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* control flow or ordering
— fundamental to most models of computing

— determines ordering of tasks in a program
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basic categories for control flow
— sequencing: order of execution

selection (also alternation): choice among two or more
statements or expressions

* if or case statements
iteration: loops
* for, do, while, repeat

procedural abstraction: parameterized subroutines
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Control Flow

* basic categories for control flow (cont.)

— recursion: expression defined in terms of (simpler versions of)
itself

— concurrency: two or more program fragments are executed at
the same time

* in parallel on separate processors
* interleaved on a single processor
— exception handling and speculation

— nondeterminancy: order or choice is deliberately left unspecified
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previous eight categories cover all of the control-flow constructs in
most programming languages

better to think in these categories rather than the specifics of a single
programming language

— easier to learn new languages
— evaluate tradeoffs among languages

— design and evaluate algorithms
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Control Flow

* importance of different categories varies across programming
language paradigms

— sequencing central in imperative and object-oriented languages,
but less important in functional languages

— functional languages use recursion heavily, while imperative
languages focus more on iteration

— logic languages hide control flow entirely and allow the system to
find an order in which to apply inference rules
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Expression Evaluation

» expression consists of a simple object (literal, variable, constant) or
an operator or function call

— function:my func(A, B, C)
— operators: simple syntax, one or two operands
*a+b
e -C
— sometimes operators are syntactic sugar
* inC++,a + bshortfora.operator+ (b)
* some languages impose an ordering for operators and their operands

— prefix and postfix sometimes referred to as Polish prefix and
Polish postfix after Polish logicians who studied and popularized
them
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Prefix, Infix, and Postfix Notation

* ordering for operators and their operands
— prefix: op a b or op(a,b)
e Lisp: (* (+ 1 3) 2)

« Cambridge prefix: function name inside parentheses; also
used with multiple operands: (+ 2 4 5 1)

— infix:aopb
» standard method
eCa=Db!'=02?a/b :0
— postfix: a b op

e least common - used in Postscript, Forth, and intermediate
code of some compilers

e C(and its descendants): x++

* Pascal: pointer dereferencing operator (*)
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Expression Evaluation

« arithmetic and logic operations may be ambiguous without
parentheses

— Fortran:a + b * c**d**e/f

* languages set precedence and associativity rules to determine order
of operations

— precedence rules: order of types of operations
e 2 + 3 * 4 (1l4or207)

— associativity rules: order of operations at same precedence
9 -3 -2 (4 or8?)
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* languages have individual precedence and associativity rules
— Chas 15 levels — too many to remember
Pascal has 3 levels — too few for good semantics
Fortran has 8
Ada has 6

when unsure, use parentheses
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c Ada

++, -= (past-inc., dec.)

++, == (pre-inc., dec.), abs (absolute value),
+, = (unary), not, =%

&, = (address, contents of),

1, ~ (logical, bit-wise not)

= ’f, *(blmr:{:}s l”s *,;,de,IEIﬂ
div, med, and % (modulo division)

+, = (unary and +, - (binary) +, - {unary)
binary), or

<<, >3 +, = (binary),
{left and right bit shift) & (concatenation)

.eq., .ne., .1t., <, <=, 3, = =, /=,¢¢=, 3 =
le., .gt., .ge. (inequality tests)
(comparisons)

.not. ==, I=(equality tests)

& (bit-wise and)

= (bit-wise exclusive or)

| (bit-wise inclusive or)

B {|l}gica| and) and, or, xor
(logical operators)

.or. Il (logical ar)

.eqv., .negv. ?: (if...then...else)
{logical comparisons)

=, =, =, =, "’=: :G:!
2r=, =, &=, "=, |=
(assignment)

» (sequencing)
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Figure 6.1 Operator precedence levels in Fortran, Pascal, C, and Ada. The operator s at the top of the figure group most tightly.




 example:
— 3 4+ 2%%2%%3
« exponentiation has higher precedence than addition
 exponentiation has right to left associativity
— use parentheses to force other interpretations
e 3 4 2%% (2%%3)
e (3 + 2)**2%%3
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* typically, a variable takes on a new value
e assignment is a side effect

— something that influences later computation or output and is not
a return value

— C:assignment does yield a value
e |-value: term on left side of =

e r-value: term on right side of =
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» ordering of operand evaluation
— generally none
» application of arithmetic identities
— commutativity is assumed to be safe
— associativity (known to be dangerous)
(a + b) + ¢
works if a ~= maxintand b ~= minint and ¢ < 0
a+ (b + c)

does not
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Expression Evaluation

short-circuiting

— consider (a < b) && (b < ¢)

 if a >= b thereis no point evaluating whether b < ¢

because (a < b) && (b < c) isautomatically false
— other similar situations

if (b '= 0 && a/b == c)
if (p && p—->foo)

if (unlikely condition && expensive fn())...

be cautious - need to be sure that your second half is valid, or else coder
could miss a runtime error without proper testing
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Expression Evaluation

» variables as values vs. variables as references
— value-oriented languages
* C, Pascal, Ada
— reference-oriented languages
* most functional languages (Lisp, Scheme)
— Java deliberately in-between
* built-in types are values

» user-defined types are objects - references
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Expressions vs. Statements

* most languages distinguish between expressions and statements

— expressions always produce a value, and may or may not have a
side effect

 Python: b + ¢

— statements are executed solely for their side effects, and return
no useful value

e Python: mylist.sort ()

e aconstruct has a side effect if it influences subsequent computation
in some way (other than simply returning a value)
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Expression Evaluation

e expression-oriented vs. statement-oriented languages
— expression-oriented
e functional languages (Lisp, Scheme, ML)
— statement-oriented:
* most imperative languages
— C halfway in-between

* allows expression to appear instead of statement, but not the
reverse
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Assignment Shortcuts

e assignment
— statement (or expression) executed for its side effect
* key to most programming languages you have seen so far
— assignment operators

« +=, -=, etc.

handy shortcuts

avoid redundant work

reduce programmer errors

perform side effects exactly once
— example: A[index fn (i) ]++;
—Vvs.A[index fn(i)] = A[index fn(i)] + 1;
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Multiway Assignment

* some languages (including Python and Ruby) allow multiway
assignment

— example: a,b = ¢,d;

— defines a tuple, equivalentto a = ¢; b = d;
e can simplify computation

— a,b = b,a (noneedforatemp variable)

— a,b,c = foo(d,e,£f) (allows asingle return)
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C: Assignments within Expressions

* combining expressions with assignments can have unfortunate side
effects, depending on the language

— Chas no true boolean type (just uses int’s or their equivalents),
and allows assignments within expressions

— example
if (a = 0) {

}
What does this do?
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* side effects are a fundamental aspect of the whole von Neumann
model of computation.

— what is the von Neumann architecture?
* in(pure) functional and logic languages, there are no such changes
— single-assignment languages

— very different
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 some languages outlaw side effects for functions
— easier to prove things about programs
closer to Mathematical intuition
easier to optimize
— (often) easier to understand
* but side effects can be nice

— consider rand ()
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More on Side Effects

* side effects are a particular problem if they affect state used in other
parts of the expression in which a function call appears

— example: a - £(b) - c*d
— good not to specify an order, because it makes it easier to optimize

— unfortunately, compilers can't check this completely, and most don't
at all
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Code Optimization

* most compilers attempt to optimize code
— example:ta = b + cthend =c + e + b
* evaluating part of each statement can speed up code
—a=b/c/ dthene=£f / d/ c
—t=c¢ *dandthena=b / tande = £f / t
e arithmetic overflow can really become a problem here
— can be dependent on implementation and local setup
— checking provides more work for compiler, so slower

— with no checks, these can be hard to find
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* seguencing
— specifies a linear ordering of statements
* one statement follows another
— imperative, Von-Neuman
* inassembly, the only way to "jump" around is to use branch statements

» early programming languages (such as C) mimicked this using goto
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The End of goto

* in 1968, Edsger Dijkstra wrote an article condemning the goto
statement

* while hotly debated, goto statements have essentially disappeared
from modern programming languages

* did not fit structured programming model
— top down design
— modularization of code
— structured types
— descriptive variables

— iteration
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Alternatives to goto

» getting rid of goto was actually fairly easy, since it was usually used in
certain ways

— goto tojump to end of current subroutine
e use return instead

— goto to escape from the middle of a loop
* use exit or break instead
* much harder if nesting is deep

— goto to repeat sections of code

e use loops instead
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Case for goto

» several settings are very useful for goto statements
— to end a procedure/loop early (for example, if target value is found)
e use break or continue instead
— problem: bookkeeping
* breaking out of code might end a scope
— need to call destructors, deallocate variables, etc.
» adds overhead to stack control

— must be support for unwinding the stack
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another example: exceptions

goto was generally used as error handling, to exit a section of code
without continuing

modern languages generally throw and catch exceptions instead

— adds overhead

— but allows more graceful recovery
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Sequencing

* blocks of code are executed in a sequence

* blocks are generally indicated by { ... } or similar construct

* interesting note: without side effects, blocks are essentially useless
— the value is just the last return

* insome languages, functions which return a value are not allowed to
have a side effect at all
— any function call will have the same value, no matter when it occurs
— not always desirable, of course

 rand function definitely should not return the same value every
time!
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* selection: introduced in Algol 60

— sequential if statements

if ... then ... else

if ... then ... elsif
— Lisp variant
(cond
(C1)
(C2)

(Cn)
(T)
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e Algol 60 example
if a = b then PROC :=
elsif a = ¢ then PROC
elsif a = d then PROC
else PROC :=1
end;
e Lisp variant
(cond
((= A B) (2))
((=aC) (3))
((=A D) (4))
(T (1))

Copyright © 2009 Elsevier

ELSEVIER




Selection

* selection
— Fortran computed goto statements
— jump code
» for selection and logically-controlled loops

* no point in computing a Boolean value into a register, then
testing it

 instead of passing register containing Boolean out of
expression as a synthesized attribute, pass inherited attributes

INTO expression indicating where to jump to if true, and where
to jump to if false
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* jump is especially useful in the presence of short-circuiting

 example: suppose code is generated for the following

if ((A > B) and (C > D)) or (E <> F) then
then clause
else

else clause
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* code generated w/o short-circuiting (Pascal)

rl := -- load
r2 :

rl

r2

r3

r2

rl

r2

r3 :

r2 := r2 <> r3

rl :=rl | r2

if rl = 0 goto L2

Ll: then clause -- label not actually used
goto L3

L2: else_plause
L3:

Copyright © 2009 Elsevier

7
Y

r Tl

ELSEVIER




* code generated w/ short-circuiting (C)

rl
r2
if
rl
r2
if
rl
r2
if

rl

rl

rl

A
B
<= r2 goto L4

=C
=D

> r2 goto L1
E

= F

= r2 goto L2

then clause
goto L3
else_plause
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the case/switch statement was introduced to simplify certain if-else
situations

useful when comparing the same integer to a large variety of
possibilities
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example

i = ... (* potentially complicated expression *)

IF i = 1 THEN
clause_A

ELSIF i IN 2, 7 THEN
clause_B

ELSIF i IN 3..5 THEN
clause_C

ELSIF (i = 10) THEN
clause_D

ELSE
clause_E

END

can be re-written as

CASE ... (* potentially complicated expression *) OF
: clause_A
, 71 clause_B
..5:  cause-C
10: clause_D
clause_E
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labels and arms must be disjoint
label type must be discrete
* integer, character, enumeration, subrange

case/switch statements enhance code aesthetics, but principal
motivation is to generate efficient target code
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case can be translated as

rn.=... —— calculate tested expression
if r1 # 1 goto L1
clause_A
goto L6 CASE ... (* potentially complicated expression *) OF
. ifrl = 2 goto L2 1: clause_A
if r1 # 7 goto L3 2, 7:  cause_B
. clause_B 3..5: clause_-C
goto L6 10: clause_D
- ifrl1 <3 goto L4 clause_E
ifr1 > 5 goto L4
clause_C
goto L6
1fr1 # 10 goto L5
clause_D
goto L6
. clause_E
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e can use an array of jump addresses (jump table) instead

T &L1 —— tested expression = 1
&L2
&L3
&L3
&L3
&L5
&lL2
&L5
&Lb
&lL4 —— tested expression = 10

=L —— calculate tested expression
ifr1 < 1 goto L5
ifr1 = 10 goto L5 —— L5 is the "else” arm
rn—=1 —— subtract off lower bound
r2 :=TIr1]
goto *r2

CASE ... (* potentially complicated expression *) OF
1: clause_A
| 2, T: clause_B
| 3..5: clause_C
| 10: clause_D
clause_E
END
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Selection: case/switch

* jump tables can take a lot of space if case covers large ranges or
values or non-dense

« alternative methods
e sequential testing
 useful if number of case statements is small
* hashing

 useful if range of label values is large, but with many missing
values

e binary search

« good for large ranges
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* languages differin
* syntax
punctuation
label ranges
default clause
e some languages: else
» Ada: all values must be covered

handling of match failures

* some languages will require program failure for unmatched
value

e Cand C++: no effect
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C/C++/Java switch

switch (... /* tested expression */) {

case 1: clause_A
break;

clause_B
break;

clause_C
break;
clause_D
break;
default: clause_E
break;

Copyright © 2009 Elsevier
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10:

. (* potentially complicated expression *) OF
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clause_E
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Selection: case/switch

e C/C++/Java switch

e each value must have its own label; no ranges allowed

lists of labels not allowed, but empty arms that fall through OK

break required at end of each arm that terminates

fall-through can cause unintentional hard-to-find bugs

e C# requires each non-empty arm to end with break, goto,
continue, or return

fall-through convenient at times

letter_case = lower;
switch (c) {

case A’ :
letter_case = upper;
/* FALL THROUGH! #*/
case 'a’ :

break;
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ability to perform some set of operations repeatedly
— loops
— recursion
without iteration, all code would run in linear time
most powerful component of programming

in general, loops are more common in imperative languages, while
recursion is more common in functional languages

— loops generally executed for their side effects
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* enumeration-controlled loop

— Pascal or Fortran-style for loops

do i =1, 10, 2 -- index i, init wval, bound, step
- -- body will execute 5 times
enddo

— changed to standard for loops later

FOR 1 := first TO last BY step DO
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Iteration: Code Generation

* none of these initial loops allow anything other than enumeration
over a preset, fixed number of values

* results in efficient code generation

Rl := first
R2 := step
R3 := last
goto L2
L1: .. --loop body, use R1 for i
Rl := Rl + R2

L2: if R1 <= R3 goto L1
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Iteration: Code Generation

e translation can be optimized if the number of iterations can be
precomputed, although need to be careful of overflow

— precompute total count, and subtract 1 each time until we hit O
— we must be able to precompute

 always possible in Fortran or Ada, but C (and its descendants)
are quite different
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Iteration: Some Issues

e can control enter or leave the loop other than through enumeration
mechanism?

— break, continue, exit
— Fortran allowed goto to jump inside a loop

 what happens if the loop body alters variables used to compute end-
of-loop condition?

— some languages only compute the bound once (not C)
 what happens if the loop modifies the index variable itself?

— most languages prohibit this entirely, although some leave it up
to the programmer

e can the program read the index after the loop has been completed,
and if so, what is its value?

— ties into issue of scope, and is very language-dependent




example: what happens if the loop modifies the index variable itself?
for i :=1 to 10 by 2

if 1 3
i=26
example: can the program read the index after the loop has been
completed, and if so, what is its value?

var ¢ : ‘'a’..’z’;

for ¢ := 'a’ to 'z’ do begin

end;
(* what comes after ’z’7 #*)
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« the forloopin Cis called a combination loop
— allows one to use more complex structures in the £for loop

* the Modula-2 loop

FOR i := first TO last BY step DO

END

becomes

for (i = first; i <= last; i += step) {

}

which is equivalent to

i = first;
while (i <= last) {

i += step;
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Iteration: Combination Loops

for loop useful in its compactness of clarity over while loop
e convenient to make loop iterator local to body of loop
for (int i = first; i <= last; i += step)

» essentially, for loops are another variant of while loops, with more
complex updates and true/false evaluations each time

» operator overloading (such as operator++) combined with iterators
actually allow highly non-enumerative for loops

e example
for (list<int>::iterator it = mylist.begin();
it '= mylist.end(); it++) {
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* languages such as Python and C# require any container to provide an
iterator that enumerates items in that class

« example

for item in mylist:

#code to look at items
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Iteration: Logically Controlled Loops

« while loops are different from standard £oxr loops
— no set number of enumerations is predefined
* inherently strong
— closer to 1 £ statements in some ways, but with repetition built in
 more difficult to code properly
 more difficult to debug
* code optimization is also harder

— none of the £for loop tricks will work

Copyright © 2009 Elsevier




* recursion
— equally powerful to iteration
— often more intuitive (sometimes less)
— naive implementation less efficient
* no special syntax required

« fundamental to functional languages like Scheme

Copyright © 2009 Elsevier

7
Y

r Tl

ELSEVIER




Recursion

* many criticize that recursion is slower and less efficient than iteration
— alters the stack when calling a function

* a bitinaccurate — naively written iteration is probably more efficient
than naively written recursion

* in particular, if the recursion is tail recursion, the execution on the stack
for the recursive call will occupy the exact same spot as the previous
method
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Recursion

 tail recursion
— no computation follows recursive call
int gecd (int a, int b) ({
/* assume a, b > 0 */
if (a == b) return a;
else if (a > b) return ged (a - b, b)
else return ged (a, b - a);
}
— a good compiler will translate this to machine code that runs in place

» essentially returning to the start of the function with new a,b
values
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even if not initially tail recursive, simple transformations can often
produce tail-recursive code

additionally, clever tricks - such as computing Fibonacci numbers in an
increasing fashion, rather than via two recursive calls - can make
recursion comparable
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Order of Evaluation

» generally, we assume that arguments are evaluated before passing to
a subroutine, in applicative order evaluations

* not always the case: lazy evaluation or normal order evaluation pass
unevaluated arguments to functions, and value is only computed if
and when it is necessary

* applicative order is preferable for clarity and efficiency, but
sometimes normal order can lead to faster code or code that won’t
give as many run-time errors

* in particular, for list-type structures in functional languages, this lazy
evaluation can be key
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