
Copyright © 2006 The McGraw-Hill Companies, Inc.

1

Programming Languages
2nd edition

Tucker and Noonan

Chapter 15
Logic Programming

Q: How many legs does a dog have if you call its tail a leg?

A: Four. Calling a tail a leg doesn’t make it one.

Abraham Lincoln

Copyright © 2006 The McGraw-Hill Companies, Inc.

2

Contents

15.1 Logic and Horn Clauses

15.2 Logic Programming in Prolog

15.2.1 Prolog Program Elements

15.2.2 Practical Aspects of Prolog

15.3 Prolog Examples

15.3.1 Symbolic Differentiation

15.3.2 Solving Word Puzzles

15.3.3 Natural Language Processing

15.3.4 Semantics of Clite

15.3 5 Eight Queens Problem

Copyright © 2006 The McGraw-Hill Companies, Inc.

3

15.1 Logic and Horn Clauses

A Horn clause has a head h, which is a predicate, and a
body, which is a list of predicates p1, p2, …, pn.

 It is written as:

 h  p1, p2, …, pn

This means, “h is true only if p1, p2, …, and pn are
simultaneously true.”

E.g., the Horn clause:

 snowing(C)  precipitation(C), freezing(C)

 says, “it is snowing in city C only if there is
precipitation in city C and it is freezing in city C.”

Copyright © 2006 The McGraw-Hill Companies, Inc.

4

Horn Clauses and Predicates

Any Horn clause

 h  p1, p2, …, pn

can be written as a predicate:

 p1  p2  …  pn → h

or equivalently:

 (p1  p2  …  pn)  h

But not every predicate can be written as a Horn clause.

E.g., literate(x) → reads(x)  writes(x)

Copyright © 2006 The McGraw-Hill Companies, Inc.

5
Resolution and Unification

If h is the head of a Horn clause

 h  terms

 and it matches one of the terms of another Horn clause:

 t  t1, h, t2

 then that term can be replaced by h’s terms to form:

 t  t1, terms, t2

During resolution, assignment of variables to values is
called instantiation.

Unification is a pattern-matching process that determines
what particular instantiations can be made to variables
during a series of resolutions.

Copyright © 2006 The McGraw-Hill Companies, Inc.

6

Example

The two clauses:

 speaks(Mary, English)

 talkswith(X, Y)  speaks(X, L), speaks(Y, L), XY

can resolve to:

 talkswith(Mary, Y)  speaks(Mary, English),

 speaks(Y, English), MaryY

The assignment of values Mary and English to the
variables X and L is an instantiation for which this
resolution can be made.

Copyright © 2006 The McGraw-Hill Companies, Inc.

7

15.2 Logic Programming in Prolog

In logic programming the program declares the goals of
the computation, not the method for achieving them.

Logic programming has applications in AI and databases.

– Natural language processing (NLP)

– Automated reasoning and theorem proving

– Expert systems (e.g., MYCIN)

– Database searching, as in SQL (Structured Query Language)

Prolog emerged in the 1970s. Distinguishing features:

– Nondeterminism

– Backtracking

Copyright © 2006 The McGraw-Hill Companies, Inc.

8
15.2.1 Prolog Program Elements

Prolog programs are made from terms, which can be:

– Variables

– Constants

– Structures

Variables begin with a capital letter, like Bob.

Constants are either integers, like 24, or atoms, like the, zebra,

‘Bob’, and ‘.’.

Structures are predicates with arguments, like:

 n(zebra), speaks(Y, English), and np(X, Y)

– The arity of a structure is its number of arguments (1, 2, and 2

for these examples).

Copyright © 2006 The McGraw-Hill Companies, Inc.

9

Facts, Rules, and Programs

A Prolog fact is a Horn clause without a right-hand side. Its form

is (note the required period .):

 term.

A Prolog rule is a Horn clause with a right-hand side. Its form is

(note :- represents  and the required period .):

 term :- term1, term2, … termn.

A Prolog program is a collection of facts and rules.

Copyright © 2006 The McGraw-Hill Companies, Inc.

10
Example Program

speaks(allen, russian).

speaks(bob, english).

speaks(mary, russian).

speaks(mary, english).

talkswith(X, Y) :- speaks(X, L), speaks(Y, L), X \= Y.

This program has four facts and one rule.

The rule succeeds for any instantiation of its variables in which all

the terms on the right of := are simultaneously true. E.g., this

rule succeeds for the instantiation X=allen, Y=mary, and

L=russian.

For other instantiations, like X=allen and Y=bob, the rule fails.

Copyright © 2006 The McGraw-Hill Companies, Inc.

11
Searching for Success: Queries

A query is a fact or rule that initiates a search for success in a Prolog

program. It specifies a search goal by naming variables that are

of interest. E.g.,

 ?- speaks(Who, russian).

 asks for an instantiation of the variable Who for which the query

speaks(Who, russian) succeeds.

A program is loaded by the query consult, whose argument names

the program. E.g.,

 ?- consult(speaks).

 loads the program named speaks, given on the previous slide.

Copyright © 2006 The McGraw-Hill Companies, Inc.

12

Answering the Query: Unification

To answer the query:

 ?- speaks(Who, russian).

Prolog considers every fact and rule whose head is speaks.
(If more than one, consider them in order.)

Resolution and unification locate all the successes:

 Who = allen ;

 Who = mary ;

 No

– Each semicolon (;) asks, “Show me the next success.”

Copyright © 2006 The McGraw-Hill Companies, Inc.

13
Search Trees

First attempt to satisfy the query ?- talkswith(Who, allen).

Fig 15.2

Copyright © 2006 The McGraw-Hill Companies, Inc.

14
Database Search - The Family Tree
Fig 15.4

Copyright © 2006 The McGraw-Hill Companies, Inc.

15

Prolog Program
Fig 15.3

mother(mary, sue).

mother(mary, bill).

mother(sue, nancy).

mother(sue, jeff).

mother(jane, ron).

parent(A,B) :- father(A,B).

parent(A,B) :- mother(A,B).

grandparent(C,D) :- parent(C,E), parent(E,D).

father(john, sue).

father(john, bill).

father(bob, nancy).

father(bob, jeff).

father(bill, ron).

Copyright © 2006 The McGraw-Hill Companies, Inc.

16
Some Database Queries

Who are the parents of jeff?

 ?- parent(Who, jeff).

 Who = bob;

 Who = sue

Find all the grandparents of Ron.

 ?- grandparent(Who, ron).

What about siblings? Those are the pairs who have the
same parents.

 ?- sibling(X, Y) :- parent(W, X), parent(W, Y), X\=Y.

Copyright © 2006 The McGraw-Hill Companies, Inc.

17
Lists

A list is a series of terms separated by commas and
enclosed in brackets.

– The empty list is written [].

– The sentence “The giraffe dreams” can be written as a list:

[the, giraffe, dreams]

– A “don’t care” entry is signified by _, as in

[_, X, Y]

– A list can also be written in the form:

 [Head | Tail]

– The functions

 append joins two lists, and

 member tests for list membership.

Copyright © 2006 The McGraw-Hill Companies, Inc.

18

append Function

append(X, [], X).

append([Head | Tail], Y, [Head | Z]) :- append(Tail, Y, Z).

This definition says:

 1. Appending the empty list to any list (X) returns an

 unchanged list (X again).

 2. If Y is appended to Tail to get Z, then a list one element

 larger [Head | Tail] can be appended with Y to get

 [Head | Z].

Note: The last parameter designates the result of the function. So a

variable must be passed as an argument.

Copyright © 2006 The McGraw-Hill Companies, Inc.

19

member Function

member(X, [X | _]).

member(X, [_ | Y]) :- member(X, Y).

The test for membership succeeds if either:

 1. X is the head of the list [X | _]

 2. X is not the head of the list [_ | Y] , but X is a member of

 the list Y.

Notes: pattern matching governs tests for equality.

 Don’t care entries (_) mark parts of a list that aren’t

important to the rule.

Copyright © 2006 The McGraw-Hill Companies, Inc.

20
More List Functions

X is a prefix of Z if there is a list Y that can be appended to X to make Z; i.e.,

 prefix(X, Z) :- append(X, Y, Z).

Similarly, Y is a suffix of Z if there is a list X to which Y can be appended to

make Z; i.e.,:

 suffix(Y, Z) :- append(X, Y, Z).

So finding all the prefixes (suffixes) of a list is easy. e.g.:

 ?- prefix(X, [my, dog, has, fleas]).

 X = [];

 X = [my];

 X = [my, dog];

 …

	Slide 1: Programming Languages 2nd edition Tucker and Noonan
	Slide 2: Contents
	Slide 3: 15.1 Logic and Horn Clauses
	Slide 4: Horn Clauses and Predicates
	Slide 5: Resolution and Unification
	Slide 6: Example
	Slide 7: 15.2 Logic Programming in Prolog
	Slide 8: 15.2.1 Prolog Program Elements
	Slide 9: Facts, Rules, and Programs
	Slide 10: Example Program
	Slide 11: Searching for Success: Queries
	Slide 12: Answering the Query: Unification
	Slide 13: Search Trees
	Slide 14: Database Search - The Family Tree Fig 15.4
	Slide 15: Prolog Program
	Slide 16: Some Database Queries
	Slide 17: Lists
	Slide 18: append Function
	Slide 19: member Function
	Slide 20: More List Functions

