed as an argument.
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member Function

member(X, [X | _]).

member(X, [_ | Y]) :- member(X, Y).

The test for membership succeeds if either:

 1.  X is the head of the list [X | _]

 2.  X is not the head of the list [_ | Y] , but X is a member of

    the list Y.

Notes: pattern matching governs tests for equality.

  Don’t care entries (_) mark parts of a list that aren’t 

important to the rule.
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More List Functions

X is a prefix of Z if there is a list Y that can be appended to X to make Z; i.e.,

 prefix(X, Z) :- append(X, Y, Z).

Similarly, Y is a suffix of Z if there is a list X to which Y can be appended to 

make Z; i.e.,:

 suffix(Y, Z) :- append(X, Y, Z).

So finding all the prefixes (suffixes) of a list is easy.  e.g.:

 ?- prefix(X, [my, dog, has, fleas]).

 X = [];

 X = [my];

 X = [my, dog];

 …
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