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Chapter 7:: Data Types

Programming Language Pragmatics

Michael L. Scott
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• most programming languages include a notion of types for variables, 
expressions, functions, etc. 

• two main purposes of types

– give a context for operations

• example: a + b means mathematical addition if a and b are 
integers

– limit the set of operations that can be performed and thereby 
prevents mistakes

• type checking cannot prevent all invalid operations, but it catches 
a lot of them

Types
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• types provide meaning and structure

• computer only sees bits in memory and does not know about types

• bits can be interpreted in many ways

– instructions

– addresses

– characters, integers, floats, etc.

• bits are untyped, but higher-level languages associate types with values 

• types guide the interpretation of the bits 

– for operator context performed at the machine level

• e.g., integer addition vs. floating point addition

– error checking

• e.g., are we adding values of compatible types?
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• type checking ensures a program obeys the type compatibility rules of the 
language

– type error: violation of type rules

– type safety: extent to which a language prevents type errors

• different levels of type checking

– strongly typed if it prohibits an operation on an object for which the 
operation is not defined

– statically typed if it is strongly typed and type checking can be 
performed at compile time

– dynamically typed if type checking is performed at run time

• no standard definition of strongly typed

Type Checking
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• some languages have sophisticated type systems

– Haskell and ML

– possible to determine the type of every expression at compile time

– strongly statically typed

• some languages perform implicit or explicit conversions

– C and Fortran

– undermines type safety

– weakly strongly typed

• Python is dynamically typed

• some languages are completely untyped

– assembly languages
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• data may need to be changed to a different type before an operation can 
be completed

• two different types of type changes

– type conversions (explicit)

• sometimes the word 'cast' is used for conversions (e.g., C)

– type coercions (implicit)

Type Checking
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• example in Ada illustrating type conversion

Type Checking 8
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• coercion

– when an expression of one type is used in a context where a different 

type is expected, one normally gets a type error

– but what about

 int a;

   float b, c;

  ...

 c := a + b;

– many languages allow such statements, and coerce an expression to 

be of the proper type

– coercion can be based just on types of operands, or can take into 

account expected type from surrounding context as well

Type Checking
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• C has lots of coercion, but with simple rules

– all floats in expressions become doubles

– short int and char become int in expressions

– if necessary, precision is removed when assigning into LHS
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• example in C, which does a bit of coercion

Type Checking
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• in effect, coercion rules are a relaxation of type checking

– recent thought is that this is probably a bad idea

– some languages, such as Ada, do not permit coercions

– C++, however, goes hog-wild with them

– they're one of the hardest parts of the language to understand
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• a type system has rules for

– type equivalence

• when are the types of two values the same?

– type compatibility

• when can a value of type A be used in a context that expects type B?

– type inference

• what is the type of an expression, given the types of the operands?

Type Checking
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• type compatibility vs. type equivalence

– compatibility is the more useful concept, because it tells you what you 

can do

– terms are often used interchangeably (incorrectly)

Type Checking 14
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• format does not matter
 struct { int a, b; }

      is the same as
 struct {

    int a, b;

 }

      want them to be the same as

struct {

  int a;

  int b;

}

Type Checking
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• two major approaches

– structural equivalence

• based on some notion of meaning behind those declarations

– name equivalence

• based on declarations 

• more fashionable these days
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• structural equivalence depends on simple comparison of type descriptions 

– substitute out all names 

– expand all the way to built-in types

– original types are equivalent if the expanded type descriptions are the 

same

Type Checking
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• at least two common variants on name equivalence

– differences between all these approaches boils down to where the line 

is drawn between important and unimportant differences between type 

descriptions

– in all schemes, we begin by putting every type description in a standard 

form that takes care of "obviously unimportant" distinctions like those 

above
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• a type system consists of

– a way to define types and associate them with language constructs

• constructs that must have values include constants, variables, 
record fields, parameters, literal constants, subroutines, and 
complex expressions containing these

– rules for type equivalence, type compatibility, and type inference

• type equivalence: when the types of two values are the same

• type compatibility: when a value of a given type can be used in a 
particular context

• type inference: type of an expression based on the types of its 
parts

Type Systems
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• types reflect the internal structure of data, down to the level of a small 
set of fundamental types

– structural approach to types

• other approaches are more mathematical

– denotational: collection of values from a domain

– abstraction: operations that can be applied to objects of a type

• types can be specified in different ways

– Fortran: implicitly by the spelling of variable names, explicitly in 
variable declarations

– C, C++: explicitly in variable declarations

– Python: by the type of the right-hand side of an assignment

Data Types 20
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• most languages provide a set of built-in types

– integer

– boolean

• often single character with 1 as true and 0 as false

• C: no explicit boolean; 0 is false, anything else is true

– char

• traditionally one byte

• ASCII, Unicode

– floating point

• languages also supply composite types built from the basic data types

– C: structure, array, union

– C++, Python: class

– Python: list, dictionary

Data Types
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• universal reference types

– a reference that can point to anything

– C, C+: void

– Java: Object

– C#: object
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Classification of Types

• numeric types

– C and Fortran distinguish between different lengths of integers

– C, C++, C#, Modula-2: signed and unsigned integers

– differences in float precision cause unwanted behavior across 
machine platforms

– some languages provide complex, rational, or decimal types
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Classification of Types

• enumeration types

– facilitate readability

– allow compiler to catch errors

• Pascal example

– orders, so comparisons OK
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Classification of Types

• alternatively, can be declared as constants

• same as C
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Classification of Types

• subrange types

• contiguous subset of discrete base type

• helps to document code

• most store the actual values rather than ordinal locations

• needs two bytes
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Classification of Types

• composite types

– records

• Cobol

• fields of possibly different type

• similar to tuples

– variant records (unions)

• multiple field types, but only one valid at a given time

– arrays

• aggregate of same type

– strings
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Classification of Types

• composite types (cont.)

– sets

• discrete

• like enumerations and subranges

– pointers

• good for recursive data types

– lists

• head element and following elements

• variable length, no indexing

– files

• mass storage, outside program memory

• linked to physical devices (e.g., sequential access)
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Polymorphism

• polymorphism results when the compiler finds that it doesn't need to 
know certain things

– allows a single body of code to work with objects of multiple 
types

– with dynamic typing, arbitrary operations can be applied to 
arbitrary objects

• implicit parametric polymorphism: types can be thought of to 
be implied unspecified parameters

• incurs significant run-time costs

29

Copyright © 2005 Elsevier

Polymorphism

• subtype polymorphism in object-oriented languages

– a variable of the base type can refer to an object of the derived 
type

– explicit parametric polymorphism, or generics

• C++, Eiffel, Java

• useful for container classes

• List<T>   where T is left unspecified
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Records and Variants

• records

– allow related heterogeneous types to be stored together

– C, C++: structure

– C++: class with globally visible members
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Records and Variants

• records

– allow related heterogeneous types to be stored together

– C, C++: structure

– C++: class with globally visible members
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Records and Variants

• C

• Pascal
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Records and Variants

• each record component is known as a field

– most languages use dot notation to refer to fields

• Fortran: copper%name
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Records and Variants

• most languages allow records to be nested

• alternatively
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Records and Variants

• both reference

 malachite.element_yielded.atomic_number

• in C, struct tags appear in struct definitions as

– in C, need typedef

 typedef struct …

– in C++, struct tag is type name
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Records and Variants

• records

– usually laid out contiguously

– addresses are computed as base + offset

– possible holes for alignment reasons

– smart compilers may re-arrange fields to minimize holes (C 
compilers promise not to)

– implementation problems are caused by records containing 
dynamic arrays

31 32

33 34

35 36



7

37

Copyright © 2005 Elsevier

Records and Variants

• records example

– each element must begin on proper boundary

• int on 4-byte boundary

• short on 2-byte boundary

• char on 1-byte boundary

• user-defined type begins and ends on word boundary

– holes for alignment
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Records and Variants

• some languages, such as Pascal, allow the data to be packed

– boundary alignment overridden

– generally inefficient

• compiler should optimize for space over speed

• less space, but system takes longer to access elements
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Records and Variants

• some languages, such as C, allow record assignment

 my_element = copper;

• or record tests for equality

 if (my_element == copper) …

• most other languages do not
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Records and Variants

• record equality can be done field by field

• to save time, a block compare function can be used

– compares bytes

– holes need to be filled with 0’s to allow block comparisons to 
work correctly
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Records and Variants

• holes in records waste space

– packing helps, but with performance penalties

• smart compilers rearrange fields automatically (not C compilers)

– programmer unaware

– some systems-level applications may depend on non-rearranged 
fields

42

Copyright © 2005 Elsevier

Records and Variants

• unions (variant records)

– space was extremely limited in early days of programming

– overlay space

– cause problems for type checking

– can be used for automatically re-interpreting bits without casts
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Records and Variants

• Pascal

44

Copyright © 2005 Elsevier

Records and Variants

• variant part must be at end
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Records and Variants

• Modula-2: variant part not required to be at end
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Orthogonality

• orthogonality is a useful goal in the design of a language, particularly 
its type system

• a collection of features is orthogonal if there are no restrictions on 
the ways in which the features can be combined (analogy to vectors)

• for example

– Pascal is more orthogonal than Fortran because it allows arrays of 
anything

• orthogonality is nice primarily because it makes a language easy to 
understand, easy to use, and easy to reason about
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Arrays

• arrays are the most common and important composite data types

• unlike records, which group related fields of disparate types, arrays 
are usually homogeneous

• semantically, they can be thought of as a mapping from an index type 
to a component or element type

• index

– most languages require the index to be an integer at least 
discrete type

– index usually inside square brackets [ ]

– some languages use parentheses ( )

• non-discrete type

– associative array

– Python: dictionary

– require hash table for lookup
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Arrays

• declaration
– C

– Fortran

– Pascal

– Ada
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Arrays

• multidimensional arrays

• accessed as matrix [3][4]

– sometimes as matrix [3, 4]

• Ada: matrix (3, 4)
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Arrays

• a slice or section is a rectangular portion of an array
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Arrays

• slicing

– some languages allow operations on arrays

– Ada: lexicographic ordering: if A < B

– Fortran: more than 60 intrinsic functions

• arithmetic operations, logic functions, bit manipulation, 
trigonometric functions

52

Copyright © 2005 Elsevier

Arrays

• dimensions, bounds, and allocation

– global lifetime, static shape — if the shape of an array is known at 
compile time, and if the array can exist throughout the execution 
of the program, then the compiler can allocate space for the array 
in static global memory

– local lifetime, static shape — if the shape of the array is known at 
compile time, but the array should not exist throughout the 
execution of the program, then space can be allocated in the 
subroutine’s stack frame at run time

– local lifetime, shape bound at elaboration time
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Arrays

• dope vector

– collection of information about an array

• dimensions

• bounds (lower and upper)

– record

• offset to each field

– good for runtime checks

– can enhance efficiency by avoiding computations

– origin: “having the dope on (something)”
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Arrays

• stack allocation

– conformant arrays

• parameters to subroutines

• dimensions not known

• dope vector passed to help
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Arrays 56
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Arrays

• heap allocation

– dynamic arrays

– dimensions not known until runtime

– dope vector can be maintained dynamically
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Arrays

• arrays are stored in contiguous memory locations

• for multidimensional arrays, an ordering of dimensions must be 
specified

– column-major - only in Fortran

– row-major

• used by everybody else

– important for element access
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Arrays
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Arrays

• to access elements in a single row

– column-major 

• cache may not be big enough to store next row item

– row-major

• effective

– reversed for column support, but row support seems to be used 
more often
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Arrays

• two layout strategies for arrays

– contiguous elements

– row pointers

• row pointers

– an option in C

– allows rows to be put anywhere - nice for big arrays on machines 
with segmentation problems   

– avoids multiplication

– nice for matrices whose rows are of different lengths

• e.g. an array of strings

– requires extra space for the pointers
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Arrays

• address calculation

• can compute some portions before execution
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Strings

• strings are really just arrays of characters

• they are often special-cased, to give them flexibility (like 
polymorphism or dynamic sizing) that is not available for arrays in 
general

– easier to provide these operations for strings than for arrays in 
general because strings are one-dimensional and (more 
importantly) non-circular
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Sets

• possible implementations

– bitsets are what usually get built into programming languages

– intersection, union, membership, etc. can be implemented 
efficiently with bitwise logical instructions

– some languages place limits on the sizes of sets to make it easier 
for the implementer

• for 32-bit int’s, bitset size is 500MB

• for 64-bit int’s, bitset size enormous
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Pointers

• pointers serve two purposes

– efficient (and sometimes intuitive) access to elaborated objects 
(as in C)

– dynamic creation of linked data structures (recursive types), in 
conjunction with a heap storage manager

• several languages (e.g., Pascal) restrict pointers to accessing objects 
in the heap
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Pointers

• operations on pointers

– allocation and deallocation of objects in the heap

– dereferencing of pointers to access the objects to which they 
point

– assignment from one pointer to another

• operations behave differently depending on whether the language 
employs a reference model or value model for names

• functional languages use reference model
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Pointers

• reference model

– ML example

– example tree

– block storage from heap
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Pointers
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Pointers

• reference model

– Lisp example

– each level of parentheses brackets the elements of a list

• head and remainder of list

• each node is denoted as a construct cell or atom
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Pointers
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Pointers

• references in functional languages are acyclic

• circular references typically found only in imperative languages

• often need mutually recursive types 

– example: symbol table and syntax tree nodes need to refer to 
each other

– if declared one at a time, not able to refer to each other
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Pointers

• tree types in value model languages

– Pascal

– Ada
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Pointers

• tree types in value model languages (cont.)

– C

• for mutually recursive types

– Pascal: forward references

– Ada and C: incomplete data types
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Pointers
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Pointers

• allocation of space from the heap

– Pascal

– Ada

– C

• returns void*

– C++, Java, C#

76

Copyright © 2005 Elsevier

Pointers

• accessing objects pointed to by references

– Pascal

– C

• or for structs

77

Copyright © 2005 Elsevier

Pointers

• most languages blur the distinction between l-values and r-values by 
implicitly dereferencing variables on right-hand side of assignment
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Pointers

• C pointers and arrays

• all of the following are valid
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Pointers

• subscript operator [ ]

• equivalent to

• order does not matter
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Pointers

• C pointers and arrays closely linked

   int *a == int a[]

   int **a == int *a[]

• some subtle differences

– a declaration allocates an array if it specifies a size in the first 
dimension

– otherwise it allocates a pointer

     int **a, int *a[]; // pointer to pointer to int

     int *a[n];   // n-element array of row pointers

     int a[n][m]; // 2-d array
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Pointers

• declaring an array requires all dimensions except the last

– invalid

     int a[][]; 

     int (*a)[]; 

• C declaration rule: read right as far as you can (subject to 
parentheses), then left, then out a level and repeat

   int *a[n];   // n-element array of pointers to 

      //  integer

   int (*a)[n]; // pointer to n-element array

                //  of integers
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Pointers

• when a heap-allocated object is no longer live, space must be 
reclaimed

– stack objects reclaimed automatically

– heap space can be reclaimed automatically with garbage 
collection
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Pointers

• some languages require heap space to be reclaimed by the 
programmer

– Pascal

– C

– C++

– if not reclaimed, results in memory leaks
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Pointers

• dangling reference

– live pointer that no longer points to a valid object

– only in languages that have explicit deallocation

• examples

– subroutine returns pointer to local variable

– active pointer to space that has been reclaimed

• even if the pointer were changed to NULL, other pointers 
might still refer to this space

• changes may read or write bits that are parts of other objects
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Garbage Collection

• explicit reclaiming can be a burden on programmers and a source of 
memory leaks

• alternative: garbage collection

– automatic reclaiming of heap space

– required for functional languages

– found in Java, Modula-3, C#

– difficult to implement

– convenient for programmers: no dangling pointers

– can be slow
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Garbage Collection

• several types of garbage collection

– reference counts

– mark-and-sweep

– pointer reversal

– stop-and-copy

– others
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Garbage Collection

• reference counts

– one way to designate an object as garbage is when no pointers to 
it exist

– place a reference count in each object that keeps track of the 
number of pointers to it

– when object is created, reference count is set to 1

– when pointers are assigned or re-assigned, count is 
incremented/decremented

– when count reaches 0, space can be reclaimed
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Garbage Collection

• reference counts (cont.)

– reference count also decremented upon subroutine return if local 
pointers involved

– system must run recursively, so that any pointers in reclaimed 
space are accounted for

– pointers must otherwise be initialized to null

– works well with strings, which have no circular dependencies
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Garbage Collection

• the heap is a chain of nodes (the free_list)

• each node has a reference count (RC)

• for an assignment, like q = p, garbage can occur
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Garbage Collection

• reference counts may miss circular structures
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Garbage Collection

• disadvantages of reference counts

– failure to detect inaccessible circular chains

– storage overhead created by appending an integer reference 
count to every node in the heap

– performance overhead whenever a pointer is assigned or a heap 
block is allocated or deallocated
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Garbage Collection

• some garbage collection schemes use tracing

– instead of counting the number or references to an object

– find all good space by following valid pointers that are active

– work recursively through the heap, starting from external 
pointers
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Garbage Collection

• mark-and-sweep

– 3 main steps executed when space is low

1. all blocks in the heap marked with 0

2. follow pointers outside the heap and recursively explore all 
heap space

– each newly discovered block marked with 1

– if already marked with 1, stop following that chain

3. final walk through heap to remove every block still marked 
with 0
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Garbage Collection

• triggered by q = new node() and free_list = null

• all accessible nodes are marked 1
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Garbage Collection

• now free_list is restored and 

• the assignment q = new node() can proceed
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Garbage Collection

• advantages over reference counting

– reclaims all garbage in the heap

– only invoked when the heap is full

• issues with mark-and-sweep

– system must know beginning and ending points of blocks

• each block must contain a size

– collector must be able to find pointers contained in each block

– recursive nature requires stack space

– can be time-intensive
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Garbage Collection

• pointer reversal

– to avoid large stack during recursive search, use pointers already 
in heap space to work back up the chain

– such pointers oriented in the wrong direction

– can be reversed to point backward in the “stack”

– collector keeps track of current block and the block from whence 
it came
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Garbage Collection

• heap exploration using pointer reversal
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Garbage Collection

• stop-and-copy (aka copy collection)

– heap space divided into two halves

• only one is active at any given time

– when one half nearly full, collector recursively explores heap, 
copying all valid blocks to other half 

– defragments while copying

– pointers to blocks change during copy

– when finished, only useful blocks in heap; other half is no longer 
used

– on next collection, halves are reversed
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Garbage Collection

• triggered by q = new node() and free_list outside the active half

101

Copyright © 2005 Elsevier

Garbage Collection

• accessible nodes copied to other half and defragmented

• the accessible nodes are packed, orphans are returned to the 
free_list, and the two halves reverse roles

• free_list always points to starting point of available memory
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Garbage Collection

• issues with stop-and-copy

– only half of the heap can be used at any one time

– incurs additional overhead

– can be time-intensive
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Garbage Collection

• other techniques

– generational collection

• since most dynamically allocated blocks are short-lived, newer 
ones stored in half the heap

• this half checked first if garbage collection necessary

• during garbage collection, valid blocks transferred to long-
term heap

• system must examine long-term heap if more space needed, 
and to reduce memory leaks
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Garbage Collection

• other techniques (cont.)

– conservative collection

• if blocks in the heap do not state explicitly the location of 
pointers, any space that “looks like” a pointer can be 
considered such and used with mark-and-sweep

• may leave some useless blocks, but guaranteed not to delete 
currently used blocks
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Garbage Collection

• summary

– modern algorithms are more elaborate

• most are hybrids/refinements of the above three

– in Java, garbage collection is built-in

• runs as a low-priority thread

• also, System.gc may be called by the program

– functional languages have garbage collection built-in

– C/C++ default garbage collection to the programmer
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Lists

• a list is defined recursively as either the empty list or a pair consisting 
of an object (which may be either a list or an atom) and another 
(shorter) list

– ideally suited to programming in functional and logic languages, 
which rely on recursion

• Lisp: a program is a list, and can extend itself at run time by 
constructing a list and executing it

– lists can also be used in imperative programs
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Lists

• list operations tend to generate garbage

– useful to have automatic garbage collection

• some languages (e.g., ML) require lists to contain items of the same 
type

• other languages (e.g., Python, Lisp) allow lists to contain items of 
differing types

– implemented as chain of two pointers: one to element and one to 
next block
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Lists

• since everything in Lisp is a list, differentiation required between lists 
to be evaluated and constant lists

• Lisp list constructors
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Lists

• list comprehension (e.g., Haskell, Python)

– Python example: all odd numbers less than 100

     [i*i for i in range (1, 100) if i % 2 == 1]
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Files and Input/Output 

• input/output (I/O) facilities allow a program to communicate with the 
outside world

– interactive I/O generally implies communication with human 
users or physical devices 

– files generally refer to off-line storage implemented by the 
operating system

• files may be further categorized into

– temporary

– persistent
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Equality Testing and Assignment 

• when an expression is encountered testing for equality, how should it 
be interpreted?

– for primitive types, easily defined

– example: s = t for character strings

• are s and t aliases?

• occupy the same storage that is bit-wise identical over its full 
length?

• contain the same sequence of characters?

• would appear the same if printed?

– shallow vs. deep comparison
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Equality Testing and Assignment 

• Scheme has distinct equality-testing functions for each

• behavior

• deep assignments rare in any language
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