
1

1

Copyright © 2005 Elsevier

Chapter 7:: Data Types

Programming Language Pragmatics

Michael L. Scott

2

Copyright © 2005 Elsevier

• most programming languages include a notion of types for variables,
expressions, functions, etc.

• two main purposes of types

– give a context for operations

• example: a + b means mathematical addition if a and b are
integers

– limit the set of operations that can be performed and thereby
prevents mistakes

• type checking cannot prevent all invalid operations, but it catches
a lot of them

Types

3

Copyright © 2005 Elsevier

• types provide meaning and structure

• computer only sees bits in memory and does not know about types

• bits can be interpreted in many ways

– instructions

– addresses

– characters, integers, floats, etc.

• bits are untyped, but higher-level languages associate types with values

• types guide the interpretation of the bits

– for operator context performed at the machine level

• e.g., integer addition vs. floating point addition

– error checking

• e.g., are we adding values of compatible types?

Types 4

Copyright © 2005 Elsevier

• type checking ensures a program obeys the type compatibility rules of the
language

– type error: violation of type rules

– type safety: extent to which a language prevents type errors

• different levels of type checking

– strongly typed if it prohibits an operation on an object for which the
operation is not defined

– statically typed if it is strongly typed and type checking can be
performed at compile time

– dynamically typed if type checking is performed at run time

• no standard definition of strongly typed

Type Checking

5

Copyright © 2005 Elsevier

• some languages have sophisticated type systems

– Haskell and ML

– possible to determine the type of every expression at compile time

– strongly statically typed

• some languages perform implicit or explicit conversions

– C and Fortran

– undermines type safety

– weakly strongly typed

• Python is dynamically typed

• some languages are completely untyped

– assembly languages

Type Checking 6

Copyright © 2005 Elsevier

• data may need to be changed to a different type before an operation can
be completed

• two different types of type changes

– type conversions (explicit)

• sometimes the word 'cast' is used for conversions (e.g., C)

– type coercions (implicit)

Type Checking

1 2

3 4

5 6

2

7

Copyright © 2005 Elsevier

• example in Ada illustrating type conversion

Type Checking 8

Copyright © 2005 Elsevier

• coercion

– when an expression of one type is used in a context where a different

type is expected, one normally gets a type error

– but what about

 int a;

 float b, c;

 ...

 c := a + b;

– many languages allow such statements, and coerce an expression to

be of the proper type

– coercion can be based just on types of operands, or can take into

account expected type from surrounding context as well

Type Checking

9

Copyright © 2005 Elsevier

• C has lots of coercion, but with simple rules

– all floats in expressions become doubles

– short int and char become int in expressions

– if necessary, precision is removed when assigning into LHS

Type Checking 10

Copyright © 2005 Elsevier

• example in C, which does a bit of coercion

Type Checking

11

Copyright © 2005 Elsevier

• in effect, coercion rules are a relaxation of type checking

– recent thought is that this is probably a bad idea

– some languages, such as Ada, do not permit coercions

– C++, however, goes hog-wild with them

– they're one of the hardest parts of the language to understand

Type Checking 12

Copyright © 2005 Elsevier

• a type system has rules for

– type equivalence

• when are the types of two values the same?

– type compatibility

• when can a value of type A be used in a context that expects type B?

– type inference

• what is the type of an expression, given the types of the operands?

Type Checking

7 8

9 10

11 12

3

13

Copyright © 2005 Elsevier

• type compatibility vs. type equivalence

– compatibility is the more useful concept, because it tells you what you

can do

– terms are often used interchangeably (incorrectly)

Type Checking 14

Copyright © 2005 Elsevier

• format does not matter
 struct { int a, b; }

 is the same as
 struct {

 int a, b;

 }

 want them to be the same as

struct {

 int a;

 int b;

}

Type Checking

15

Copyright © 2005 Elsevier

• two major approaches

– structural equivalence

• based on some notion of meaning behind those declarations

– name equivalence

• based on declarations

• more fashionable these days

Type Checking 16

Copyright © 2005 Elsevier

• structural equivalence depends on simple comparison of type descriptions

– substitute out all names

– expand all the way to built-in types

– original types are equivalent if the expanded type descriptions are the

same

Type Checking

17

Copyright © 2005 Elsevier

• at least two common variants on name equivalence

– differences between all these approaches boils down to where the line

is drawn between important and unimportant differences between type

descriptions

– in all schemes, we begin by putting every type description in a standard

form that takes care of "obviously unimportant" distinctions like those

above

Type Checking 18

Copyright © 2005 Elsevier

• a type system consists of

– a way to define types and associate them with language constructs

• constructs that must have values include constants, variables,
record fields, parameters, literal constants, subroutines, and
complex expressions containing these

– rules for type equivalence, type compatibility, and type inference

• type equivalence: when the types of two values are the same

• type compatibility: when a value of a given type can be used in a
particular context

• type inference: type of an expression based on the types of its
parts

Type Systems

13 14

15 16

17 18

4

19

Copyright © 2005 Elsevier

• types reflect the internal structure of data, down to the level of a small
set of fundamental types

– structural approach to types

• other approaches are more mathematical

– denotational: collection of values from a domain

– abstraction: operations that can be applied to objects of a type

• types can be specified in different ways

– Fortran: implicitly by the spelling of variable names, explicitly in
variable declarations

– C, C++: explicitly in variable declarations

– Python: by the type of the right-hand side of an assignment

Data Types 20

Copyright © 2005 Elsevier

• most languages provide a set of built-in types

– integer

– boolean

• often single character with 1 as true and 0 as false

• C: no explicit boolean; 0 is false, anything else is true

– char

• traditionally one byte

• ASCII, Unicode

– floating point

• languages also supply composite types built from the basic data types

– C: structure, array, union

– C++, Python: class

– Python: list, dictionary

Data Types

21

Copyright © 2005 Elsevier

• universal reference types

– a reference that can point to anything

– C, C+: void

– Java: Object

– C#: object

Data Types 22

Copyright © 2005 Elsevier

Classification of Types

• numeric types

– C and Fortran distinguish between different lengths of integers

– C, C++, C#, Modula-2: signed and unsigned integers

– differences in float precision cause unwanted behavior across
machine platforms

– some languages provide complex, rational, or decimal types

23

Copyright © 2005 Elsevier

Classification of Types

• enumeration types

– facilitate readability

– allow compiler to catch errors

• Pascal example

– orders, so comparisons OK

24

Copyright © 2005 Elsevier

Classification of Types

• alternatively, can be declared as constants

• same as C

19 20

21 22

23 24

5

25

Copyright © 2005 Elsevier

Classification of Types

• subrange types

• contiguous subset of discrete base type

• helps to document code

• most store the actual values rather than ordinal locations

• needs two bytes

26

Copyright © 2005 Elsevier

Classification of Types

• composite types

– records

• Cobol

• fields of possibly different type

• similar to tuples

– variant records (unions)

• multiple field types, but only one valid at a given time

– arrays

• aggregate of same type

– strings

27

Copyright © 2005 Elsevier

Classification of Types

• composite types (cont.)

– sets

• discrete

• like enumerations and subranges

– pointers

• good for recursive data types

– lists

• head element and following elements

• variable length, no indexing

– files

• mass storage, outside program memory

• linked to physical devices (e.g., sequential access)

28

Copyright © 2005 Elsevier

Polymorphism

• polymorphism results when the compiler finds that it doesn't need to
know certain things

– allows a single body of code to work with objects of multiple
types

– with dynamic typing, arbitrary operations can be applied to
arbitrary objects

• implicit parametric polymorphism: types can be thought of to
be implied unspecified parameters

• incurs significant run-time costs

29

Copyright © 2005 Elsevier

Polymorphism

• subtype polymorphism in object-oriented languages

– a variable of the base type can refer to an object of the derived
type

– explicit parametric polymorphism, or generics

• C++, Eiffel, Java

• useful for container classes

• List<T> where T is left unspecified

30

Copyright © 2005 Elsevier

Records and Variants

• records

– allow related heterogeneous types to be stored together

– C, C++: structure

– C++: class with globally visible members

25 26

27 28

29 30

6

31

Copyright © 2005 Elsevier

Records and Variants

• records

– allow related heterogeneous types to be stored together

– C, C++: structure

– C++: class with globally visible members

32

Copyright © 2005 Elsevier

Records and Variants

• C

• Pascal

33

Copyright © 2005 Elsevier

Records and Variants

• each record component is known as a field

– most languages use dot notation to refer to fields

• Fortran: copper%name

34

Copyright © 2005 Elsevier

Records and Variants

• most languages allow records to be nested

• alternatively

35

Copyright © 2005 Elsevier

Records and Variants

• both reference

 malachite.element_yielded.atomic_number

• in C, struct tags appear in struct definitions as

– in C, need typedef

 typedef struct …

– in C++, struct tag is type name

36

Copyright © 2005 Elsevier

Records and Variants

• records

– usually laid out contiguously

– addresses are computed as base + offset

– possible holes for alignment reasons

– smart compilers may re-arrange fields to minimize holes (C
compilers promise not to)

– implementation problems are caused by records containing
dynamic arrays

31 32

33 34

35 36

7

37

Copyright © 2005 Elsevier

Records and Variants

• records example

– each element must begin on proper boundary

• int on 4-byte boundary

• short on 2-byte boundary

• char on 1-byte boundary

• user-defined type begins and ends on word boundary

– holes for alignment

38

Copyright © 2005 Elsevier

Records and Variants

• some languages, such as Pascal, allow the data to be packed

– boundary alignment overridden

– generally inefficient

• compiler should optimize for space over speed

• less space, but system takes longer to access elements

39

Copyright © 2005 Elsevier

Records and Variants

• some languages, such as C, allow record assignment

 my_element = copper;

• or record tests for equality

 if (my_element == copper) …

• most other languages do not

40

Copyright © 2005 Elsevier

Records and Variants

• record equality can be done field by field

• to save time, a block compare function can be used

– compares bytes

– holes need to be filled with 0’s to allow block comparisons to
work correctly

41

Copyright © 2005 Elsevier

Records and Variants

• holes in records waste space

– packing helps, but with performance penalties

• smart compilers rearrange fields automatically (not C compilers)

– programmer unaware

– some systems-level applications may depend on non-rearranged
fields

42

Copyright © 2005 Elsevier

Records and Variants

• unions (variant records)

– space was extremely limited in early days of programming

– overlay space

– cause problems for type checking

– can be used for automatically re-interpreting bits without casts

37 38

39 40

41 42

8

43

Copyright © 2005 Elsevier

Records and Variants

• Pascal

44

Copyright © 2005 Elsevier

Records and Variants

• variant part must be at end

45

Copyright © 2005 Elsevier

Records and Variants

• Modula-2: variant part not required to be at end

46

Copyright © 2005 Elsevier

Orthogonality

• orthogonality is a useful goal in the design of a language, particularly
its type system

• a collection of features is orthogonal if there are no restrictions on
the ways in which the features can be combined (analogy to vectors)

• for example

– Pascal is more orthogonal than Fortran because it allows arrays of
anything

• orthogonality is nice primarily because it makes a language easy to
understand, easy to use, and easy to reason about

47

Copyright © 2005 Elsevier

Arrays

• arrays are the most common and important composite data types

• unlike records, which group related fields of disparate types, arrays
are usually homogeneous

• semantically, they can be thought of as a mapping from an index type
to a component or element type

• index

– most languages require the index to be an integer at least
discrete type

– index usually inside square brackets []

– some languages use parentheses ()

• non-discrete type

– associative array

– Python: dictionary

– require hash table for lookup

48

Copyright © 2005 Elsevier

Arrays

• declaration
– C

– Fortran

– Pascal

– Ada

43 44

45 46

47 48

9

49

Copyright © 2005 Elsevier

Arrays

• multidimensional arrays

• accessed as matrix [3][4]

– sometimes as matrix [3, 4]

• Ada: matrix (3, 4)

50

Copyright © 2005 Elsevier

Arrays

• a slice or section is a rectangular portion of an array

51

Copyright © 2005 Elsevier

Arrays

• slicing

– some languages allow operations on arrays

– Ada: lexicographic ordering: if A < B

– Fortran: more than 60 intrinsic functions

• arithmetic operations, logic functions, bit manipulation,
trigonometric functions

52

Copyright © 2005 Elsevier

Arrays

• dimensions, bounds, and allocation

– global lifetime, static shape — if the shape of an array is known at
compile time, and if the array can exist throughout the execution
of the program, then the compiler can allocate space for the array
in static global memory

– local lifetime, static shape — if the shape of the array is known at
compile time, but the array should not exist throughout the
execution of the program, then space can be allocated in the
subroutine’s stack frame at run time

– local lifetime, shape bound at elaboration time

53

Copyright © 2005 Elsevier

Arrays

• dope vector

– collection of information about an array

• dimensions

• bounds (lower and upper)

– record

• offset to each field

– good for runtime checks

– can enhance efficiency by avoiding computations

– origin: “having the dope on (something)”

54

Copyright © 2005 Elsevier

Arrays

• stack allocation

– conformant arrays

• parameters to subroutines

• dimensions not known

• dope vector passed to help

49 50

51 52

53 54

10

55

Copyright © 2005 Elsevier

Arrays 56

Copyright © 2005 Elsevier

Arrays

• heap allocation

– dynamic arrays

– dimensions not known until runtime

– dope vector can be maintained dynamically

57

Copyright © 2005 Elsevier

Arrays

• arrays are stored in contiguous memory locations

• for multidimensional arrays, an ordering of dimensions must be
specified

– column-major - only in Fortran

– row-major

• used by everybody else

– important for element access

58

Copyright © 2005 Elsevier

Arrays

59

Copyright © 2005 Elsevier

Arrays

• to access elements in a single row

– column-major

• cache may not be big enough to store next row item

– row-major

• effective

– reversed for column support, but row support seems to be used
more often

60

Copyright © 2005 Elsevier

Arrays

• two layout strategies for arrays

– contiguous elements

– row pointers

• row pointers

– an option in C

– allows rows to be put anywhere - nice for big arrays on machines
with segmentation problems

– avoids multiplication

– nice for matrices whose rows are of different lengths

• e.g. an array of strings

– requires extra space for the pointers

55 56

57 58

59 60

11

61

Copyright © 2005 Elsevier

Arrays 62

Copyright © 2005 Elsevier

Arrays

• address calculation

• can compute some portions before execution

63

Copyright © 2005 Elsevier

Strings

• strings are really just arrays of characters

• they are often special-cased, to give them flexibility (like
polymorphism or dynamic sizing) that is not available for arrays in
general

– easier to provide these operations for strings than for arrays in
general because strings are one-dimensional and (more
importantly) non-circular

64

Copyright © 2005 Elsevier

Sets

• possible implementations

– bitsets are what usually get built into programming languages

– intersection, union, membership, etc. can be implemented
efficiently with bitwise logical instructions

– some languages place limits on the sizes of sets to make it easier
for the implementer

• for 32-bit int’s, bitset size is 500MB

• for 64-bit int’s, bitset size enormous

65

Copyright © 2005 Elsevier

Pointers

• pointers serve two purposes

– efficient (and sometimes intuitive) access to elaborated objects
(as in C)

– dynamic creation of linked data structures (recursive types), in
conjunction with a heap storage manager

• several languages (e.g., Pascal) restrict pointers to accessing objects
in the heap

66

Copyright © 2005 Elsevier

Pointers

• operations on pointers

– allocation and deallocation of objects in the heap

– dereferencing of pointers to access the objects to which they
point

– assignment from one pointer to another

• operations behave differently depending on whether the language
employs a reference model or value model for names

• functional languages use reference model

61 62

63 64

65 66

12

67

Copyright © 2005 Elsevier

Pointers

• reference model

– ML example

– example tree

– block storage from heap

68

Copyright © 2005 Elsevier

Pointers

69

Copyright © 2005 Elsevier

Pointers

• reference model

– Lisp example

– each level of parentheses brackets the elements of a list

• head and remainder of list

• each node is denoted as a construct cell or atom

70

Copyright © 2005 Elsevier

Pointers

71

Copyright © 2005 Elsevier

Pointers

• references in functional languages are acyclic

• circular references typically found only in imperative languages

• often need mutually recursive types

– example: symbol table and syntax tree nodes need to refer to
each other

– if declared one at a time, not able to refer to each other

72

Copyright © 2005 Elsevier

Pointers

• tree types in value model languages

– Pascal

– Ada

67 68

69 70

71 72

13

73

Copyright © 2005 Elsevier

Pointers

• tree types in value model languages (cont.)

– C

• for mutually recursive types

– Pascal: forward references

– Ada and C: incomplete data types

74

Copyright © 2005 Elsevier

Pointers

75

Copyright © 2005 Elsevier

Pointers

• allocation of space from the heap

– Pascal

– Ada

– C

• returns void*

– C++, Java, C#

76

Copyright © 2005 Elsevier

Pointers

• accessing objects pointed to by references

– Pascal

– C

• or for structs

77

Copyright © 2005 Elsevier

Pointers

• most languages blur the distinction between l-values and r-values by
implicitly dereferencing variables on right-hand side of assignment

78

Copyright © 2005 Elsevier

Pointers

• C pointers and arrays

• all of the following are valid

73 74

75 76

77 78

14

79

Copyright © 2005 Elsevier

Pointers

• subscript operator []

• equivalent to

• order does not matter

80

Copyright © 2005 Elsevier

Pointers

• C pointers and arrays closely linked

 int *a == int a[]

 int **a == int *a[]

• some subtle differences

– a declaration allocates an array if it specifies a size in the first
dimension

– otherwise it allocates a pointer

 int **a, int *a[]; // pointer to pointer to int

 int *a[n]; // n-element array of row pointers

 int a[n][m]; // 2-d array

81

Copyright © 2005 Elsevier

Pointers

• declaring an array requires all dimensions except the last

– invalid

 int a[][];

 int (*a)[];

• C declaration rule: read right as far as you can (subject to
parentheses), then left, then out a level and repeat

 int *a[n]; // n-element array of pointers to

 // integer

 int (*a)[n]; // pointer to n-element array

 // of integers

82

Copyright © 2005 Elsevier

Pointers

• when a heap-allocated object is no longer live, space must be
reclaimed

– stack objects reclaimed automatically

– heap space can be reclaimed automatically with garbage
collection

83

Copyright © 2005 Elsevier

Pointers

• some languages require heap space to be reclaimed by the
programmer

– Pascal

– C

– C++

– if not reclaimed, results in memory leaks

84

Copyright © 2005 Elsevier

Pointers

• dangling reference

– live pointer that no longer points to a valid object

– only in languages that have explicit deallocation

• examples

– subroutine returns pointer to local variable

– active pointer to space that has been reclaimed

• even if the pointer were changed to NULL, other pointers
might still refer to this space

• changes may read or write bits that are parts of other objects

79 80

81 82

83 84

15

85

Copyright © 2005 Elsevier

Garbage Collection

• explicit reclaiming can be a burden on programmers and a source of
memory leaks

• alternative: garbage collection

– automatic reclaiming of heap space

– required for functional languages

– found in Java, Modula-3, C#

– difficult to implement

– convenient for programmers: no dangling pointers

– can be slow

86

Copyright © 2005 Elsevier

Garbage Collection

• several types of garbage collection

– reference counts

– mark-and-sweep

– pointer reversal

– stop-and-copy

– others

87

Copyright © 2005 Elsevier

Garbage Collection

• reference counts

– one way to designate an object as garbage is when no pointers to
it exist

– place a reference count in each object that keeps track of the
number of pointers to it

– when object is created, reference count is set to 1

– when pointers are assigned or re-assigned, count is
incremented/decremented

– when count reaches 0, space can be reclaimed

88

Copyright © 2005 Elsevier

Garbage Collection

• reference counts (cont.)

– reference count also decremented upon subroutine return if local
pointers involved

– system must run recursively, so that any pointers in reclaimed
space are accounted for

– pointers must otherwise be initialized to null

– works well with strings, which have no circular dependencies

89

Copyright © 2005 Elsevier

Garbage Collection

• the heap is a chain of nodes (the free_list)

• each node has a reference count (RC)

• for an assignment, like q = p, garbage can occur

90

Copyright © 2005 Elsevier

Garbage Collection

• reference counts may miss circular structures

85 86

87 88

89 90

16

91

Copyright © 2005 Elsevier

Garbage Collection

• disadvantages of reference counts

– failure to detect inaccessible circular chains

– storage overhead created by appending an integer reference
count to every node in the heap

– performance overhead whenever a pointer is assigned or a heap
block is allocated or deallocated

92

Copyright © 2005 Elsevier

Garbage Collection

• some garbage collection schemes use tracing

– instead of counting the number or references to an object

– find all good space by following valid pointers that are active

– work recursively through the heap, starting from external
pointers

93

Copyright © 2005 Elsevier

Garbage Collection

• mark-and-sweep

– 3 main steps executed when space is low

1. all blocks in the heap marked with 0

2. follow pointers outside the heap and recursively explore all
heap space

– each newly discovered block marked with 1

– if already marked with 1, stop following that chain

3. final walk through heap to remove every block still marked
with 0

94

Copyright © 2005 Elsevier

Garbage Collection

• triggered by q = new node() and free_list = null

• all accessible nodes are marked 1

95

Copyright © 2005 Elsevier

Garbage Collection

• now free_list is restored and

• the assignment q = new node() can proceed

96

Copyright © 2005 Elsevier

Garbage Collection

• advantages over reference counting

– reclaims all garbage in the heap

– only invoked when the heap is full

• issues with mark-and-sweep

– system must know beginning and ending points of blocks

• each block must contain a size

– collector must be able to find pointers contained in each block

– recursive nature requires stack space

– can be time-intensive

91 92

93 94

95 96

17

97

Copyright © 2005 Elsevier

Garbage Collection

• pointer reversal

– to avoid large stack during recursive search, use pointers already
in heap space to work back up the chain

– such pointers oriented in the wrong direction

– can be reversed to point backward in the “stack”

– collector keeps track of current block and the block from whence
it came

98

Copyright © 2005 Elsevier

Garbage Collection

• heap exploration using pointer reversal

99

Copyright © 2005 Elsevier

Garbage Collection

• stop-and-copy (aka copy collection)

– heap space divided into two halves

• only one is active at any given time

– when one half nearly full, collector recursively explores heap,
copying all valid blocks to other half

– defragments while copying

– pointers to blocks change during copy

– when finished, only useful blocks in heap; other half is no longer
used

– on next collection, halves are reversed

100

Copyright © 2005 Elsevier

Garbage Collection

• triggered by q = new node() and free_list outside the active half

101

Copyright © 2005 Elsevier

Garbage Collection

• accessible nodes copied to other half and defragmented

• the accessible nodes are packed, orphans are returned to the
free_list, and the two halves reverse roles

• free_list always points to starting point of available memory

102

Copyright © 2005 Elsevier

Garbage Collection

• issues with stop-and-copy

– only half of the heap can be used at any one time

– incurs additional overhead

– can be time-intensive

97 98

99 100

101 102

18

103

Copyright © 2005 Elsevier

Garbage Collection

• other techniques

– generational collection

• since most dynamically allocated blocks are short-lived, newer
ones stored in half the heap

• this half checked first if garbage collection necessary

• during garbage collection, valid blocks transferred to long-
term heap

• system must examine long-term heap if more space needed,
and to reduce memory leaks

104

Copyright © 2005 Elsevier

Garbage Collection

• other techniques (cont.)

– conservative collection

• if blocks in the heap do not state explicitly the location of
pointers, any space that “looks like” a pointer can be
considered such and used with mark-and-sweep

• may leave some useless blocks, but guaranteed not to delete
currently used blocks

105

Copyright © 2005 Elsevier

Garbage Collection

• summary

– modern algorithms are more elaborate

• most are hybrids/refinements of the above three

– in Java, garbage collection is built-in

• runs as a low-priority thread

• also, System.gc may be called by the program

– functional languages have garbage collection built-in

– C/C++ default garbage collection to the programmer

106

Copyright © 2005 Elsevier

Lists

• a list is defined recursively as either the empty list or a pair consisting
of an object (which may be either a list or an atom) and another
(shorter) list

– ideally suited to programming in functional and logic languages,
which rely on recursion

• Lisp: a program is a list, and can extend itself at run time by
constructing a list and executing it

– lists can also be used in imperative programs

107

Copyright © 2005 Elsevier

Lists

• list operations tend to generate garbage

– useful to have automatic garbage collection

• some languages (e.g., ML) require lists to contain items of the same
type

• other languages (e.g., Python, Lisp) allow lists to contain items of
differing types

– implemented as chain of two pointers: one to element and one to
next block

108

Copyright © 2005 Elsevier

Lists

• since everything in Lisp is a list, differentiation required between lists
to be evaluated and constant lists

• Lisp list constructors

103 104

105 106

107 108

19

109

Copyright © 2005 Elsevier

Lists

• list comprehension (e.g., Haskell, Python)

– Python example: all odd numbers less than 100

 [i*i for i in range (1, 100) if i % 2 == 1]

110

Copyright © 2005 Elsevier

Files and Input/Output

• input/output (I/O) facilities allow a program to communicate with the
outside world

– interactive I/O generally implies communication with human
users or physical devices

– files generally refer to off-line storage implemented by the
operating system

• files may be further categorized into

– temporary

– persistent

111

Copyright © 2005 Elsevier

Equality Testing and Assignment

• when an expression is encountered testing for equality, how should it
be interpreted?

– for primitive types, easily defined

– example: s = t for character strings

• are s and t aliases?

• occupy the same storage that is bit-wise identical over its full
length?

• contain the same sequence of characters?

• would appear the same if printed?

– shallow vs. deep comparison

112

Copyright © 2005 Elsevier

Equality Testing and Assignment

• Scheme has distinct equality-testing functions for each

• behavior

• deep assignments rare in any language

109 110

111 112

	Slide 1
	Slide 2: Types
	Slide 3: Types
	Slide 4: Type Checking
	Slide 5: Type Checking
	Slide 6: Type Checking
	Slide 7: Type Checking
	Slide 8: Type Checking
	Slide 9: Type Checking
	Slide 10: Type Checking
	Slide 11: Type Checking
	Slide 12: Type Checking
	Slide 13: Type Checking
	Slide 14: Type Checking
	Slide 15: Type Checking
	Slide 16: Type Checking
	Slide 17: Type Checking
	Slide 18: Type Systems
	Slide 19: Data Types
	Slide 20: Data Types
	Slide 21: Data Types
	Slide 22: Classification of Types
	Slide 23: Classification of Types
	Slide 24: Classification of Types
	Slide 25: Classification of Types
	Slide 26: Classification of Types
	Slide 27: Classification of Types
	Slide 28: Polymorphism
	Slide 29: Polymorphism
	Slide 30: Records and Variants
	Slide 31: Records and Variants
	Slide 32: Records and Variants
	Slide 33: Records and Variants
	Slide 34: Records and Variants
	Slide 35: Records and Variants
	Slide 36: Records and Variants
	Slide 37: Records and Variants
	Slide 38: Records and Variants
	Slide 39: Records and Variants
	Slide 40: Records and Variants
	Slide 41: Records and Variants
	Slide 42: Records and Variants
	Slide 43: Records and Variants
	Slide 44: Records and Variants
	Slide 45: Records and Variants
	Slide 46: Orthogonality
	Slide 47: Arrays
	Slide 48: Arrays
	Slide 49: Arrays
	Slide 50: Arrays
	Slide 51: Arrays
	Slide 52: Arrays
	Slide 53: Arrays
	Slide 54: Arrays
	Slide 55: Arrays
	Slide 56: Arrays
	Slide 57: Arrays
	Slide 58: Arrays
	Slide 59: Arrays
	Slide 60: Arrays
	Slide 61: Arrays
	Slide 62: Arrays
	Slide 63: Strings
	Slide 64: Sets
	Slide 65: Pointers
	Slide 66: Pointers
	Slide 67: Pointers
	Slide 68: Pointers
	Slide 69: Pointers
	Slide 70: Pointers
	Slide 71: Pointers
	Slide 72: Pointers
	Slide 73: Pointers
	Slide 74: Pointers
	Slide 75: Pointers
	Slide 76: Pointers
	Slide 77: Pointers
	Slide 78: Pointers
	Slide 79: Pointers
	Slide 80: Pointers
	Slide 81: Pointers
	Slide 82: Pointers
	Slide 83: Pointers
	Slide 84: Pointers
	Slide 85: Garbage Collection
	Slide 86: Garbage Collection
	Slide 87: Garbage Collection
	Slide 88: Garbage Collection
	Slide 89: Garbage Collection
	Slide 90: Garbage Collection
	Slide 91: Garbage Collection
	Slide 92: Garbage Collection
	Slide 93: Garbage Collection
	Slide 94: Garbage Collection
	Slide 95: Garbage Collection
	Slide 96: Garbage Collection
	Slide 97: Garbage Collection
	Slide 98: Garbage Collection
	Slide 99: Garbage Collection
	Slide 100: Garbage Collection
	Slide 101: Garbage Collection
	Slide 102: Garbage Collection
	Slide 103: Garbage Collection
	Slide 104: Garbage Collection
	Slide 105: Garbage Collection
	Slide 106: Lists
	Slide 107: Lists
	Slide 108: Lists
	Slide 109: Lists
	Slide 110: Files and Input/Output
	Slide 111: Equality Testing and Assignment
	Slide 112: Equality Testing and Assignment

