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e programming languages need to be precise
— natural languages less so
— both form (syntax) and meaning (semantics) must be unambiguous

— we need good notation (or a metalanguage) to describe precise
languages by recognizing tokens

e regular expressions
e context-free grammars

%>
7

.. ;
Y

r Tl

ELSEVIER




tokens are the building blocks of programs
— shortest strings with linguistic meaning
e similar to parts of speech in natural language
— examples
e keywords (e.g., for, if, else in Python)
e identifiers (e.g., names of variables and functions)
e symbols (e.g., mathematical operators + and *)
literals (e.g., integer 37, floating point 3.14159)
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Scanning

e scanning, or lexical analysis, is the first step in making sense of a
computer program

e scanner reads a stream of characters and groups them into tokens (or
identifies them as invalid)

— tokenization

— e.g., a Python scanner identifies keywords such as def and
identifiers such as foo and bar

— considerations
e case sensitivity
e international characters
e maximum lengths




Scanning

e considerations
— case sensitivity
e Python, C — case-sensitive
e Fortran — case-insensitive

e Haskell — names beginning with capital letters have special
meaning

— character set
e Python — allows Unicode letters in identifiers
e C, Fortran — must be ASCII
e Haskell —allows characters such as single quotes in identifiers
— length limits
e C—only first 63 characters guaranteed to matter
e Fortran —identifiers are < 6 characters




Regular Expressions

e the lexical form of a token is typically specified by a regular expression
— also called a regex or a regexp
e describe patterns of characters
— we are interested in three characteristics:
i. valid characters which comprise the string
ii. smallest string(s)

iii. special pattern(s) of strings produced (must fully capture
description of strings)

— for example, x[xyz]*
i. strings comprised of x,y, and z
ii. smallest string: x
iii. strings must begin with x
e help us find tokens in the programming language
e useful in unix/linux environments




Regular Expressions

e given an alphabet 2, a regular expression (RE) describes a set of strings
composed of characters from 2
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Regular Expressions Formal Definition

e regular expressions over an alphabet X are defined as follows
1. the empty set @

2. £ denoting the set consisting of only the empty string (e.g., "" in
Python)

3. ifc €2, thencisan RE denoting the set that contains only the
character c

4. o|P denoting the union of regular expressions o and B

5. ap denoting the set of concatenations of strings of regular
expressions a and

6. ax denoting the union of the concatenations of a with itself, zero or
more times

e axis called the Kleene closure of a (for Stephen Cole Kleene,
1909-1994, American mathematician)




Regular Expressions Operators

o if2={a,b,c, d}, then

the RE a denotes the set containing only a

the RE a|b represents the set {a, b} (a or b)

the RE ab represents the set {ab}

the RE (a|b)c represents the set {ac, bc}

the RE (a|b)(c|d) represents the set {ac, ad, bc, bd}
the RE a* represents the set {g, g, aa, aaa, aaaa, . . .}




e operator precedence for purposes of association
(a)
OL*
op
ofpB

e thus, ab*c|dis interpreted as ((a(b*))c)|d, which represents the
{d, ac, abc, abbc, abbbc, . . .}
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RE Notational Conventions

e in keeping with the convention for REs in many computer systems,
we delimit sets of characters with square brackets [] and omit any
separators (requiring we suspend concatenation inside square
brackets to avoid ambiguity)

— [abc] denotes the set {a, b, c}
— abc represents the set {abc}

e inside square brackets we denote a range of characters with the first
and last character connected by a dash - (this assumes the alphabet is
ordered)

— [0-9] represents the set of decimal digits (0|1]2|3|4|5|6|7|8|9)
— [a-zA-Z] denotes all of the lowercase and uppercase letters




RE Examples

e REs for tokens in Python

1. anidentifier (e.g., variable name) must begin with either an
underscore or an alphabetic character followed by zero or more
underscores or alphanumeric characters

e assuming it’s ASCII, can write this in RE form as
[ a-zA-Z][_0-9a-zA-Z]*
2. a positive integer can be described as a nonzero decimal digit
followed by zero or more decimal digits w
e we can capture this succinctly with the RE
[1-9][0-9]*
3. in decimal notation, a positive floating point number is a decimal

digit followed by a decimal point followed by zero or more decimal
digits, or a decimal point followed by one or more decimal digits

e an appropriate RE is
[0-9].[0-9]* | .[0-9][0-9]*




RE Examples

4. A positive floating point number in scientific notation is more
complicated, as any of the forms

100.0, 1le2, 1le+2, 1.e2, 1.0e2, 1.0e02, 0.01, 1le-2, 1l.e-2,
1.0e-2, 1.0e-02

plus any of these preceded by O are valid, captured by the RE
[0-9]*(.[0-9]* | .[0-9]*[eE][+-€][0-9][0-9]* | [eE][+-€][0-9][0-9]¥)
This RE means
e zero or more digits, followed by
— a decimal point followed by zero or more digits

— a decimal point followed by zero or more digits then e or E
—eorkE

If there is an e or E, it is followed by
e an optional sign - or +, followed by
— a decimal digit, followed by

— zero or more decimal digits 13




REs in Practice

e REs are extremely useful when specifying textual patterns for searches

e |anguages such as C and Python, POSIX operating systems (i.e., Unix and
Linux), and editors such as emacs and vim include tools for specifying
and searching for regular expressions

e most of these facilities can express more than just regular expressions
and include “syntactic sugar” to make it easier to specify patterns




e in many RE systems (e.g., C, Python, POSIX), the following characters
are metacharacters

\ A s 2+ ()]

— these have special meaning other than their literal meaning
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Regular Expressions in POSIX

e the POSIX standard specifies two types of Res
— Basic Regular Expressions (BREs)
— Extended Regular Expressions (EREs)

— (there is actually a third type, Simple Regular Expressions, but their
use is discouraged)

e having two kinds of REs is problematic

— in BREs, metacharacters used as metacharacters (rather than as
literals) are escaped with \

— in EREs, metacharacters used as literals (rather than as
metacharacters) are escaped with\  (default)

— some tools (e.g., egrep) expect EREs by default; others (e.g., grep)
expect BREs but use EREs if the -E option is specified




POSIX ERE Metacharacters

()

matches the enclosed RE

— () matches the null string
matches any single character

— d.g matches "dog "

— [d.g] matchesonlya'd’, ", or'g

matches the start of the string

— *dog matches the "dog" in "dogleg" but not in "underdog"
matches the end of string

matches 0 or more repetitions of the preceding RE

— ab™* will match "a", "ab", or "abb", "abbb", ....

matches one or more repetitions of the preceding RE

— ab+ will not match "a" but will match "ab", "abb", "abbb", ....

matches zero or one repetitions of the preceding RE
— ab? will match either "a" or "ab"
— useful when a character is optional in the RE




POSIX ERE Metacharacters (cont.)

[]

a bracket expression is used to indicate a list of characters

the list can contain characters
e [dog] will match 'd’, '0', or 'g’
e use \] toinclude a literal ']’ inside a bracketed list

ranges of characters indicated by two characters separated by a —

e [a-z] matches any lowercase ASCII letter (includes ~ in EBCDIC!)
e [1-5][0-9] will match any two-digit number from 10 to 59

e if-is escaped (e.g., [a\-z]) it will match a literal -
most metacharacters lose their special meaning inside sets

e [(+*)] will match any of (', '+', '*', or ')’

if the first character in a bracketed list is  then all the characters

that are not in the set will be matched
e [742] will match any character except '4' and '2'

e the caret " has no special meaning if not the first character

18




POSIX ERE Metacharacters (cont.)

| specifies a match to either the RE that precedes or follows the |
{m} matches the preceding RE exactly m times

{,n} matches the preceding RE not more than n times

{m,} matches the preceding RE at least m times

{m,n} matches the preceding RE between m and n times




POSIX ERE Character Classes

shorthand for common sets of characters

Shorthand ASCII RE Characters Represented
[:upper:] [A-Z] uppercase letters
[:lower:] [a-7] lowercase letters
[:alpha:] [a-zA-Z] all letters

[:alnum:] [a-zA-Z0-9] all digits and letters
[digit:] [0-9] digits

[:xdigit:] [0-9A-Fa-f] hexadecimal digits
[:punct:] [,17:] punctuation

[:blank:] [\t] space and tab characters
[:space:] [ \t\n\r\f\v] whitespace characters
[:cntrl:] control characters
[:graph:] [A\t \n\r\f\v] printed characters
[:print:] [AM\t\n\r\f\v] printed characters and space




e Python’s re module provides tools for handling regular expressions

— similar to POSIX, but has more features and can handle patterns
more complex than REs

— HOWTO guide is a good place to start
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Finite Automata and REs

e regular expressions can be recognized using finite automata (FA)
— also called finite state machines (CSCl 423)
e 2 finite automaton consumes a string, one character at a time

— depending on the character, the FA may or may not change to a
new state

e the FA accepts (recognizes) a string if and only if the FA finds itself in
one of a distinguished set of final (or accepting) states when the entire
string has been consumed

* acoin-operated vending machine is a physical example of an FA




an unsigned integer is either zero, or one or more digits where the first
digit is nonzero

— [0][1-9][0-9]*]
here is an FA that will recognize the RE; final states are indicated by
double circles

[0-9]

[1-9]
not [0-9]

anything

§O

not [0-9]
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Finite Automata Formalism

e preceding example described an FA in terms of its transition diagram
e formally, an FAis a quintuple (S, %, 6, s,, SF ), where
1. Sis the set of states, which is finite

2. 2 is the alphabet used by the recognizer, typically the union of the
edge labels in the transition diagram; Z must be finite

3. 6(s,¢c):Sx2 > Sisafunction of astate s €S and a characterc €2
1. encodes the transitions of the FA

2. when the FA is in state s and sees a c, it makes a transition to
the state 6(s, c)

4. s, € Sis the designated start state
5. SF c Sis the set of final states

e the cost of applying an FA to a string is proportional to the length of the
string, even if the FA has a large number of states




Kleene’s Equivalence Theorem

e Kleene showed that REs and FAs were equivalent in the sense that
— given an RE, you can build an FA that will recognize that RE, and
— given an FA, you can build an RE that is recognized by the FA
e in fact, there exist practical algorithms for transforming an RE into an FA

and an FA into an RE
e the ability to transform REs into FAs that recognize them makes
possible to automate the generation of scanners!




lex and flex

e scanners (also called lexers or lexical analyzers) can be automatically
generated

e one of the earliest scanner generators in widespread use was lex,
developed at Bell Labs in the 1970s

e an open source analog, flex, was developed in the 1980s and is available
from the GNU project

® ascanner generator takes as its input the names of the tokens and the
REs that describe them (as well as actions to take when a token is
recognized) and generates code that implements the scanner




Scanning

e recall that the scanner is responsible for
— tokenizing source
— removing comments
— saving text of identifiers, numbers, strings
e suppose we are building an ad-hoc (hand-written) scanner for Pascal
— we read the characters one at a time with look-ahead
— always take the longest possible token from the input
e regular expressions "generate" a regular language; DFAs "recognize" it




space, tab, newline, return

deterministic finite automaton
(DFA) for recognizing Pascal tokens

we run the machine over and over
to get one token after another

digil identifier or key word

realconst
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e Qg parser is responsible for recognizing syntax
e scanners and parsers typically work together
— the scanner feeds the parser a stream of tokens

— the parser analyzes the tokens for grammatically correct
statements
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Context-free Grammars

e 3 context-free grammar (CFG) G is a set of rules that describe what
strings of symbols are valid sentences in a language

e the collection of sentences that can be derived from G is called the
language defined by G, denoted L(G)

e the notation for CFGs is sometimes called Backus-Naur Form (BNF)

e with Kleene star and other facilitating symbols, the notation is termed
Extended BNF (EBNF)




Context-free Grammars

e consider the following CFG S
SheepNoise —> baa SheepNoise | baa

® meaning
— SheepNoise can derive the word baa followed by more SheepNoise
— SheepNoise can derive the word baa

e grammar S describes the language
baa, baa baa, baa baa baa,




Context-free Grammars

e in general a CFG consists of
— nonterminal symbols (e.g., SheepNoise)
e appear on left-hand side
— terminal symbols (e.g., baa)
e appear only on right-hand side
e words in the language
— productions (e.g., single statement in CFG S)
e statements with arrows showing possible replacements
— start symbol (e.g., SheepNoise)
e nonterminal

e if not explicitly stated, the left-hand non-terminal of the first
production




Derivations

e CFGS
SheepNoise —> baa SheepNoise | baa

e we can derive strings, such as baa baa
— begin with the start symbol, SheepNoise
— choose a grammar rule for replacement
e only one per line
— repeat until the string consists of only terminals

— strings of intermediate nonterminal/terminal strings called
sentential forms

SheepNoise - baa SheepNoise
- baa baa




Backus-Naur Form

e the notation for context-free grammars (CFG) is sometimes called
Backus-Naur Form (BNF)

— names for John Backus (who developed Fortran) and Peter Naur

— necessary since regular expressions cannot specify nested
constructs

— used to define the syntax of a language
e written in their original notation, the sheep grammar S is

(SheepNoise) ::= baa {SheepNoise)
| baa
e we will use
— —> instead of ::=
— italics for nonterminals

— Courier font for terminals 34




Extended Backus-Naur Form

e for convenience, Extended Backus-Naur Form (EBNF) is often used
e same as BNF, but augmented with extra operators

— optional list: choose one or none [ ]
— choose one from list ()
— choose zero or more instances {}

— choose zero or more instances *

— choose one or more instances +
e these symbols should never appear in any derivation
— instead, make all decisions for operators in one step
— for example,
e production: str > x*
e derivation:str > x x x




e in a context-free grammar, production rules allow only a single
nonterminal on the left-hand side

* in a context-sensitive grammar, production rules allow multiple
nonterminals on the left-hand side
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the formal definition of S is

T = {baa}

N = {SheepNoise}

s = SheepNoise

P = {SheepNoise -> baa SheepNoise, SheepNoise - baa}
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e consider the grammar

Integer - Digit | Integer Digit
Digit>0|1]2|3|4]|5]|6]|7]|8]9

e we can derive any unsigned integer, like 352, from this grammar

Integer —> Integer Digit
- Integer 2
- Integer Digit 2
- Integer5 2
- Digit5 2
- 352
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e a different derivation of 352

Integer —> Integer Digit
—> Integer Digit Digit
—> Digit Digit Digit
— 3 Digit Digit
- 35 Digit
- 352

e thisis called a leftmost derivation since at each step, the leftmost
nonterminal is replaced

e the previous derivation was a rightmost derivation
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e Qaparse tree is a graphical representation of a derivation

— each internal node of the tree corresponds to a step in the
derivation
— the children of a node represent a right-hand side of a production

— each leaf node represents a symbol of the derived string reading
from left to right
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e parse tree for leftmost derivation of 352

Integer —> Integer Digit
—> Integer Digit Digit
— Digit Digit Digit Integer

- 3 Digit Digit / \

— 35 Digit Integer
—>352
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e parse tree for rightmost derivation of 352

Integer —> Integer Digit
- Integer 2
— Integer Digit 2 Integer
- Integer5 2
- Digit 5 2 Integer
- 352

e parse tree is the same as for the
left derivation
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e expression grammar with precedence and associativity

expr — term | expr add_op term
term — fact0r| term mult_op factor

. factor — id | number | - factor | C expr)

add_op — + | -

mult_.op — x| /




parse tree for expression grammar (with precedence) for 3+4 *5

I I

exTpr
|
term Tk

factor

number (3)

term

il e PSR

term mault_op factor

factor * number (5)

number (4)




e parse tree for expression grammar (with left associativity) for 10-4-3

I

exTpT 4 term

/\

expr add_op term factor

term factor number (3)

factor number (4)

number (10)
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e another grammar with precedence and associativity
— + and — are left-associative operators in mathematics
— *and / have higher precedence than + and —

e Grammar G,

Expr -> Expr + Term | Expr — Term | Term

Term -> Term * Factor | Term / Factor |

Term % Factor | Factor
Factor -> Primary ** Factor | Primary
Primary -> 0| ... | 9| ( Expr)
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e parsetree for 4**2**3 +5*6+7

/\

Primary

/R

I—I SI—\IFR




e associativity and precedence shown in the structure of the parse tree
— highest precedence at the bottom
— left-associativity on the left at each level

Precedence Associativity Operators
3 right o
2 left * 1 %
1 left + -
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e a3 grammar is ambiguous if one of its strings has two or more different
parse trees

— grammar G, above is unambiguous
e ambiguous expression grammar G, equivalent to G,

Expr -> Expr Op Expr | ( Expr ) | Integer
Op->+|-[*]/]| %] **

— fewer productions and nonterminals, but ambiguous
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e ambiguous parse of 5—4 + 3 using G,
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e with which if statement does the else associate?

if (x < 0)
if(y<0)y=y -1,

elsey =0;

&
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IfStatement

e

1 « Expresszon

|
x<0

=

( Expression )
|

N\

Statement

IfStatement

N,

Statement else  Statement
I I

¥o= ¥=1; y

0;

x<0

IfStatement

// ‘1\\

if ( Expression )
[

Statement else Statement

IfStatement

ANN

if ( Expression ) Statement

y =

PISF\]FR



e Python
— uses indentation to specify nesting level
e CandC++
— associate each else with closest if
— use { } or begin/end to override
e otherlanguages
— use explicit delimiter to end every conditional (e.g., if..fi)
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GCD program in C

void main () {
int i, j;

scanf ("%d %d", &i, &j);
while (i '= 3J)
if (1 > 3j) 1 =1 - Jj;

else j =3 - i;

printf ("$d\n", i);
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scanf printf

\ (
"%d %d" : : "%d\n"

! ’

i

)




identifier
— function name, variable name
— main, X
keyword
— type names, control structures
— int, if, for, while, return, etc.
literal
— constants
— 3.14, “hello”, ‘¢’
operator
— mathematical, specialized
— +, =, sizeof
delimiter

- (I)I{I]I;

i
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Tokens and Categories

e tokens and their categories
— must be shown for every token, in

order

— only first two columns shown below; need to show all

void keyword scan
main identifier (
) delimiter "$d
{ delimiter ,
int keyword
i identifier i
, delimiter ,
Jj identifier &
; delimiter Jj

)
etc.

f

5d"

identifier
delimiter
literal
delimiter
operator
identifier
delimiter
operator
identifier
delimiter
delimiter
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