
Copyright © 2009 Elsevier

Chapter 6:: Control Flow

Programming Language Pragmatics

Michael L. Scott

Copyright © 2009 Elsevier

Control Flow

• control flow or ordering

– fundamental to most models of computing

– determines ordering of tasks in a program

Copyright © 2009 Elsevier

Control Flow

• basic categories for control flow

– sequencing: order of execution

– selection (also alternation): choice among two or more

statements or expressions

• if or case statements

– iteration: loops

• for, do, while, repeat

– procedural abstraction: parameterized subroutines

Copyright © 2009 Elsevier

Control Flow

• basic categories for control flow (cont.)

– recursion: expression defined in terms of (simpler versions of)

itself

– concurrency: two or more program fragments are executed at

the same time

• in parallel on separate processors

• interleaved on a single processor

– exception handling and speculation

– nondeterminancy: order or choice is deliberately left unspecified

Copyright © 2009 Elsevier

Control Flow

• previous eight categories cover all of the control-flow constructs in

most programming languages

• better to think in these categories rather than the specifics of a single

programming language

– easier to learn new languages

– evaluate tradeoffs among languages

– design and evaluate algorithms

Copyright © 2009 Elsevier

Control Flow

• importance of different categories varies across programming

language paradigms

– sequencing central in imperative and object-oriented languages,

but less important in functional languages

– functional languages use recursion heavily, while imperative

languages focus more on iteration

– logic languages hide control flow entirely and allow the system to

find an order in which to apply inference rules

Copyright © 2009 Elsevier

Expression Evaluation

• expression consists of a simple object (literal, variable, constant) or

an operator or function call

– function: my_func(A, B, C)

– operators: simple syntax, one or two operands

• a + b

• -c

– sometimes operators are syntactic sugar

• in C++, a + b short for a.operator+(b)

• some languages impose an ordering for operators and their operands

– prefix and postfix sometimes referred to as Polish prefix and

Polish postfix after Polish logicians who studied and popularized

them

Copyright © 2009 Elsevier

Prefix, Infix, and Postfix Notation

• ordering for operators and their operands

– prefix: op a b or op(a,b)

• Lisp: (* (+ 1 3) 2)

• Cambridge prefix: function name inside parentheses; also

used with multiple operands: (+ 2 4 5 1)

– infix: a op b

• standard method

• C: a = b != 0 ? a/b : 0

– postfix: a b op

• least common - used in Postscript, Forth, and intermediate

code of some compilers

• C (and its descendants): x++

• Pascal: pointer dereferencing operator (^)

Copyright © 2009 Elsevier

Expression Evaluation

• arithmetic and logic operations may be ambiguous without

parentheses

– Fortran: a + b * c**d**e/f

• languages set precedence and associativity rules to determine order

of operations

– precedence rules: order of types of operations

• 2 + 3 * 4 (14 or 20?)

– associativity rules: order of operations at same precedence

• 9 – 3 – 2 (4 or 8?)

Copyright © 2009 Elsevier

Expression Evaluation

• languages have individual precedence and associativity rules

– C has 15 levels – too many to remember

– Pascal has 3 levels – too few for good semantics

– Fortran has 8

– Ada has 6

– when unsure, use parentheses

Copyright © 2009 Elsevier

Expression Evaluation

Figure 6.1 Operator precedence levels in Fortran, Pascal, C, and Ada. The operator s at the top of the figure group most tightly.

Copyright © 2009 Elsevier

Expression Evaluation

• example:

– 3 + 2**2**3

• exponentiation has higher precedence than addition

• exponentiation has right to left associativity

– use parentheses to force other interpretations

• 3 + 2**(2**3)

• (3 + 2)**2**3

Copyright © 2009 Elsevier

Assignment

• typically, a variable takes on a new value

• assignment is a side effect

– something that influences later computation or output and is not

a return value

– C: assignment does yield a value

• l-value: term on left side of =

• r-value: term on right side of =

Copyright © 2009 Elsevier

Assignment

• ordering of operand evaluation

– generally none

• application of arithmetic identities

– commutativity is assumed to be safe

– associativity (known to be dangerous)

 (a + b) + c

 works if a ~= maxint and b ~= minint and c < 0

 a + (b + c)

 does not

Copyright © 2009 Elsevier

Expression Evaluation

• short-circuiting

– consider (a < b) && (b < c)

• if a >= b there is no point evaluating whether b < c

because (a < b) && (b < c) is automatically false

– other similar situations

 if (b != 0 && a/b == c) ...

 if (p && p->foo) ...

 if (unlikely_condition && expensive_fn())...

• be cautious - need to be sure that your second half is valid, or else coder

could miss a runtime error without proper testing

Copyright © 2009 Elsevier

Expression Evaluation

• variables as values vs. variables as references

– value-oriented languages

• C, Pascal, Ada

– reference-oriented languages

• most functional languages (Lisp, Scheme)

– Java deliberately in-between

• built-in types are values

• user-defined types are objects - references

Copyright © 2009 Elsevier

Expressions vs. Statements

• most languages distinguish between expressions and statements

– expressions always produce a value, and may or may not have a

side effect

• Python: b + c

– statements are executed solely for their side effects, and return

no useful value

• Python: mylist.sort()

• a construct has a side effect if it influences subsequent computation

in some way (other than simply returning a value)

Copyright © 2009 Elsevier

Expression Evaluation

• expression-oriented vs. statement-oriented languages

– expression-oriented

• functional languages (Lisp, Scheme, ML)

– statement-oriented:

• most imperative languages

– C halfway in-between

• allows expression to appear instead of statement, but not the

reverse

Copyright © 2009 Elsevier

Assignment Shortcuts

• assignment

– statement (or expression) executed for its side effect

• key to most programming languages you have seen so far

– assignment operators

• +=, -=, etc.

• handy shortcuts

• avoid redundant work

• reduce programmer errors

• perform side effects exactly once

– example: A[index_fn(i)]++;

– vs. A[index_fn(i)] = A[index_fn(i)] + 1;

Copyright © 2009 Elsevier

Multiway Assignment

• some languages (including Python and Ruby) allow multiway

assignment

– example: a,b = c,d;

– defines a tuple, equivalent to a = c; b = d;

• can simplify computation

– a,b = b,a (no need for a temp variable)

– a,b,c = foo(d,e,f) (allows a single return)

Copyright © 2009 Elsevier

C: Assignments within Expressions

• combining expressions with assignments can have unfortunate side

effects, depending on the language

– C has no true boolean type (just uses int’s or their equivalents),

and allows assignments within expressions

– example

if (a = 0) {

 …

}

What does this do?

Copyright © 2009 Elsevier

• side effects are a fundamental aspect of the whole von Neumann

model of computation.

– what is the von Neumann architecture?

• in (pure) functional and logic languages, there are no such changes

– single-assignment languages

– very different

Expression Evaluation

Copyright © 2009 Elsevier

Expression Evaluation

• some languages outlaw side effects for functions

– easier to prove things about programs

– closer to Mathematical intuition

– easier to optimize

– (often) easier to understand

• but side effects can be nice

– consider rand()

Copyright © 2009 Elsevier

More on Side Effects

• side effects are a particular problem if they affect state used in other

parts of the expression in which a function call appears

– example: a - f(b) - c*d

– good not to specify an order, because it makes it easier to optimize

– unfortunately, compilers can't check this completely, and most don't

at all

Copyright © 2009 Elsevier

Code Optimization

• most compilers attempt to optimize code

– example: a = b + c then d = c + e + b

• evaluating part of each statement can speed up code

– a = b / c / d then e = f / d / c

– t = c * d and then a = b / t and e = f / t

• arithmetic overflow can really become a problem here

– can be dependent on implementation and local setup

– checking provides more work for compiler, so slower

– with no checks, these can be hard to find

Copyright © 2009 Elsevier

• sequencing

– specifies a linear ordering of statements

• one statement follows another

– imperative, Von-Neuman

• in assembly, the only way to "jump" around is to use branch statements

• early programming languages (such as C) mimicked this using goto

Sequencing

Copyright © 2009 Elsevier

• in 1968, Edsger Dijkstra wrote an article condemning the goto

statement

• while hotly debated, goto statements have essentially disappeared

from modern programming languages

• did not fit structured programming model

– top down design

– modularization of code

– structured types

– descriptive variables

– iteration

The End of goto

Copyright © 2009 Elsevier

• getting rid of goto was actually fairly easy, since it was usually used in

certain ways

– goto to jump to end of current subroutine

• use return instead

– goto to escape from the middle of a loop

• use exit or break instead

• much harder if nesting is deep

– goto to repeat sections of code

• use loops instead

Alternatives to goto

Copyright © 2009 Elsevier

• several settings are very useful for goto statements

– to end a procedure/loop early (for example, if target value is found)

• use break or continue instead

– problem: bookkeeping

• breaking out of code might end a scope

– need to call destructors, deallocate variables, etc.

• adds overhead to stack control

– must be support for unwinding the stack

Case for goto

Copyright © 2009 Elsevier

• another example: exceptions

• goto was generally used as error handling, to exit a section of code

without continuing

• modern languages generally throw and catch exceptions instead

– adds overhead

– but allows more graceful recovery

Case for goto

Copyright © 2009 Elsevier

• blocks of code are executed in a sequence

• blocks are generally indicated by { … } or similar construct

• interesting note: without side effects, blocks are essentially useless

– the value is just the last return

• in some languages, functions which return a value are not allowed to

have a side effect at all

– any function call will have the same value, no matter when it occurs

– not always desirable, of course

• rand function definitely should not return the same value every
time!

Sequencing

Copyright © 2009 Elsevier

• selection: introduced in Algol 60

– sequential if statements

 if ... then ... else

 if ... then ... elsif ... else

– Lisp variant

 (cond

 (C1) (E1)

 (C2) (E2)

 ...

 (Cn) (En)

 (T) (Et)

)

Selection

Copyright © 2009 Elsevier

• Algol 60 example

 if a = b then PROC := 2

 elsif a = c then PROC := 3

 elsif a = d then PROC := 4

 else PROC := 1

 end;

• Lisp variant

 (cond

 ((= A B) (2))

 ((= A C) (3))

 ((= A D) (4))

 (T (1))

)

Selection

Copyright © 2009 Elsevier

• selection

– Fortran computed goto statements

– jump code

• for selection and logically-controlled loops

• no point in computing a Boolean value into a register, then

testing it

• instead of passing register containing Boolean out of

expression as a synthesized attribute, pass inherited attributes

INTO expression indicating where to jump to if true, and where

to jump to if false

Selection

Copyright © 2009 Elsevier

• jump is especially useful in the presence of short-circuiting

• example: suppose code is generated for the following

if ((A > B) and (C > D)) or (E <> F) then

 then_clause

else

 else_clause

Selection

Copyright © 2009 Elsevier

• code generated w/o short-circuiting (Pascal)

 r1 := A -- load

 r2 := B

 r1 := r1 > r2

 r2 := C

 r3 := D

 r2 := r2 > r3

 r1 := r1 & r2

 r2 := E

 r3 := F

 r2 := r2 <> r3

 r1 := r1 | r2

 if r1 = 0 goto L2

 L1: then_clause -- label not actually used

 goto L3

 L2: else_clause

 L3:

Selection

Copyright © 2009 Elsevier

• code generated w/ short-circuiting (C)
 r1 := A

 r2 := B

 if r1 <= r2 goto L4

 r1 := C

 r2 := D

 if r1 > r2 goto L1

 L4: r1 := E

 r2 := F

 if r1 = r2 goto L2

 L1: then_clause

 goto L3

 L2: else_clause

 L3:

Selection

Copyright © 2009 Elsevier

• the case/switch statement was introduced to simplify certain if-else

situations

• useful when comparing the same integer to a large variety of

possibilities

Selection: case/switch

Copyright © 2009 Elsevier

• example

 can be re-written as

Selection: case/switch

Copyright © 2009 Elsevier

• labels and arms must be disjoint

• label type must be discrete

• integer, character, enumeration, subrange

• case/switch statements enhance code aesthetics, but principal

motivation is to generate efficient target code

Selection: case/switch

Copyright © 2009 Elsevier

• case can be translated as

Selection: case/switch

Copyright © 2009 Elsevier

• can use an array of jump addresses (jump table) instead

Selection: case/switch

Copyright © 2009 Elsevier

• jump tables can take a lot of space if case covers large ranges or

values or non-dense

• alternative methods

• sequential testing

• useful if number of case statements is small

• hashing

• useful if range of label values is large, but with many missing

values

• binary search

• good for large ranges

Selection: case/switch

Copyright © 2009 Elsevier

• languages differ in

• syntax

• punctuation

• label ranges

• default clause

• some languages: else

• Ada: all values must be covered

• handling of match failures

• some languages will require program failure for unmatched

value

• C and C++: no effect

Selection: case/switch

Copyright © 2009 Elsevier

• C/C++/Java switch

Selection: case/switch

Copyright © 2009 Elsevier

• C/C++/Java switch

• each value must have its own label; no ranges allowed

• lists of labels not allowed, but empty arms that fall through OK

• break required at end of each arm that terminates

• fall-through can cause unintentional hard-to-find bugs

• C# requires each non-empty arm to end with break, goto,

continue, or return

• fall-through convenient at times

Selection: case/switch

Copyright © 2009 Elsevier

• ability to perform some set of operations repeatedly

– loops

– recursion

• without iteration, all code would run in linear time

• most powerful component of programming

• in general, loops are more common in imperative languages, while

recursion is more common in functional languages

– loops generally executed for their side effects

Iteration

Copyright © 2009 Elsevier

• enumeration-controlled loop

– Pascal or Fortran-style for loops
 do i = 1, 10, 2 -- index i, init val, bound, step

 … -- body will execute 5 times

enddo

– changed to standard for loops later

 FOR i := first TO last BY step DO

 …

 END

Iteration

Copyright © 2009 Elsevier

• none of these initial loops allow anything other than enumeration

over a preset, fixed number of values

• results in efficient code generation

 R1 := first

 R2 := step

 R3 := last

 goto L2

L1: … --loop body, use R1 for i

 R1 := R1 + R2

L2: if R1 <= R3 goto L1

Iteration: Code Generation

Copyright © 2009 Elsevier

• translation can be optimized if the number of iterations can be

precomputed, although need to be careful of overflow

– precompute total count, and subtract 1 each time until we hit 0

– we must be able to precompute

• always possible in Fortran or Ada, but C (and its descendants)

are quite different

Iteration: Code Generation

Copyright © 2009 Elsevier

• can control enter or leave the loop other than through enumeration

mechanism?

– break, continue, exit

– Fortran allowed goto to jump inside a loop

• what happens if the loop body alters variables used to compute end-

of-loop condition?

– some languages only compute the bound once (not C)

• what happens if the loop modifies the index variable itself?

– most languages prohibit this entirely, although some leave it up

to the programmer

• can the program read the index after the loop has been completed,

and if so, what is its value?

– ties into issue of scope, and is very language-dependent

Iteration: Some Issues

Copyright © 2009 Elsevier

• example: what happens if the loop modifies the index variable itself?

 for i := 1 to 10 by 2

 …

 if i = 3

 i = 6

• example: can the program read the index after the loop has been

completed, and if so, what is its value?

Iteration: Some Issues

Copyright © 2009 Elsevier

• the for loop in C is called a combination loop

– allows one to use more complex structures in the for loop

• the Modula-2 loop

 becomes

 which is equivalent to

Iteration: Combination Loops

Copyright © 2009 Elsevier

• for loop useful in its compactness of clarity over while loop

• convenient to make loop iterator local to body of loop

 for (int i = first; i <= last; i += step)

• essentially, for loops are another variant of while loops, with more

complex updates and true/false evaluations each time

• operator overloading (such as operator++) combined with iterators

actually allow highly non-enumerative for loops

• example

 for (list<int>::iterator it = mylist.begin();

 it != mylist.end(); it++) {

 …

 }

Iteration: Combination Loops

Copyright © 2009 Elsevier

• languages such as Python and C# require any container to provide an

iterator that enumerates items in that class

• example

 for item in mylist:

 #code to look at items

Iteration: Iterators

Copyright © 2009 Elsevier

• while loops are different from standard for loops

– no set number of enumerations is predefined

• inherently strong

– closer to if statements in some ways, but with repetition built in

• more difficult to code properly

• more difficult to debug

• code optimization is also harder

– none of the for loop tricks will work

Iteration: Logically Controlled Loops

Copyright © 2009 Elsevier

• recursion

– equally powerful to iteration

– often more intuitive (sometimes less)

– naive implementation less efficient

• no special syntax required

• fundamental to functional languages like Scheme

Recursion

Copyright © 2009 Elsevier

• many criticize that recursion is slower and less efficient than iteration

– alters the stack when calling a function

• a bit inaccurate – naively written iteration is probably more efficient

than naively written recursion

• in particular, if the recursion is tail recursion, the execution on the stack

for the recursive call will occupy the exact same spot as the previous

method

Recursion

Copyright © 2009 Elsevier

• tail recursion

– no computation follows recursive call

 int gcd (int a, int b) {

 /* assume a, b > 0 */

 if (a == b) return a;

 else if (a > b) return gcd (a - b, b)

 else return gcd (a, b – a);

 }

– a good compiler will translate this to machine code that runs in place

• essentially returning to the start of the function with new a,b

values

Recursion

Copyright © 2009 Elsevier

• even if not initially tail recursive, simple transformations can often

produce tail-recursive code

• additionally, clever tricks - such as computing Fibonacci numbers in an

increasing fashion, rather than via two recursive calls - can make

recursion comparable

Recursion

Copyright © 2009 Elsevier

• generally, we assume that arguments are evaluated before passing to

a subroutine, in applicative order evaluations

• not always the case: lazy evaluation or normal order evaluation pass

unevaluated arguments to functions, and value is only computed if

and when it is necessary

• applicative order is preferable for clarity and efficiency, but

sometimes normal order can lead to faster code or code that won’t

give as many run-time errors

• in particular, for list-type structures in functional languages, this lazy

evaluation can be key

Order of Evaluation

	Slide 1
	Slide 2: Control Flow
	Slide 3: Control Flow
	Slide 4: Control Flow
	Slide 5: Control Flow
	Slide 6: Control Flow
	Slide 7: Expression Evaluation
	Slide 8: Prefix, Infix, and Postfix Notation
	Slide 9: Expression Evaluation
	Slide 10: Expression Evaluation
	Slide 11: Expression Evaluation
	Slide 12: Expression Evaluation
	Slide 13: Assignment
	Slide 14: Assignment
	Slide 15: Expression Evaluation
	Slide 16: Expression Evaluation
	Slide 17: Expressions vs. Statements
	Slide 18: Expression Evaluation
	Slide 19: Assignment Shortcuts
	Slide 20: Multiway Assignment
	Slide 21: C: Assignments within Expressions
	Slide 22
	Slide 23: Expression Evaluation
	Slide 24: More on Side Effects
	Slide 25: Code Optimization
	Slide 26: Sequencing
	Slide 27: The End of goto
	Slide 28: Alternatives to goto
	Slide 29: Case for goto
	Slide 30: Case for goto
	Slide 31: Sequencing
	Slide 32: Selection
	Slide 33: Selection
	Slide 34: Selection
	Slide 35: Selection
	Slide 36: Selection
	Slide 37: Selection
	Slide 38: Selection: case/switch
	Slide 39: Selection: case/switch
	Slide 40: Selection: case/switch
	Slide 41: Selection: case/switch
	Slide 42: Selection: case/switch
	Slide 43: Selection: case/switch
	Slide 44: Selection: case/switch
	Slide 45: Selection: case/switch
	Slide 46: Selection: case/switch
	Slide 47: Iteration
	Slide 48: Iteration
	Slide 49: Iteration: Code Generation
	Slide 50: Iteration: Code Generation
	Slide 51: Iteration: Some Issues
	Slide 52: Iteration: Some Issues
	Slide 53: Iteration: Combination Loops
	Slide 54: Iteration: Combination Loops
	Slide 55: Iteration: Iterators
	Slide 56: Iteration: Logically Controlled Loops
	Slide 57: Recursion
	Slide 58: Recursion
	Slide 59: Recursion
	Slide 60: Recursion
	Slide 61: Order of Evaluation

