
1

1

Copyright © 2005 Elsevier

Chapter 3::

Names, Scopes, and Bindings

Programming Language Pragmatics

Michael L. Scott

2

Copyright © 2005 Elsevier

Introduction

• high-level languages are abstracted away from the underlying
architecture

– machine independence

– ease of programming/understanding

• naming, scope, and binding are important concepts in high-level
languages

3

Copyright © 2005 Elsevier

Name, Scope, and Binding

• a name is exactly what you think it is

– most names are identifiers

– symbols (like '+') can also be names

– can refer to variables, constants, operations, types, etc.

– can also aid in abstraction by modularizing a complicated
sequence of code by a simple identifier (e.g., function name)

4

Copyright © 2005 Elsevier

Name, Scope, and Binding

• a binding is an association between two things, such as a name and
the thing it names

• the scope of a binding is the part of the program (textually) in which
the binding is active

• a complete set of bindings at a given point in time in a program is
termed the referencing environment

• binding time is the point at which a binding is created or, more
generally, the point at which any implementation decision is made

5

Copyright © 2005 Elsevier

Binding

• implementation decision times

– language design time

• program structure, possible types, constructors

– language implementation time

• I/O, arithmetic overflow, type equality, precision

– program writing time

• algorithms, names

– compile time

• plan for data layout

– link time

• layout of program in memory, inclusion of external modules

– load time

• choice of physical addresses

6

Copyright © 2005 Elsevier

Binding

• implementation decision times (continued):

– run time

• value/variable bindings, sizes of strings

• includes

– program start-up time

– module entry time

– elaboration time (point a which a declaration is first
"seen")

– procedure entry time

– block entry time

– statement execution time

1 2

3 4

5 6

2

7

Copyright © 2005 Elsevier

Binding

• binding times very important in programming languages

– static binding occurs before run time

– dynamic binding occurs at run time

• compiled languages tend to have early binding times

– associated with greater efficiency

• interpreted languages tend to have later binding times

– associated with greater flexibility

– some languages difficult to compile because their definitions
require late binding decisions

8

Copyright © 2005 Elsevier

Binding

• scope rules control bindings

– fundamental to all programming languages is the ability to name data

• refer to data using symbolic identifiers rather than addresses

– not all data is named

• for example, dynamic storage in C or Pascal is referenced by

pointers, not names

9

Copyright © 2005 Elsevier

Lifetime and Storage Management

• lifetime: period of time from creation to destruction of a binding

• lifetime key events

– creation of objects

– creation of bindings

– references to variables (which use bindings)

– (temporary) deactivation of bindings

– reactivation of bindings

– destruction of bindings

– destruction of objects

10

Copyright © 2005 Elsevier

Lifetime and Storage Management

• garbage: object outlives binding

• dangling reference: binding outlives object

• scope: region of the program in which the binding is active

11

Copyright © 2005 Elsevier

Lifetime and Storage Management

• storage allocation mechanisms

– static

– stack

– heap

• static allocation for

– code

– global variables

– static variables

• present for entire execution of program

– explicit constants (including strings, sets, etc.)
• e.g., "hello"

– some values stored in instructions

• e.g., add $3,%eax

12

Copyright © 2005 Elsevier

Lifetime and Storage Management

• runtime stack for

– parameters

– local variables

– temporaries

• why a stack?

– allocate space for recursive routines

– reuse space

– maintain ordering of functions

• currently running function at top of stack

• each time a function is called, a stack frame for the function is
pushed on the stack

7 8

9 10

11 12

3

13

Copyright © 2005 Elsevier

Lifetime and Storage Management

• call stack for factorial of 4

14

Copyright © 2005 Elsevier

Lifetime and Storage Management

• contents of a stack frame

– arguments and returns

– local variables

– temporaries

– bookkeeping (saved registers, line number static link, etc.)

• local variables and arguments are assigned fixed offsets from the stack
pointer or frame pointer at compile time

15

Copyright © 2005 Elsevier

Lifetime and Storage Management
16

Copyright © 2005 Elsevier

Lifetime and Storage Management

• the heap is used for dynamic allocation

– memory requested during runtime

• memory request

– shaded blocks are in use

– clear blocks are free

– enough space overall, but not contiguous

17

Copyright © 2005 Elsevier

Scope Rules

• scope: program section of maximal size in which no bindings change, or at
least in which no re-declarations are permitted

• in most languages with subroutines (functions), we open a new scope on
subroutine entry

– create bindings for new local variables,

– deactivate bindings for global variables that are re-declared (these
variable are said to have a "hole" in their scope)

– make references to variables

• on subroutine exit

– destroy bindings for local variables

– reactivate bindings for global variables that were deactivated

– exception: static variables in C

18

Copyright © 2005 Elsevier

Scope Rules

• with static scope rules, a scope is defined in terms of the physical (lexical)
structure of the program

– the determination of scopes can be made by the compiler

– all bindings for identifiers can be resolved by examining the program

– typically, we choose the most recent, active binding made at compile
time

– most compiled languages (e.g., C and C++) employ static scope rules

• C/C++ functions and variables are not defined until seen by the compiler

– scope begins at declaration and continues to end of current scope

13 14

15 16

17 18

4

19

Copyright © 2005 Elsevier

Scope Rules

X

P2 A2

P3 A3

P4 A4

F1 A5
X

A1

20

Copyright © 2005 Elsevier

Scope Rules

• classical example of static scope rules is the most closely nested rule

– an identifier is known in the scope in which it is declared and in each
enclosed scope, unless it is re-declared in an enclosed scope

– to resolve a reference to an identifier, we examine the local scope
and statically enclosing scopes until a binding is found

• classes in object-oriented languages have even more sophisticated
(static) scope rules

21

Copyright © 2005 Elsevier

var a : integer; { global variable }

procedure first();

begin

 a := 1;

end;

procedure second();

var a : integer;

begin

 first();

end;

begin

 a := 2;

 second();

 write(a);

end.

Scope Rules
22

Copyright © 2005 Elsevier

Scope Rules

• access to non-local variables: static links

– each frame points to the frame of the (correct instance of) the routine
inside which it was declared

• correct means closest to the top of the stack

– access a variable in a scope k levels out by following k static links and
then using the known offset within the frame thus found

23

Copyright © 2005 Elsevier

Scope Rules
24

Copyright © 2005 Elsevier

Scope Rules

• static scope rules

– bindings are defined by the physical (lexical) structure of the program

• dynamic scope rules

– bindings depend on the current state of program execution

– they cannot always be resolved by examining the program because
they are dependent on calling sequences

– to resolve a reference, we use the most recent, active binding made
at run time

19 20

21 22

23 24

5

25

Copyright © 2005 Elsevier

Scope Rules

• dynamic scope rules are usually encountered in interpreted
languages

– early LISP dialects assumed dynamic scope rules

– such languages do not normally have type checking at
compile time because type determination isn't always
possible when dynamic scope rules are in effect

26

Copyright © 2005 Elsevier

var a : integer; { global variable }

procedure first();

begin

 a := 1;

end;

procedure second();

var a : integer;

begin

 first();

end;

begin

 a := 2;

 second();

 write(a);

end.

Scope Rules

27

Copyright © 2005 Elsevier

• if static scope rules are in effect (as would be the case in Pascal), the
program prints 1

• if dynamic scope rules are in effect, the program prints 2

• why the difference?

– at issue is whether the assignment to the variable a in procedure first
changes the variable a declared in the main program or the variable a
declared in procedure second

– static scope rules require that the reference resolve to the most
recent, compile-time binding, namely the global variable a

Scope Rules

Example: Static vs. Dynamic 28

Copyright © 2005 Elsevier

• dynamic scope rules, on the other hand, require that we choose the most
recent, active binding at run time

– perhaps the most common use of dynamic scope rules is to provide
implicit parameters to subroutines

– this is generally considered bad programming practice nowadays

• alternative mechanisms exist

– static variables that can be modified by auxiliary routines

– default and optional parameters

Scope Rules

Example: Static vs. Dynamic

29

Copyright © 2005 Elsevier

• at run time we create a binding for a when we enter the main program

• then we create another binding for a when we enter procedure second

– this is the most recent, active binding when procedure first is
executed

– using dynamic scope, we modify the variable local to procedure
second, not the global variable

– in main, we write the global variable because the variable a local to
procedure second is no longer active

Scope Rules

Example: Static vs. Dynamic 30

Copyright © 2005 Elsevier

Binding of Referencing Environments

• two methods for accessing variables with dynamic scope

– (1) keep a stack (association list) of all active variables

• when you need to find a variable, hunt down from top of

stack

• this is equivalent to searching the activation records on the

dynamic chain

25 26

27 28

29 30

6

31

Copyright © 2005 Elsevier

Binding of Referencing Environments

• two methods for accessing variables with dynamic scope

– (2) keep a central table with one slot for every variable name

• if names cannot be created at run time, the table layout (and
the location of every slot) can be fixed at compile time

• otherwise, you'll need a hash function or something to do
lookup

• every subroutine changes the table entries for its locals at
entry and exit

32

Copyright © 2005 Elsevier

Binding of Referencing Environments

• (1) gives you slow access but fast calls

• (2) gives you slow calls but fast access

• in effect, variable lookup in a dynamically-scoped language
corresponds to symbol table lookup in a statically-scoped language

• because static scope rules tend to be more complicated, however,
the data structure and lookup algorithm also have to be more
complicated

33

Copyright © 2005 Elsevier

Binding of Referencing Environments

• the referencing environment of a statement at run time is the set of
active bindings

• a referencing environment corresponds to a collection of scopes that
are examined (in order) to find a binding

• scope rules determine that collection and its order

• binding rules determine which instance of a scope should be used to
resolve references when calling a procedure that was passed as a
parameter

– they govern the binding of referencing environments to formal
procedures

34
Symbol Table

• a symbol table is a data structure kept by a translator that allows it to
keep track of each declared name and its binding

– assume for now that each name is unique within its local scope

– the data structure can be any implementation of a dictionary,
where the name is the key

Source: Tucker & Noonan (2007)

35
Symbol Table

1. each time a scope is entered, push a new dictionary onto the stack

2. each time a scope is exited, pop a dictionary off the top of the stack

3. for each name declared, generate an appropriate binding and enter
the name-binding pair into the dictionary on the top of the stack

4. given a name reference, search the dictionary on top of the stack

a) if found, return the binding

b) otherwise, repeat the process on the next dictionary down in

the stack

c) if name not found in any dictionary, report an error

Source: Tucker & Noonan (2007)

36
Symbol Table: Static Scoping

1 void sort (float a[], int size) {

2 int i, j;

3 for (i = 0; i < size; i++) // i, size local

4 for (j = i + 1; j < size; j++)

5 if (a[j] < a[i]) { // a, i, j local

6 float t;

7 t = a[i]; // t local; a, i nonlocal

8 a[i] = a[j];

9 a[j] = t;

10 }

11 }

Source: Tucker & Noonan (2007)

31 32

33 34

35 36

7

37
Symbol Table: Static Scoping

• C program, stack of dictionaries at line 7:

– <t, 6>

– <j, 2> <i, 2> <size,1> <a, 1>

– <sort, 1>

• at lines 4 and 11:

– <j, 2> <i, 2> <size,1> <a, 1>

– <sort, 1>

Source: Tucker & Noonan (2007)

38
Symbol Table: Static Scoping

1 int h, i;

2 void B(int w) {

3 int j, k;

4 i = 2*w;

5 w = w+1;

6 ...

7 }

8 void A (int x, int y) {

9 float i, j;

10 B(h);

11 i = 3;

12 ...

13 }

Source: Tucker & Noonan (2007)

14 void main() {

15 int a, b;

16 h = 5; a = 3; b = 2;

17 A(a, b);

18 B(h);

19 ...

20 }

39
Symbol Table: Static Scoping

1. outer scope:
 <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

2. function B:
 <w, 2> <j, 3> <k, 3>

3. function A:
 <x, 8> <y, 8> <i, 9> <j, 9>

4. function main:
 <a, 15> <b, 15>

Source: Tucker & Noonan (2007)

40
Symbol Table: Static Scoping

• symbol table stack for function B:

– <w, 2> <j, 3> <k, 3>

– <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

• symbol table stack for function A:

– <x, 8> <y, 8> <i, 9> <j, 9>

– <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

• symbol table stack for function main:

– <a, 15> <b, 15>

– <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Source: Tucker & Noonan (2007)

41
Symbol Table: Dynamic Scoping

1 int h, i;

2 void B(int w) {

3 int j, k;

4 i = 2*w;

5 w = w+1;

6 ...

7 }

8 void A (int x, int y) {

9 float i, j;

10 B(h);

11 i = 3;

12 ...

13 }

Source: Tucker & Noonan (2007)

14 void main() {

15 int a, b;

16 h = 5; a = 3; b = 2;

17 A(a, b);

18 B(h);

19 ...

20 }

42
Symbol Table: Dynamic Scoping

• call history: main(17) → A(10) → B

• function dictionary

 B <w, 2> <j, 3> <k, 3>

 A <x, 8> <y, 8> <i, 9> <j, 9>

 main <a, 15> <b, 15>

 <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

• reference to i(4) resolves to <i,9> in A

Source: Tucker & Noonan (2007)

37 38

39 40

41 42

8

43
Symbol Table: Dynamic Scoping

• call history: main(18) → B

• function dictionary

 B <w, 2> <j, 3> <k, 3>

 main <a, 15> <b, 15>

 <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

• reference to i(4) resolves to <i,1> in A

Source: Tucker & Noonan (2007)

44

Copyright © 2009 Elsevier

The Meaning of Names within a Scope

• aliasing

– aliases: two or more names that refer to the same object at the
same point in the program

– what are aliases good for?

• space saving - modern data allocation methods are better

• multiple representations - unions are better

• linked data structures - legit

– aliases arise in parameter passing as an unfortunate side effect

• some scope rules are designed to prevent this

45

Copyright © 2009 Elsevier

Aliasing

• consider the following example

 double sum, sum_of_squares;

 …

 void accumulate(double& x) {

 sum += x;

 sum_of_squares += x * x;

 }

 …

 accumulate(sum);

• easy to make a mistake by passing something accidentally

• some languages make subroutines closed scopes

• explicit import lists allow the compiler to detect when an alias is
being created

46

Copyright © 2009 Elsevier

Aliasing

• can make compiling more difficult to optimize

 int a, b, *p, *q;

 …

 a = *p;

 *q = 3;

 b = *p;

• compiler wants to place *p in a register for possible future use

• can’t use for b since q may be an alias

47

Copyright © 2009 Elsevier

The Meaning of Names within a Scope

• overloading

– some overloading happens in almost all languages

• integer + vs. real +

• read and write in Pascal

• print in Python

– some languages get into overloading in a big way

• C++ (and hence Java and C#)

48

Copyright © 2009 Elsevier

The Meaning of Names within a Scope

• overloading of enumeration constants in Ada

– must be able to provide context explicitly

 print (month’(oct));

– Modula-3 and C# require enumeration prefixes

 mo := month.dec;

 pb := print_base.oct;

43 44

45 46

47 48

9

49

Copyright © 2005 Elsevier

Separate Compilation

• separately-compiled files in C provide a sort of primitive modules
environment

– rules for how variables work with separate compilation are messy

– static on a function or variable outside a function means it is
usable only in the current source file

• this static is a different notion from the static variables inside
a function

– extern on a variable or function means that it is declared in

another source file

50
Stack Diagram for Static Scoping

int h = 0, i = 1;

void B (int w) {

 int j = 2;

 static int k = 3;

 i = 2 * w;

 w = w + 1;

 k++;

 --j;

}

void A (int *x, int y) {

 int i = 1, j = 2;

 B(h);

 i = 3;

 *x = j + *x;

}

Source: Tucker & Noonan (2007)

void main() {

 int a, b;

 h = 5; a = 3; b = 2;

 A(&a, b);

 B(b);

}

51

Copyright © 2005 Elsevier

Conclusions

• morals of the story

– language features can be surprisingly subtle

– designing languages to make life easier for the compiler writer can
be a good thing

– most of the languages that are easy to understand are easy to
compile, and vice versa

• a language that is easy to compile often leads to

– a language that is easy to understand

– more good compilers on more machines (compare Pascal and Ada!)

– better (faster) code

– fewer compiler bugs

– smaller, cheaper, faster compilers

– better diagnostics

52

Copyright © 2009 Elsevier

C++ Addendum

• the following slides relate to object-oriented and
functional languages

53

Copyright © 2009 Elsevier

• it's worth distinguishing between some closely related
concepts

– overloaded functions – two different things with the same
name; in C++

• overload norm
 int norm (int a) {return a>0 ? a : -a;)

 complex norm (complex c) { // ...

– polymorphic functions – one thing that works in more
then one way

• code takes a list of types, where the types have some
commonality that will be exploited.

• used in Ada and Smalltalk, primarily

The Meaning of Names within a Scope 54

Copyright © 2009 Elsevier

The Meaning of Names within a Scope

• operator overloading in C++
class complex {

 double real, imaginary;

 …

 public:

 complex operator+ (complex other) {

 return complex (real + other.real,

 imaginary + other.imaginary);

 }

 };

 …

 complex A, B, C;

 …

 C = A + B;

49 50

51 52

53 54

10

55

Copyright © 2009 Elsevier

• it's worth distinguishing between some closely related
concepts (part 2)

– overloading

– coercion

– polymorphism

The Meaning of Names within a Scope
56

Copyright © 2009 Elsevier

• overloading in Ada

function min(a, b : integer) return

integer is ...

function min(x, y : real) return real

is ...

• coercion in Fortran

real function min(x, y)

real x, y

...

– types are automatically converted

The Meaning of Names within a Scope

57

Copyright © 2009 Elsevier

• polymorphism

– multiple forms

– two types

• parametric polymorphism

• subtype polymorphism

The Meaning of Names within a Scope
58

Copyright © 2009 Elsevier

• parametric polymorphism

– generic functions: a syntactic template that can be
instantiated in more than one way at compile time

• create copies of the code

• via macro processors in C

• built-in in C++ (templates)

• Clu

• Ada

The Meaning of Names within a Scope

59

Copyright © 2009 Elsevier

The Meaning of Names within a Scope

• explicit parametric polymorphism in Ada generics

60

Copyright © 2009 Elsevier

The Meaning of Names within a Scope

• implicit parametric polymorphism in Scheme

 define min (lambda (a b) (if (< a b) a b)))

• implicit parametric polymorphism in Haskell

 min a b = if a < b then a else b

55 56

57 58

59 60

	Slide 1
	Slide 2: Introduction
	Slide 3: Name, Scope, and Binding
	Slide 4: Name, Scope, and Binding
	Slide 5: Binding
	Slide 6: Binding
	Slide 7: Binding
	Slide 8: Binding
	Slide 9: Lifetime and Storage Management
	Slide 10: Lifetime and Storage Management
	Slide 11: Lifetime and Storage Management
	Slide 12: Lifetime and Storage Management
	Slide 13: Lifetime and Storage Management
	Slide 14: Lifetime and Storage Management
	Slide 15: Lifetime and Storage Management
	Slide 16: Lifetime and Storage Management
	Slide 17: Scope Rules
	Slide 18: Scope Rules
	Slide 19: Scope Rules
	Slide 20: Scope Rules
	Slide 21: Scope Rules
	Slide 22: Scope Rules
	Slide 23: Scope Rules
	Slide 24: Scope Rules
	Slide 25: Scope Rules
	Slide 26: Scope Rules
	Slide 27: Scope Rules Example: Static vs. Dynamic
	Slide 28: Scope Rules Example: Static vs. Dynamic
	Slide 29: Scope Rules Example: Static vs. Dynamic
	Slide 30: Binding of Referencing Environments
	Slide 31: Binding of Referencing Environments
	Slide 32: Binding of Referencing Environments
	Slide 33: Binding of Referencing Environments
	Slide 34: Symbol Table
	Slide 35: Symbol Table
	Slide 36: Symbol Table: Static Scoping
	Slide 37: Symbol Table: Static Scoping
	Slide 38: Symbol Table: Static Scoping
	Slide 39: Symbol Table: Static Scoping
	Slide 40: Symbol Table: Static Scoping
	Slide 41: Symbol Table: Dynamic Scoping
	Slide 42: Symbol Table: Dynamic Scoping
	Slide 43: Symbol Table: Dynamic Scoping
	Slide 44: The Meaning of Names within a Scope
	Slide 45: Aliasing
	Slide 46: Aliasing
	Slide 47: The Meaning of Names within a Scope
	Slide 48: The Meaning of Names within a Scope
	Slide 49: Separate Compilation
	Slide 50: Stack Diagram for Static Scoping
	Slide 51: Conclusions
	Slide 52: C++ Addendum
	Slide 53: The Meaning of Names within a Scope
	Slide 54: The Meaning of Names within a Scope
	Slide 55: The Meaning of Names within a Scope
	Slide 56: The Meaning of Names within a Scope
	Slide 57: The Meaning of Names within a Scope
	Slide 58: The Meaning of Names within a Scope
	Slide 59: The Meaning of Names within a Scope
	Slide 60: The Meaning of Names within a Scope

