
Chapter 2 :: 

Programming Language Syntax

Programming Language Pragmatics

Michael L. Scott

1



Introduction

• programming languages need to be precise

– natural languages less so

– both form (syntax) and meaning (semantics) must be unambiguous

– we need good notation (or a metalanguage) to describe precise 
languages by recognizing tokens

• regular expressions

• context-free grammars
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Tokens

• tokens are the building blocks of programs

– shortest strings with linguistic meaning

• similar to parts of speech in natural language

– examples

• keywords (e.g., for, if, else in Python)

• identifiers (e.g., names of variables and functions)

• symbols (e.g., mathematical operators + and *) 

• literals (e.g., integer 37, floating point 3.14159)
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Scanning

• scanning, or lexical analysis, is the first step in making sense of a 
computer program

• scanner reads a stream of characters and groups them into tokens (or 
identifies them as invalid)

– tokenization

– e.g., a Python scanner identifies keywords such as def and 
identifiers such as foo and bar

– considerations

• case sensitivity

• international characters

• maximum lengths
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Scanning

• considerations

– case sensitivity

• Python, C – case-sensitive

• Fortran – case-insensitive

• Haskell – names beginning with capital letters have special 
meaning

– character set

• Python – allows Unicode letters in identifiers

• C, Fortran – must be ASCII

• Haskell – allows characters such as single quotes in identifiers

– length limits

• C – only first 63 characters guaranteed to matter

• Fortran – identifiers are ≤ 6 characters
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Regular Expressions

• the lexical form of a token is typically specified by a regular expression

– also called a regex or a regexp

• describe patterns of characters

– we are interested in three characteristics:

i. valid characters which comprise the string

ii. smallest string(s)

iii. special pattern(s) of strings produced (must fully capture 
description of strings)

– for example, x[xyz]*

i. strings comprised of x, y, and z

ii. smallest string: x

iii. strings must begin with x

• help us find tokens in the programming language

• useful in unix/linux environments
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Regular Expressions

• given an alphabet Σ, a regular expression (RE) describes a set of strings 
composed of characters from Σ

• alphabet 

– non-empty set of characters

– examples

• ASCII character set

• EBCDIC character set

• APL’s freaky-deaky character set

• Unicode Glagolitic character set

– for concreteness, think ASCII

• a string is a sequence of characters
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Regular Expressions Formal Definition

• regular expressions over an alphabet Σ are defined as follows

1. the empty set ∅

2. ε denoting the set consisting of only the empty string (e.g., "" in 
Python)

3. if c ∈ Σ, then c is an RE denoting the set that contains only the 
character c

4. α|β denoting the union of regular expressions α and β

5. αβ denoting the set of concatenations of strings of regular 
expressions α and β

6. α∗ denoting the union of the concatenations of α with itself, zero or 
more times

• α∗ is called the Kleene closure of α (for Stephen Cole Kleene, 
1909–1994, American mathematician)
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Regular Expressions Operators

• if Σ = {a, b, c, d}, then

– the RE a denotes the set containing only a

– the RE a|b represents the set {a, b} (a or b)

– the RE ab represents the set {ab}

– the RE (a|b)c represents the set {ac, bc}

– the RE (a|b)(c|d) represents the set {ac, ad, bc, bd}

– the RE a∗ represents the set {ε, a, aa, aaa, aaaa, . . .}
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RE Operator Precedence

• operator precedence for purposes of association

  (α)

  α∗

  αβ

  α|β

• thus, ab*c|d is interpreted as ((a(b*))c)|d, which represents the 

 {d, ac, abc, abbc, abbbc, . . .}
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RE Notational Conventions

• in keeping with the convention for REs in many computer systems, 
we delimit sets of characters with square brackets [] and omit any 
separators (requiring we suspend concatenation inside square 
brackets to avoid ambiguity)

– [abc] denotes the set {a, b, c}

– abc represents the set {abc}

• inside square brackets we denote a range of characters with the first 
and last character connected by a dash - (this assumes the alphabet is 
ordered)

– [0-9] represents the set of decimal digits (0|1|2|3|4|5|6|7|8|9)

– [a-zA-Z] denotes all of the lowercase and uppercase letters
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RE Examples

• REs for tokens in Python

1. an identifier (e.g., variable name) must begin with either an 
underscore or an alphabetic character followed by zero or more 
underscores or alphanumeric characters

• assuming it’s ASCII, can write this in RE form as 
      [_a-zA-Z][_0-9a-zA-Z]*

2. a positive integer can be described as a nonzero decimal digit 
followed by zero or more decimal digits w

• we can capture this succinctly with the RE 
     [1-9][0-9]*

3. in decimal notation, a positive floating point number is a decimal 
digit followed by a decimal point followed by zero or more decimal 
digits, or a decimal point followed by one or more decimal digits

• an appropriate RE is 
     [0-9].[0-9]* | .[0-9][0-9]*
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RE Examples

4. A positive floating point number in scientific notation is more 
complicated, as any of the forms

            100.0,  1e2,  1e+2,  1.e2,  1.0e2,  1.0e02,  0.01,  1e-2,  1.e-2, 
               1.0e-2,  1.0e-02

       plus any of these preceded by 0 are valid, captured by the RE

             [0-9]*(.[0-9]* | .[0-9]*[eE][+-ε][0-9][0-9]* | [eE][+-ε][0-9][0-9]*)

        This RE means

• zero or more digits, followed by

– a decimal point followed by zero or more digits

– a decimal point followed by zero or more digits then e or E

– e or E

If there is an e or E, it is followed by

• an optional sign - or +, followed by

– a decimal digit, followed by

– zero or more decimal digits 13



REs in Practice

• REs are extremely useful when specifying textual patterns for searches

• languages such as C and Python, POSIX operating systems (i.e., Unix and 
Linux), and editors such as emacs and vim include tools for specifying 
and searching for regular expressions

• most of these facilities can express more than just regular expressions 
and include “syntactic sugar” to make it easier to specify patterns
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RE Metacharacters

• in many RE systems (e.g., C, Python, POSIX), the following characters 
are metacharacters

                                   \   ^   $   .   |   ?   ∗   +   ( )   [ ]

– these have special meaning other than their literal meaning
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Regular Expressions in POSIX

• the POSIX standard specifies two types of Res

– Basic Regular Expressions (BREs)

– Extended Regular Expressions (EREs)

– (there is actually a third type, Simple Regular Expressions, but their 
use is discouraged)

• having two kinds of REs is problematic

– in BREs, metacharacters used as metacharacters (rather than as 
literals) are escaped with \

– in EREs, metacharacters used as literals (rather than as 
metacharacters) are escaped with \      (default)

– some tools (e.g., egrep) expect EREs by default; others (e.g., grep) 
expect BREs but use EREs if the -E option is specified
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POSIX ERE Metacharacters

( ) matches the enclosed RE

– () matches the null string

. matches any single character

– d.g matches "dog "

– [d.g] matches only a 'd', '.', or 'g'

^ matches the start of the string

– ^dog matches the "dog" in "dogleg" but not in "underdog"

$ matches the end of string

∗ matches 0 or more repetitions of the preceding RE

– ab* will match "a", "ab", or "abb", "abbb", ….

+ matches one or more repetitions of the preceding RE

– ab+ will not match "a" but will match "ab", "abb", "abbb", ….

? matches zero or one repetitions of the preceding RE

– ab? will match either "a" or "ab"

– useful when a character is optional in the RE 17



POSIX ERE Metacharacters (cont.)

[ ] a bracket expression is used to indicate a list of characters

– the list can contain characters

• [dog] will match 'd', 'o', or 'g'

• use \] to include a literal ’]’ inside a bracketed list

– ranges of characters indicated by two characters separated by a –

• [a-z] matches any lowercase ASCII letter (includes ~ in EBCDIC!) 

• [1-5][0-9] will match any two-digit number from 10 to 59

• if - is escaped (e.g., [a\-z]) it will match a literal -

– most metacharacters lose their special meaning inside sets

• [(+*)] will match any of '(', '+', '*', or ')'

– if the first character in a bracketed list is ^ then all the characters 
that are not in the set will be matched

• [^42] will match any character except '4' and '2'

• the caret ^ has no special meaning if not the first character
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POSIX ERE Metacharacters (cont.)

| specifies a match to either the RE that precedes or follows the |

{m} matches the preceding RE exactly m times

{,n} matches the preceding RE not more than n times

{m,} matches the preceding RE at least m times

{m,n} matches the preceding RE between m and n times
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POSIX ERE Character Classes

shorthand for common sets of characters
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Shorthand ASCII RE Characters Represented

[:upper:] [A-Z] uppercase letters

[:lower:] [a-z] lowercase letters

[:alpha:] [a-zA-Z] all letters

[:alnum:] [a-zA-Z0-9] all digits and letters

[:digit:] [0-9] digits

[:xdigit:] [0-9A-Fa-f] hexadecimal digits

[:punct:] [.,!?:;] punctuation

[:blank:] [ \t] space and tab characters

[:space:] [ \t\n\r\f\v] whitespace characters

[:cntrl:] control characters

[:graph:] [^\t \n\r\f\v] printed characters

[:print:] [^\t\n\r\f\v] printed characters and space



Regular Expressions in Python

• Python’s re module provides tools for handling regular expressions

– similar to POSIX, but has more features and can handle patterns 
more complex than REs

– HOWTO guide is a good place to start
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Finite Automata and REs

• regular expressions can be recognized using finite automata (FA)

– also called finite state machines (CSCI 423)

• a finite automaton consumes a string, one character at a time

– depending on the character, the FA may or may not change to a 
new state

• the FA accepts (recognizes) a string if and only if the FA finds itself in 
one of a distinguished set of final (or accepting) states when the entire 
string has been consumed

• a coin-operated vending machine is a physical example of an FA
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Finite Automata Example

• an unsigned integer is either zero, or one or more digits where the first 
digit is nonzero

– [0|[1-9][0-9]*]

• here is an FA that will recognize the RE; final states are indicated by 
double circles
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Finite Automata Formalism

• preceding example described an FA in terms of its transition diagram

• formally, an FA is a quintuple (S, Σ, δ, s0, SF ), where

1. S is the set of states, which is finite

2. Σ is the alphabet used by the recognizer, typically the union of the 
edge labels in the transition diagram; Σ must be finite

3. δ(s, c) : S × Σ → S is a function of a state s ∈ S and a character c ∈ Σ

1. encodes the transitions of the FA

2. when the FA is in state s and sees a c, it makes a transition to 
the state δ(s, c)

4. s0 ∈ S is the designated start state

5. SF ⊂ S is the set of final states

• the cost of applying an FA to a string is proportional to the length of the 
string, even if the FA has a large number of states
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Kleene’s Equivalence Theorem

• Kleene showed that REs and FAs were equivalent in the sense that

– given an RE, you can build an FA that will recognize that RE, and

– given an FA, you can build an RE that is recognized by the FA

• in fact, there exist practical algorithms for transforming an RE into an FA 
and an FA into an RE

• the ability to transform REs into FAs that recognize them makes 
possible to automate the generation of scanners!
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lex and flex

• scanners (also called lexers or lexical analyzers) can be automatically 
generated

• one of the earliest scanner generators in widespread use was lex, 
developed at Bell Labs in the 1970s

• an open source analog, flex, was developed in the 1980s and is available 
from the GNU project

• a scanner generator takes as its input the names of the tokens and the 
REs that describe them (as well as actions to take when a token is 
recognized) and generates code that implements the scanner
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• recall that the scanner is responsible for

– tokenizing source

– removing comments

– saving text of identifiers, numbers, strings

• suppose we are building an ad-hoc (hand-written) scanner for Pascal

– we read the characters one at a time with look-ahead

– always take the longest possible token from the input

• regular expressions "generate" a regular language; DFAs "recognize" it

Scanning
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Scanning

28

• deterministic finite automaton 
(DFA) for recognizing Pascal tokens

• we run the machine over and over 
to get one token after another



• a parser is responsible for recognizing syntax

• scanners and parsers typically work together

– the scanner feeds the parser a stream of tokens

– the parser analyzes the tokens for grammatically correct 
statements

Parsing
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• a context-free grammar (CFG) G is a set of rules that describe what 
strings of symbols are valid sentences in a language

• the collection of sentences that can be derived from G is called the 
language defined by G, denoted L(G)

• the notation for CFGs is sometimes called Backus-Naur Form (BNF)

• with Kleene star and other facilitating symbols, the notation is termed 
Extended BNF (EBNF)

Context-free Grammars
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• consider the following CFG S

            SheepNoise   →   baa SheepNoise   |  baa

• meaning

– SheepNoise can derive the word baa followed by more SheepNoise

– SheepNoise can derive the word baa

• grammar S describes the language

            baa, baa baa, baa baa baa, …

Context-free Grammars
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• in general a CFG consists of

– nonterminal symbols (e.g., SheepNoise)

• appear on left-hand side

– terminal symbols (e.g., baa)

• appear only on right-hand side

• words in the language

– productions (e.g., single statement in CFG S)

• statements with arrows showing possible replacements

– start symbol (e.g., SheepNoise)

• nonterminal

• if not explicitly stated, the left-hand non-terminal of the first 
production

Context-free Grammars
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• CFG S

            SheepNoise   →   baa SheepNoise   |  baa

• we can derive strings, such as baa baa

– begin with the start symbol, SheepNoise

– choose a grammar rule for replacement

• only one per line

– repeat until the string consists of only terminals

– strings of intermediate nonterminal/terminal strings called 
sentential forms

SheepNoise   →   baa SheepNoise

                        →   baa baa

Derivations
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• the notation for context-free grammars (CFG) is sometimes called 
Backus-Naur Form (BNF)

– names for John Backus (who developed Fortran) and Peter Naur

– necessary since regular expressions cannot specify nested 
constructs

– used to define the syntax of a language

• written in their original notation, the sheep grammar S is

         〈SheepNoise〉 ::=  baa 〈SheepNoise〉

                                          | baa

• we will use 

– →  instead of  ::= 

– italics for nonterminals

– Courier font for terminals 

Backus-Naur Form 
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• for convenience, Extended Backus-Naur Form (EBNF) is often used

• same as BNF, but augmented with extra operators 

– optional list: choose one or none [ ]

– choose one from list ( )

– choose zero or more instances { }

– choose zero or more instances *

– choose one or more instances + 

• these symbols should never appear in any derivation

– instead, make all decisions for operators in one step

– for example,

• production: str → x*

• derivation: str → x x x

Extended Backus-Naur Form 
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• in a context-free grammar, production rules allow only a single 
nonterminal on the left-hand side

• in a context-sensitive grammar, production rules allow multiple 
nonterminals on the left-hand side

Formal Definition of CFG
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• the formal definition of S is

         T = {baa}

         N = {SheepNoise}

          s = SheepNoise

          P = {SheepNoise   →   baa SheepNoise,  SheepNoise  →  baa}

Formal Definition of CFG
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• consider the grammar

 Integer → Digit | Integer  Digit

 Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• we can derive any unsigned integer, like 352, from this grammar

 Integer → Integer Digit 

  → Integer 2

  → Integer Digit 2 

  → Integer 5 2 

  → Digit 5 2

  → 3 5 2

Example
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• a different derivation of 352

 Integer → Integer Digit 

  → Integer Digit Digit

  → Digit Digit Digit 

  → 3 Digit Digit 

  → 3 5 Digit 

  → 3 5 2

• this is called a leftmost derivation since at each step, the leftmost 
nonterminal is replaced

• the previous derivation was a rightmost derivation

Example
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• a parse tree is a graphical representation of a derivation

– each internal node of the tree corresponds to a step in the 
derivation

– the children of a node represent a right-hand side of a production

– each leaf node represents a symbol of the derived string reading 
from left to right

Parse Tree

40



• parse tree for leftmost derivation of 352

 Integer → Integer Digit 

  → Integer Digit Digit

  → Digit Digit Digit 

  → 3 Digit Digit 

  → 3 5 Digit 

  → 3 5 2

Parse Tree
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• parse tree for rightmost derivation of 352

 Integer → Integer Digit 

  → Integer 2

  → Integer Digit 2 

  → Integer 5 2 

  → Digit 5 2

  → 3 5 2

• parse tree is the same as for the 
left derivation

Parse Tree
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• expression grammar with precedence and associativity
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• parse tree for expression grammar (with precedence) for  3 + 4 * 5
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• parse tree for expression grammar (with left associativity) for  10 - 4 - 3
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• another grammar with precedence and associativity

– + and – are left-associative operators in mathematics

– * and / have higher precedence than + and –

• Grammar G1
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• parse tree for  4**2**3 + 5 * 6 + 7
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• associativity and precedence shown in the structure of the parse tree

– highest precedence at the bottom

– left-associativity on the left at each level
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• a grammar is ambiguous if one of its strings has two or more different 
parse trees

– grammar G1 above is unambiguous

• ambiguous expression grammar G2 equivalent to G1

– fewer productions and nonterminals, but ambiguous
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• ambiguous parse of 5 – 4 + 3 using G2
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• with which if statement does the else associate?
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Dangling Else Ambiguity
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Dangling Else Ambiguity



• Python

– uses indentation to specify nesting level

• C and C++

– associate each else with closest if

– use { } or begin/end to override

• other languages

– use explicit delimiter to end every conditional (e.g., if..fi)
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• GCD program in C

void main ()  {

   int i, j;

   scanf ("%d %d", &i, &j);

   while (i != j)

      if (i > j) i = i - j;

      else j = j - i;

   printf ("%d\n", i);

}
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• tokens

void scanf  while  i  printf

main (  (  =  (

(  "%d %d"  i  i  "%d\n"

)   ,  !=  -  ,

{  &  j  j  i

int  i  )  ;  )

i  ,  if  else  ;

,  &  (  j  }

j  j  i  =

;  )  >  j

  ;  j  -

    )  i
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• identifier

– function name, variable name

– main, x

• keyword

– type names, control structures

– int, if, for, while, return, etc.

• literal

– constants

– 3.14, “hello”, ‘c’

• operator

– mathematical, specialized

– +, =, sizeof

• delimiter

– (, ), {, ], ; 56
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• tokens and their categories

– must be shown for every token, in order

– only first two columns shown below; need to show all

void keyword   scanf  identifier

main identifier  (  delimiter

)   delimiter  "%d %d" literal

{  delimiter  ,  delimiter

int  keyword   &  operator

i  identifier  i  identifier

,  delimiter  ,  delimiter

j  identifier  &  operator

;  delimiter  j  identifier

     )  delimiter

     ;  delimiter

etc.   

   
57
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