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Chapter 3::

Names, Scopes, and Bindings

Programming Language Pragmatics

Michael L. Scott
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Introduction

• high-level languages are abstracted away from the underlying 
architecture

– machine independence

– ease of programming/understanding

• naming, scope, and binding are important concepts in high-level 
languages
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Name, Scope, and Binding

• a name is exactly what you think it is

– most names are identifiers

– symbols (like '+') can also be names

– can refer to variables, constants, operations, types, etc.

– can also aid in abstraction by modularizing a complicated 
sequence of code by a simple identifier (e.g., function name)
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Name, Scope, and Binding

• a binding is an association between two things, such as a name and 
the thing it names

• the scope of a binding is the part of the program (textually) in which 
the binding is active

• a complete set of bindings at a given point in time in a program is 
termed the referencing environment

• binding time is the point at which a binding is created or, more 
generally, the point at which any implementation decision is made
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Binding

• implementation decision times

– language design time

• program structure, possible types, constructors

– language implementation time

• I/O, arithmetic overflow, type equality, precision

– program writing time

• algorithms, names

– compile time

• plan for data layout

– link time

• layout of program in memory, inclusion of external modules

– load time

• choice of physical addresses
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Binding

• implementation decision times (continued):

– run time

• value/variable bindings, sizes of strings

• includes

– program start-up time

– module entry time

– elaboration time (point a which a declaration is first 
"seen")

– procedure entry time

– block entry time

– statement execution time

1 2

3 4

5 6



2

7

Copyright © 2005 Elsevier

Binding

• binding times very important in programming languages

– static binding occurs before run time

– dynamic binding occurs at run time

• compiled languages tend to have early binding times

– associated with greater efficiency

• interpreted languages tend to have later binding times

– associated with greater flexibility

– some languages difficult to compile because their definitions 
require late binding decisions
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Binding

• scope rules control bindings

– fundamental to all programming languages is the ability to name data

• refer to data using symbolic identifiers rather than addresses

– not all data is named

• for example, dynamic storage in C or Pascal is referenced by 

pointers, not names
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Lifetime and Storage Management

• lifetime: period of time from creation to destruction of a binding

• lifetime key events

– creation of objects

– creation of bindings

– references to variables (which use bindings)

– (temporary) deactivation of bindings

– reactivation of bindings

– destruction of bindings

– destruction of objects
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Lifetime and Storage Management

• garbage: object outlives binding

• dangling reference: binding outlives object

• scope: region of the program in which the binding is active
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Lifetime and Storage Management

• storage allocation mechanisms

– static

– stack

– heap

•  static allocation for

– code

– global variables

– static variables

• present for entire execution of program

– explicit constants (including strings, sets, etc.)
• e.g., "hello"

– some values stored in instructions

• e.g., add $3,%eax

12

Copyright © 2005 Elsevier

Lifetime and Storage Management

• runtime stack for

– parameters

– local variables

– temporaries

• why a stack?

– allocate space for recursive routines

– reuse space

– maintain ordering of functions

• currently running function at top of stack

• each time a function is called, a stack frame for the function is 
pushed on the stack
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Lifetime and Storage Management

• call stack for factorial of 4
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Lifetime and Storage Management

•  contents of a stack frame

– arguments and returns

– local variables

– temporaries

– bookkeeping (saved registers, line number static link, etc.)

• local variables and arguments are assigned fixed offsets from the stack 
pointer or frame pointer at compile time
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Lifetime and Storage Management
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Lifetime and Storage Management

• the heap is used for dynamic allocation

– memory requested during runtime

• memory request

– shaded blocks are in use

– clear blocks are free

– enough space overall, but not contiguous
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Scope Rules

• scope: program section of maximal size in which no bindings change, or at 
least in which no re-declarations are permitted

• in most languages with subroutines (functions), we open a new scope on 
subroutine entry

– create bindings for new local variables,

– deactivate bindings for global variables that are re-declared (these 
variable are said to have a "hole" in their scope)

– make references to variables

• on subroutine exit

– destroy bindings for local variables

– reactivate bindings for global variables that were deactivated

– exception: static variables in C
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Scope Rules

• with static scope rules, a scope is defined in terms of the physical (lexical) 
structure of the program

– the determination of scopes can be made by the compiler

– all bindings for identifiers can be resolved by examining the program

– typically, we choose the most recent, active binding made at compile 
time

– most compiled languages (e.g., C and C++) employ static scope rules

• C/C++ functions and variables are not defined until seen by the compiler

– scope begins at declaration and continues to end of current scope
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Scope Rules 
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Scope Rules

• classical example of static scope rules is the most closely nested rule

– an identifier is known in the scope in which it is declared and in each 
enclosed scope, unless it is re-declared in an enclosed scope 

– to resolve a reference to an identifier, we examine the local scope 
and statically enclosing scopes until a binding is found

• classes in object-oriented languages have even more sophisticated 
(static) scope rules
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var a : integer;   { global variable }

procedure first();

begin 

   a := 1; 

end;

procedure second();

var a : integer;

begin 

   first(); 

end;

begin

   a := 2; 

   second(); 

   write(a);

end.

Scope Rules 
22
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Scope Rules

• access to non-local variables: static links

– each frame points to the frame of the (correct instance of) the routine 
inside which it was declared

• correct means closest to the top of the stack

– access a variable in a scope k levels out by following k static links and 
then using the known offset within the frame thus found
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Scope Rules
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Scope Rules

• static scope rules 

– bindings are defined by the physical (lexical) structure of the program

• dynamic scope rules

– bindings depend on the current state of program execution

– they cannot always be resolved by examining the program because 
they are dependent on calling sequences

– to resolve a reference, we use the most recent, active binding made 
at run time
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Scope Rules

• dynamic scope rules are usually encountered in interpreted 
languages

– early LISP dialects assumed dynamic scope rules

– such languages do not normally have type checking at 
compile time because type determination isn't always 
possible when dynamic scope rules are in effect
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var a : integer;   { global variable }

procedure first();

begin 

   a := 1; 

end;

procedure second();

var a : integer;

begin 

   first(); 

end;

begin

   a := 2; 

   second(); 

   write(a);

end.

Scope Rules 
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• if static scope rules are in effect (as would be the case in Pascal), the 
program prints 1

• if dynamic scope rules are in effect, the program prints 2

• why the difference?  

– at issue is whether the assignment to the variable a in procedure first 
changes the variable a declared in the main program or the variable a 
declared in procedure second 

– static scope rules require that the reference resolve to the most 
recent, compile-time binding, namely the global variable a

Scope Rules 

Example: Static vs. Dynamic 28

Copyright © 2005 Elsevier

• dynamic scope rules, on the other hand, require that we choose the most 
recent, active binding at run time

– perhaps the most common use of dynamic scope rules is to provide 
implicit parameters to subroutines

– this is generally considered bad programming practice nowadays

• alternative mechanisms exist

– static variables that can be modified by auxiliary routines

– default and optional parameters 

Scope Rules 

Example: Static vs. Dynamic 
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• at run time we create a binding for a when we enter the main program

• then we create another binding for a when we enter procedure second

– this is the most recent, active binding when procedure first is 
executed

– using dynamic scope, we modify the variable local to procedure 
second, not the global variable

– in main, we write the global variable because the variable a local to 
procedure second is no longer active

Scope Rules 

Example: Static vs. Dynamic 30
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Binding of Referencing Environments

• two methods for accessing variables with dynamic scope

– (1) keep a stack (association list) of all active variables

• when you need to find a variable, hunt down from top of 

stack

• this is equivalent to searching the activation records on the 

dynamic chain
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Binding of Referencing Environments

• two methods for accessing variables with dynamic scope

– (2) keep a central table with one slot for every variable name

• if names cannot be created at run time, the table layout (and 
the location of every slot) can be fixed at compile time

• otherwise, you'll need a hash function or something to do 
lookup

• every subroutine changes the table entries for its locals at 
entry and exit
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Binding of Referencing Environments

• (1) gives you slow access but fast calls

• (2) gives you slow calls but fast access

• in effect, variable lookup in a dynamically-scoped language 
corresponds to symbol table lookup in a statically-scoped language

• because static scope rules tend to be more complicated, however, 
the data structure and lookup algorithm also have to be more 
complicated
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Binding of Referencing Environments

• the referencing environment of a statement at run time is the set of 
active bindings

• a referencing environment corresponds to a collection of scopes that 
are examined (in order) to find a binding

• scope rules determine that collection and its order

• binding rules determine which instance of a scope should be used to 
resolve references when calling a procedure that was passed as a 
parameter

– they govern the binding of referencing environments to formal 
procedures

34
Symbol Table

• a symbol table is a data structure kept by a translator that allows it to 
keep track of each declared name and its binding

– assume for now that each name is unique within its local scope

– the data structure can be any implementation of a dictionary, 
where the name is the key

Source: Tucker & Noonan (2007)
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Symbol Table

1. each time a scope is entered, push a new dictionary onto the stack

2. each time a scope is exited, pop a dictionary off the top of the stack

3. for each name declared, generate an appropriate binding and enter 
the name-binding pair into the dictionary on the top of the stack

4. given a name reference, search the dictionary on top of the stack

a) if found, return the binding

b) otherwise, repeat the process on the next dictionary down in 

the stack

c) if name not found in any dictionary, report an error

Source: Tucker & Noonan (2007)
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Symbol Table: Static Scoping

1 void sort (float a[ ], int size) {

2 int i, j;

3   for (i = 0; i < size; i++)  // i, size local

4     for (j = i + 1; j < size; j++)

5        if (a[j] < a[i]) { // a, i, j local

6            float t;

7            t = a[i];     // t local; a, i nonlocal

8            a[i] = a[j];

9            a[j] = t;

10      }

11 }         

Source: Tucker & Noonan (2007)
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Symbol Table: Static Scoping

• C program, stack of dictionaries at line 7:

– <t, 6>

– <j, 2> <i, 2> <size,1> <a, 1>

– <sort, 1>

• at lines 4 and 11:

– <j, 2> <i, 2> <size,1> <a, 1>

– <sort, 1>

Source: Tucker & Noonan (2007)
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Symbol Table: Static Scoping

1 int h, i; 

2 void B(int w) {

3   int j, k;

4   i = 2*w;

5   w = w+1;

6   ...

7 }

8 void A (int x, int y) { 

9   float i, j; 

10  B(h); 

11  i = 3;

12  ... 

13 }

Source: Tucker & Noonan (2007)

14 void main() {

15    int a, b;

16    h = 5; a = 3; b = 2;

17    A(a, b);

18    B(h);

19    ...

20 }
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Symbol Table: Static Scoping

1. outer scope: 
   <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

2. function B: 
   <w, 2> <j, 3> <k, 3>

3. function A: 
   <x, 8> <y, 8> <i, 9> <j, 9>

4. function main: 
   <a, 15> <b, 15>

Source: Tucker & Noonan (2007)
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Symbol Table: Static Scoping

• symbol table stack for function B:

– <w, 2> <j, 3> <k, 3>

– <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

• symbol table stack for function A:

– <x, 8> <y, 8> <i, 9> <j, 9>

– <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

• symbol table stack for function main:

– <a, 15> <b, 15>

– <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

Source: Tucker & Noonan (2007)
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Symbol Table: Dynamic Scoping

1 int h, i; 

2 void B(int w) {

3   int j, k;

4   i = 2*w;

5   w = w+1;

6   ...

7 }

8 void A (int x, int y) { 

9   float i, j; 

10  B(h); 

11  i = 3;

12  ... 

13 }

Source: Tucker & Noonan (2007)

14 void main() {

15    int a, b;

16    h = 5; a = 3; b = 2;

17    A(a, b);

18    B(h);

19    ...

20 }
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Symbol Table: Dynamic Scoping

• call history:  main(17) → A(10) → B 

• function  dictionary

 B   <w, 2> <j, 3> <k, 3>

 A   <x, 8> <y, 8> <i, 9> <j, 9>

 main   <a, 15> <b, 15>

    <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

• reference to i(4) resolves to <i,9> in A

Source: Tucker & Noonan (2007)
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Symbol Table: Dynamic Scoping

• call history:  main(18) → B 

• function  dictionary

 B   <w, 2> <j, 3> <k, 3>

 main   <a, 15> <b, 15>

    <h, 1> <i, 1> <B, 2> <A, 8> <main, 14>

• reference to i(4) resolves to <i,1> in A

Source: Tucker & Noonan (2007)
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The Meaning of Names within a Scope

• aliasing

– aliases: two or more names that refer to the same object at the 
same point in the program

– what are aliases good for? 

• space saving - modern data allocation methods are better

• multiple representations - unions are better

• linked data structures   - legit

– aliases arise in parameter passing as an unfortunate side effect

• some scope rules are designed to prevent this

45
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Aliasing

• consider the following example

 double sum, sum_of_squares;

 …

 void accumulate(double& x) {

   sum += x;

   sum_of_squares += x * x;

 }

 …

 accumulate(sum);

• easy to make a mistake by passing something accidentally

• some languages make subroutines closed scopes 

• explicit import lists allow the compiler to detect when an alias is 
being created
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Aliasing

• can make compiling more difficult to optimize

 int a, b, *p, *q;

 …

 a = *p;

 *q = 3;

 b = *p; 

• compiler wants to place *p in a register for possible future use

• can’t use for b since q may be an alias
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The Meaning of Names within a Scope

• overloading

– some overloading happens in almost all languages

• integer + vs. real +

• read and write in Pascal

• print in Python

– some languages get into overloading in a big way

• C++ (and hence Java and C#)
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The Meaning of Names within a Scope

• overloading of enumeration constants in Ada

– must be able to provide context explicitly

  print (month’(oct));

– Modula-3 and C# require enumeration prefixes

   mo := month.dec;

    pb := print_base.oct;
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Separate Compilation

• separately-compiled files in C provide a sort of primitive modules 
environment

– rules for how variables work with separate compilation are messy

– static on a function or variable outside a function means it is 
usable only in the current source file

• this static is a different notion from the static variables inside 
a function

– extern on a variable or function means that it is declared in 

another source file
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Stack Diagram for Static Scoping

int h = 0, i = 1;

void B (int w) {

   int j = 2; 

   static int k = 3;

   i = 2 * w;

   w = w + 1;

   k++;

   --j;

}

void A (int *x, int y) { 

  int i = 1, j = 2; 

  B(h); 

  i = 3;

  *x = j + *x;

}

Source: Tucker & Noonan (2007)

void main() {

 int a, b;

    h = 5; a = 3; b = 2;

    A(&a, b);

    B(b);

}
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Conclusions

• morals of the story

– language features can be surprisingly subtle

– designing languages to make life easier for the compiler writer can 
be a good thing

– most of the languages that are easy to understand are easy to 
compile, and vice versa

• a language that is easy to compile often leads to

– a language that is easy to understand

– more good compilers on more machines (compare Pascal and Ada!)

– better (faster) code

– fewer compiler bugs

– smaller, cheaper, faster compilers

– better diagnostics
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C++ Addendum

• the following slides relate to object-oriented and 
functional languages
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• it's worth distinguishing between some closely related 
concepts

– overloaded functions – two different things with the same 
name; in C++

• overload norm
  int norm (int a) {return a>0 ? a : -a;)

  complex norm (complex c) { // ...

– polymorphic functions – one thing that works in more 
then one way

• code takes a list of types, where the types have some 
commonality that will be exploited.

• used in Ada and Smalltalk, primarily

The Meaning of Names within a Scope 54
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The Meaning of Names within a Scope

• operator overloading in C++
class complex {

 double real, imaginary;

 …

 public:

    complex operator+ (complex other) {

       return complex (real + other.real, 

       imaginary + other.imaginary);

    }

 };

 …

 complex A, B, C;

 …

 C = A + B;
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• it's worth distinguishing between some closely related 
concepts (part 2)

– overloading

– coercion

– polymorphism

The Meaning of Names within a Scope
56
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• overloading in Ada

function min(a, b : integer) return 

integer is ...

function min(x, y : real) return real 

is ...

• coercion in Fortran 

real function min(x, y)

real x, y

...

– types are automatically converted

The Meaning of Names within a Scope
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• polymorphism

– multiple forms

– two types

• parametric polymorphism

• subtype polymorphism

The Meaning of Names within a Scope
58
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• parametric polymorphism

– generic functions: a syntactic template that can be 
instantiated in more than one way at compile time

• create copies of the code

• via macro processors in C

• built-in in C++ (templates)

• Clu

• Ada

The Meaning of Names within a Scope
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The Meaning of Names within a Scope

• explicit parametric polymorphism in Ada generics

60
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The Meaning of Names within a Scope

• implicit parametric polymorphism in Scheme

     define min (lambda (a b) (if (< a b) a b)))

• implicit parametric polymorphism in Haskell

   min a b = if a < b then a else b
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