

Copyright © 2006 The McGraw-Hill Companies, Inc.

1

Programming Languages
2nd edition

Tucker and Noonan

Chapter 15
Logic Programming

Q: How many legs does a dog have if you call its tail a leg?

A: Four. Calling a tail a leg doesn’t make it one.

 Abraham Lincoln

Copyright © 2006 The McGraw-Hill Companies, Inc.

2

Contents

15.1 Logic and Horn Clauses

15.2 Logic Programming in Prolog

15.2.1 Prolog Program Elements

15.2.2 Practical Aspects of Prolog

15.3 Prolog Examples

15.3.1 Symbolic Differentiation

15.3.2 Solving Word Puzzles

15.3.3 Natural Language Processing

15.3.4 Semantics of Clite

15.3 5 Eight Queens Problem

Copyright © 2006 The McGraw-Hill Companies, Inc.

3

15.3.3 Natural Language Processing

• BNF can define natural language (e.g., English)
syntax.

- This was the original purpose of BNF when it was

invented by Chomsky in 1957.

• A Prolog program can model a BNF grammar.

- This was an original purpose of Prolog when it was

designed in the 1970s.

• A Prolog list can model a sentence.

- E.g., [the, giraffe, dreams]

• So running the program can parse a sentence.

Copyright © 2006 The McGraw-Hill Companies, Inc.

4
 NLP Example

Consider the following BNF grammar and parse tree:

 s  np vp

 np  det n

 vp  tv np

  iv

 det  the

 n  giraffe

  apple

 iv  dreams

 tv  eats

Here, s, np, vp, det, n , iv, and tv denote “sentence,” “noun phrase,” “verb

phrase,” “determiner,” “noun,” “intransitive verb,” and “transitive verb.”

Copyright © 2006 The McGraw-Hill Companies, Inc.

5
 Prolog Encoding (naïve version)

s(X, Y) :- np(X, U), vp(U, Y).

np(X, Y) :- det(X, U), n(U, Y).

vp(X, Y) :- iv(X, Y).

vp(X, Y) :- tv(X, U), np(U, Y).

det([the | Y], Y).

n([giraffe | Y], Y).

n([apple | Y], Y).

iv([dreams | Y], Y).

tv([eats | Y], Y).

The first rule reads, “list X is a sentence leaving tail Y if X is a noun

phrase leaving tail U and U is a verb phrase leaving tail Y.”

Copyright © 2006 The McGraw-Hill Companies, Inc.

6
 Example Trace

?- s([the, giraffe, dreams],[]).

Call: (7) s([the, giraffe dreams], []) ?

Call: (8) np([the, giraffe, dreams], _L131) ?

Call: (9) det([the, giraffe, dreams], _L143) ?

Exit: (9) det([the, giraffe, dreams], [giraffe, dreams]) ?

Call: (9) n([giraffe, dreams], _L131) ?

Exit: (9) n([giraffe, dreams], [dreams]) ?

Exit: (8) np([the, giraffe, dreams], [dreams]) ?

Call: (8) vp([dreams], []) ?

Call: (9) iv([dreams], []) ?

Exit: (9) iv([dreams], []) ?

Exit: (8) vp([dreams], []) ?

Exit: (7) s([the, giraffe, dreams], []) ?

Yes

The query asks, “can you

resolve [the, giraffe, dreams]

as an s, leaving tail []?”

The result is success.

Copyright © 2006 The McGraw-Hill Companies, Inc.

7

Definite Clause Grammars (DCGs)

s --> np, vp.
np --> det, n.
vp --> iv.
vp --> tv, np.
det --> [the].
n --> [giraffe].
n --> [apple].
iv --> [dreams].
tv --> [eats].

Note: This form looks more like a series of BNF rules,
and it’s simple to write!

This replaces

 s(X, Y) :- np(X, U), vp(U, V).

but it means the same thing.

Copyright © 2006 The McGraw-Hill Companies, Inc.

8
 Generating Parse Trees

Terms and variables can be added to the DCG rules so
that a parse tree can be generated from a query.

e.g., if we change

 s --> np, vp.

to

 s(s(NP, VP)) --> np(NP), vp(VP).

the variables NP and VP can capture intermediate subtrees.

When all rules are augmented in this way, the query

 ?- s(Tree, [the, giraffe, dreams], []).

delivers the parse tree as a parenthesized list:

 Tree = s(np(det(the), n(giraffe)), vp(iv(dreams)))

Copyright © 2006 The McGraw-Hill Companies, Inc.

9
 15.3.4 Semantics of Clite

Program state can be modeled as a list of pairs. E.g.,

 [[x,1], [y,5]]

Function to retrieve the value of a variable from the state:

 get(Var, [[Var, Val] | _], Val).

 get(Var, [_ | Rest], Val) :- get(Var, Rest, Val).

e.g.,

 ?- get(y, [[x, 5], [y, 3], [z, 1]], V).

 V = 3

Copyright © 2006 The McGraw-Hill Companies, Inc.

10

Function to store a new value for a variable in the state:

 onion(Var, Val, [[Var, _] | Rest], [[Var, Val] | Rest]).

 onion(Var, Val, [Xvar | Rest], [Xvar | OState]) :-

 onion(Var, Val, Rest, OState).

Note: second and third arguments denote the input and
output states, resp.

E.g.,

 ?- onion(y, 4, [[x, 5], [y, 3], [z, 1]], S).

 S = [[x, 5], [y, 4], [z, 1]]

State transformation

Copyright © 2006 The McGraw-Hill Companies, Inc.

11

Modeling Clite Abstract Syntax

Skip skip

Assignment assignment(target, source)

Block block([s1, …, sn])

Loop loop(test, body)

Conditional conditional(test, thenbranch, elsebranch)

Expression

 Value value(val)

 Variable variable(id)

 Binary operator(term1, term2)

 where operator is one of plus, times,

 minus, div, lt, le, eq, ne, gt, ge

Copyright © 2006 The McGraw-Hill Companies, Inc.

12
 Semantics of Statements

General form: minstruction(statement, inState, outState)

minstruction(skip, State, State).

minstruction(assignment(Var, Expr), InState, OutState) :-

 mexpression(Expr, InState, Val),

 onion(Var, Val, InState, OutState).

Notes: skip leaves the state unchanged.

 For an assignment, the expression is first evaluated and the

variable Val is instantiated.

 Next, the target variable (Var) is assigned this value using the

onion function.

Copyright © 2006 The McGraw-Hill Companies, Inc.

13
 Conditional, Loop, and Block

minstruction(conditional(Test, Thenbranch, Elsebranch), InState,
OutState) :-

/* First, evaluate test. If it succeeds, Outstate is the meaning of
Thenbranch in inState. Otherwise, it is the meaning of Elsebranch. */

minstruction(loop(Test, Body), InState, OutState) :-

/* First, evaluate test. If it succeeds, OutState is the meaning of loop with
InState the meaning of Body in InState. Otherwise, OutState is the
InState. */

minstruction(block([Head | Tail]), InState, OutState) :-

/* If Tail = [], then OutState is the meaning of Head. Otherwise, it is the
meaning of block([Tail]) with InState the meaning of Head. */

Copyright © 2006 The McGraw-Hill Companies, Inc.

14
 Expression

mexpression(value(Val), _, Val).

mexpression(variable(Var), State, Val) :-

 get(Var, State, Val).

mexpression(plus(Expr1, Expr2), State, Val) :-

 mexpression(Expr1, State, Val1),

 mexpression(Expr2, State, Val2),

 Val is Val1 + Val2.

…

Note the creation of temporary variables Val1 and Val2, and the

final assignment of their sum.

Copyright © 2006 The McGraw-Hill Companies, Inc.

15
 To Do:

1. Show that these definitions give 5 as the meaning of y+2 in the state

((x 5) (y 3) (z 1)). I.e., show that

 mexpression(plus(variable(y), value(2)), [[x,5], [y,3], [z,1]], Val)

 …

 Val = 5

2. Complete the definition of minstruction for conditionals, loops,

and blocks.

Copyright © 2006 The McGraw-Hill Companies, Inc.

16

15.3.5 Eight Queens Problem

A backtracking algorithm for which

each trial move’s:

1. Row must not be occupied,

2. Row and column’s SW diagonal

must not be occupied, and

3. Row and column’s SE diagonal

must not be occupied.

If a trial move fails any of these tests,

the program backtracks and tries

another. The process continues

until each row has a queen (or

until all moves have been tried).

Copyright © 2006 The McGraw-Hill Companies, Inc.

17

Modeling the Solution

• Board is NxN. Goal is to find all solutions.

• For some values of N (e.g., N=2) there are no solutions.

• Rows and columns use zero-based indexing.

• Positions of the queens in a list Answer whose ith entry gives

the row position of the queen in column i, in reverse order.

E.g., Answer = [4, 2, 0] represents queens in (row, column)

positions (0,0), (2,1), and (4,2); see earlier slide.

• End of the program occurs when Answer has N entries or 0

entries (if there is no solution).

• Game played using the query:

?- queens(N, Answer).

Copyright © 2006 The McGraw-Hill Companies, Inc.

18
 Generating a Solution

solve(N, Col, RowList, _, _, RowList) :-

 Col >= N.

solve(N, Col, RowList, SwDiagList, SeDiagList, Answer) :-

 Col < N,

 place(N, 0, Col, RowList, SwDiagList, SeDiagList, Row),

 getDiag(Row, Col, SwDiag, SeDiag),

 NextCol is Col + 1,

 solve(N, NextCol, [Row | RowList], [SwDiag | SwDiagList],

 [SeDiag | SeDiagList], Answer).

Copyright © 2006 The McGraw-Hill Companies, Inc.

19
 Generating SW and SE Diagonals

getDiag(Row, Col, SwDiag, SeDiag) :-

 SwDiag is Row + Col, SeDiag is Row - Col.

Copyright © 2006 The McGraw-Hill Companies, Inc.

20
 Generating a Safe Move

place(N, Row, Col, RowList, SwDiagList, SeDiagList, Row) :-

 Row < N,

 getDiag(Row, Col, SeDiag, SwDiag),

 valid(Row, SeDiag, SwDiag, RowList, SwDiagList, SeDiagList).

place(N, Row, Col, RowList, SwDiagList, SeDiagList, Answer) :-

 NextRow is Row + 1,

 NextRow < N,

 place(N, NextRow, Col, RowList, SwDiagList, SeDiagList, Answer).

Copyright © 2006 The McGraw-Hill Companies, Inc.

21
 Checking for a Valid Move

valid(_, _, _, []).

valid(TrialRow, TrialSwDiag, TrialSeDiag, RowList,

 SwDiagList, SeDiagList) :-

 not(member(TrialRow, RowList)),

 not(member(TrialSwDiag, SwDiagList)),

 not(member(TrialSeDiag, SeDiagList)).

Note: RowList is a list of rows already occupied.

Copyright © 2006 The McGraw-Hill Companies, Inc.

22
 Sample Runs

?- queens(1, R).

R = [0].

no

?- queens(2, R).

no

?- queens(3, R).

no

?- queens(4, R).

R = [2,0,3,1];

R = [1,3,0,2];

no

4x4 board has

two solutions

2x2 and 3x3

boards have

no solutions

1x1 board has

one solution

