
Chapter 1 :: Introduction

Programming Language Pragmatics

Michael L. Scott

Copyright © 2005 Elsevier

Introduction: History

1804 Joseph Marie Jacquard patents card-controlled loom

1842 Ada Lovelace proposes implementation of algorithm for the
 Analytical Engine

1889 Herman Hollerith tabulation machine patented; revolutionizes
 the US Census of 1890

1908 Player piano rolls standardized

1945 ENIAC (Electronic Numerical Integrator and Computer), first
 modern digital computer, completed

1947 Kathleen and Andrew Booth introduce the idea of assembly
 language

1951 The first commercial digital computers, the Ferranti Mark 1 (UK)
 and the Remington Rand UNIVAC I (USA) are introduced

1952 The IBM 704 computer is introduced

Copyright © 2005 Elsevier

Introduction: History

Programming ENIAC involved rewiring it!

Copyright © 2005 Elsevier

Introduction

• early computers (1940s)

– cost millions of dollars

– programmed in machine language

• bit sequences to perform low-level tasks

• close to hardware

• tedious

– machine’s time more valuable than programmer’s

Copyright © 2005 Elsevier

Introduction

• example: Euclid’s algorithm for GCD

Copyright © 2005 Elsevier

Introduction

• less error-prone method needed

– assembly language: binary operations expressed with mnemonic
abbreviations

Copyright © 2005 Elsevier

Introduction

• assembly language is specific to a certain machine, however

– tedious to re-write code for each computer type

– machine-independent language desired

– Fortran (mid-1950s) used a compiler to bridge the gap between
high-level language and machine-dependent code

– many other languages followed:

 1957 Fortran 1966 Apl 1980 Ada

 1959 Cobol 1967 Snobol 4 1983 Standard ML

 1960 Algol 60 1970 Pascal 1987 Haskell

 1960 Lisp 1972 C …

 1964 PL/I 1972 Smalltalk

 1964 Basic 1975 Scheme

Copyright © 2005 Elsevier

Introduction

• Why are there so many programming languages?

– we've learned better ways of doing things over time

– socio-economic factors: proprietary interests, commercial
advantage

– orientation toward special purposes

– orientation toward special hardware

– diverse ideas about what is pleasant to use

Copyright © 2005 Elsevier

Introduction

• What makes a language successful?

– easy to learn (BASIC, Pascal, Scheme, Python)

– easy to express things, easy to use once fluent, "powerful" (C,
Algol-68, Perl)

– easy to implement (BASIC)

– possible to compile to very good (fast/small) code (Fortran)

– backing of a powerful sponsor (COBOL, PL/1, Ada, C#)

– wide dissemination at minimal cost (Pascal, Java)

Copyright © 2005 Elsevier

Introduction

• Why do we have programming languages? What is a language for?

– way of thinking -- way of expressing algorithms

– languages from the user's point of view

– abstraction of virtual machine -- way of specifying what you want the
hardware to do without getting down into the bits

– languages from the implementor's point of view

Copyright © 2005 Elsevier

Why study programming languages?

• studying programming languages can help you choose the right language
for an application

• makes it easier to learn new languages

– some languages are similar

– concepts have even more similarity

• if you think in terms of iteration, recursion, abstraction (for
example), you will find it easier to assimilate the syntax and
semantic details of a new language than if you try to pick it up in a
vacuum

• think of an analogy to human languages: good grasp of grammar
makes it easier to pick up new languages (at least Indo-European)

Copyright © 2005 Elsevier

Why study programming languages?

• helps you make better use of whatever language you use

– understanding implementation costs: choosing between alternative
ways of doing things

• using simple arithmetic (use x*x instead of x**2)

• avoiding call by value with large data items in C

– figuring out how to do things in languages that don't support them
explicitly

• lack of recursion in Fortran

– write a recursive algorithm then use mechanical recursion
elimination

• lack of modules in C and Pascal

– use comments and programmer discipline

• lack of iterators in just about everything

– fake them with (member) functions

Copyright © 2005 Elsevier

Programming Language Paradigms

• four categories

– imperative Fortran, Pascal, Basic, C

– object-oriented C++, Java, Smalltalk

– functional Haskell, Scheme, Lisp

– logic Prolog

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• compilation vs. interpretation

– not opposites

– not a clear-cut distinction

• pure compilation

– compiler translates a high-level source program into an
equivalent target program (typically in machine language), and
then goes away

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• pure interpretation

– interpreter stays around for the execution of the program

– interpreter is the locus of control during execution

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• interpretation

– greater flexibility

– better diagnostics (error messages)

• compilation

– better performance

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• some language implementations include a mixture of both
compilation and interpretation

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• note that compilation does NOT have to produce machine language for
some sort of hardware

• compilation is translation from one language into another, with full analysis
of the meaning of the input

• unconventional compilers

– text formatters (LaTex)

– silicon compilers

– query language processors

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• many compiled languages have interpreted pieces
– print formats in C

• some compilers produce nothing but virtual instructions
– Java byte code

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• many compilers are self-hosting

– they are written in the language they compile

– e.g., C compiler written in C

• how?

– bootstrapping

– write small interpreter

– hand-translate small number of statements into assembly

– extend through incremental runs of the compiler through itself

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• implementation strategies

– preprocessor

• removes comments and white space

• groups characters into tokens (keywords, identifiers,
numbers, symbols)

• expands abbreviations in the style of a macro assembler

• identifies higher-level syntactic structures (loops, subroutines)

• a pre-processor will often let errors through

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• implementation strategies (cont.)

– library of routines and linking

• compiler uses a linker program to merge the appropriate library of
subroutines (e.g., math functions such as sin, cos, log, etc.) into
the final program

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• implementation strategies (cont.)

– post-compilation assembly

• facilitates debugging (assembly language easier for people to
read)

• isolates the compiler from changes in the format of machine
language files (only assembler must be changed, is shared by
many compilers)

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• implementation strategies (cont.)

– the C preprocessor (conditional compilation)

• preprocessor deletes portions of code, which allows several
versions of a program to be built from the same source

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• implementation strategies (cont.)

– source-to-source translation (C++)

• C++ implementations based on the early AT&T compiler
generated an intermediate program in C, instead of an
assembly language

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• implementation strategies (cont.)

– compilation of interpreted languages

• the compiler generates code that makes assumptions about

decisions that won’t be finalized until runtime

• if these assumptions are valid, the code runs very fast; if not,

a dynamic check will revert to the interpreter

– compilers exist for some interpreted languages, but not pure

• selective compilation of compilable pieces and extra-
sophisticated pre-processing of remaining source

• interpretation of parts of code, at least, is still necessary for
reasons above

Copyright © 2005 Elsevier

Compilation vs. Interpretation

• implementation strategies (cont.)

– dynamic and just-in-time compilation

• in some cases a programming system may deliberately delay
compilation until the last possible moment

– Lisp or Prolog invoke the compiler on the fly, to translate
newly created source into machine language, or to
optimize the code for a particular input set

– the Java language definition defines a machine-
independent intermediate form known as byte code;
byte code is the standard format for distribution of Java
programs

– the main C# compiler produces .NET Common
Intermediate Language (CIL), which is then translated
into machine code immediately prior to execution

Copyright © 2005 Elsevier

An Overview of Compilation

• Phases of Compilation

Copyright © 2005 Elsevier

Course Overview

• Introduction

• Scanning and Parsing

• Imperative Languages: C

• Object-oriented Languages: C++

• Functional Languages: Haskell

• Logic Languages: Prolog

	Slide 1
	Slide 2: Introduction: History
	Slide 3: Introduction: History
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Introduction
	Slide 8: Introduction
	Slide 9: Introduction
	Slide 10: Introduction
	Slide 11: Why study programming languages?
	Slide 12: Why study programming languages?
	Slide 13: Programming Language Paradigms
	Slide 14: Compilation vs. Interpretation
	Slide 15: Compilation vs. Interpretation
	Slide 16: Compilation vs. Interpretation
	Slide 17: Compilation vs. Interpretation
	Slide 18: Compilation vs. Interpretation
	Slide 19: Compilation vs. Interpretation
	Slide 20: Compilation vs. Interpretation
	Slide 21: Compilation vs. Interpretation
	Slide 22: Compilation vs. Interpretation
	Slide 23: Compilation vs. Interpretation
	Slide 24: Compilation vs. Interpretation
	Slide 25: Compilation vs. Interpretation
	Slide 26: Compilation vs. Interpretation
	Slide 27: Compilation vs. Interpretation
	Slide 28: An Overview of Compilation
	Slide 29: Course Overview

