Chapter O Introduction

Overview

- we will cover three main areas
 - automata theory
 - mathematical models of computation
 - computability theory
 - which problems can be solved by computers?
 - complexity theory
 - what makes some problems computationally hard or easy?

Automata Theory

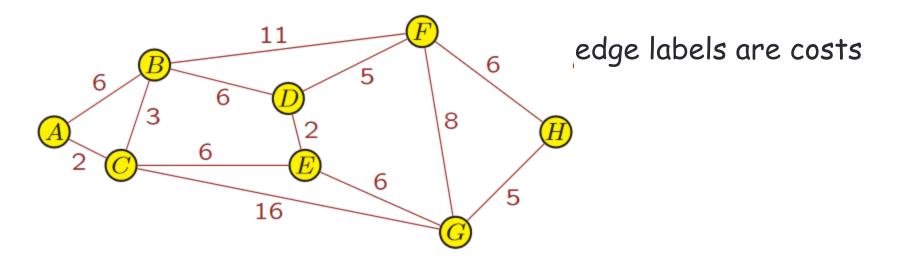
- finite automata and regular expressions
 - string matching (grep in Unix)
 - circuit design
 - communication protocols
- context-free grammars and pushdown automata
 - compilers
 - programming languages
- Turing machines
 - computers
 - algorithms
- why study different models of computation?

Computability Theory

- there are algorithms to solve many problems
- but there are some problems for which there is no algorithm: undecidable problems
 - does a program run forever?
 - is a program correct?
 - are two programs equivalent?

Complexity Theory

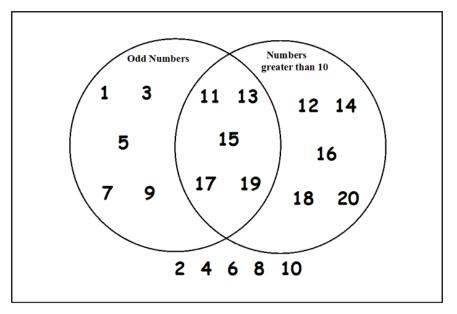
- for a solvable problem, is there an efficient algorithm to solve it?
- some problems can be solved efficiently:
 - is there a path from A to H with total cost at most 20?



- some problems have no known efficient algorithm:
 - is there a path from A to H with total cost at least 50?

- set
 - an unordered collection of objects or elements
 - example: {0, 2, 5}
 - element of: $x \in S$
 - set notation: $\{x \mid x \in R, x > 0\}$
 - R set of real numbers
 - | such that
 - , and

- the universal set U is the set containing everything currently under consideration
- the empty set is the set with no elements: Ø or { }
- Venn diagram



- elements
 - the set {0, 2, 5} has elements 0, 2, and 5
 - order and duplicates don't matter
 - {2, 0, 0, 5, 5, 5} = {0, 2, 5}
 - {0} and 0 are different
- cardinality: |{1, 2, 3}| = 3, |Ø| = 0
- set builder notation
 - $S = \{x \mid x \text{ is a positive integer less than 100}\}$
- subsets
 - $\bullet A \subseteq B$
 - proper subset: $A \subset B$

- operations
 - union: A∪B
 - intersection: $A \cap B$
 - complement: A' or \overline{A}
 - cartesian product: A×B
 - also called cross product
 - elements are ordered pairs
 - in general, k-tuples (or finite sequences)
 - power set: P(A)

- operation examples
 - $A = \{1,2\}, B=\{2,3\}, U = \{x \in N \mid x < 6\}$
 - $A \cup B = \{1, 2, 3\}$
 - $A \cap B = \{2\}$
 - A = {3,4,5}
 - A × B = {(1,2), (1,3), (2,2), (2,3)}
 - $P(A) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$

Some Important Sets

- N = natural numbers = {1, 2, 3, ...}
- W = whole numbers = {0, 1, 2, 3, ...}
- Z = integers = {..., -3, -2, -1, 0, 1, 2, 3, ...}
- Z⁺ = positive integers = {1, 2, 3,...}
- R = set of real numbers
- R⁺ = set of positive real numbers
- C = set of complex numbers
- Q = set of rational numbers

- function
 - operator, operation, or mapping that maps each element in a domain D to a single element in range R
 - $f: D \rightarrow R$
 - f(a) = b
- sometimes we define a function using a table.

•
$$f: \{0, 1, 2, 3, 4\} \rightarrow \{0, 1, 2, 3, 4\}$$
 as
n f(n)
0 1
1 2
2 3
3 4

• where $f(n) = (n + 1) \mod 5$

- example: let A = {ROCK, PAPER, SCISSORS} and B = {TRUE, FALSE}
- consider the function beats : $A \times A \rightarrow B$ defined by the table

beats	ROCK	PAPER	SCISSORS
ROCK	FALSE	FALSE	TRUE
PAPER	TRUE	FALSE	FALSE
SCISSOR	FALSE	TRUE	FALSE

for example,

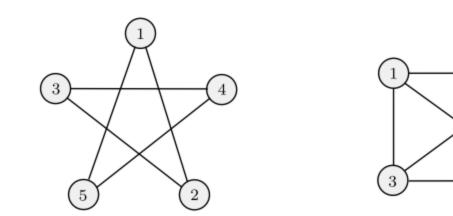
beats (ROCK, SCISSORS) = TRUE beats (ROCK, PAPER) = FALSE

- a function f with k arguments is a k-ary function
 k is called the arity of f
- a unary function has arity k = 1
 - f(x) = 3x + 4 or f(w) = |w|
- a binary function has arity k = 2
 - beats is a binary function

- a predicate or property is a function whose range is {TRUE, FALSE}
 - beats is a predicate
- a predicate whose domain is a set $A \times \cdots \times A$ of k-tuples is called a relation or a k-ary relation
 - a 2-ary relation is a binary relation
 - beats is a binary relation
- if R is a binary relation, aRb means aRb = TRUE
 - for the binary relation "<", 2 < 5 = TRUE
- sometimes more convenient to describe predicates with sets instead of functions
 - beats can be written as {(ROCK, SCISSORS), (PAPER, ROCK), (SCISSORS, PAPER)}
 - which is the set $\{(x, y) \mid (x, y) \in D \text{ and } xRy (i.e., x \text{ beats } y)\}$

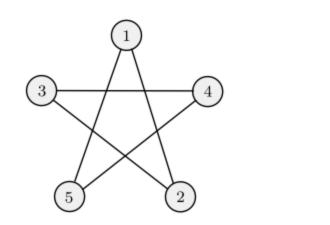
- · equivalence relations are binary relations that are
 - reflexive: if for every x, xRx
 - symmetric: if for every x and y, xRy if and only if yRx
 - transitive: if for every x, y, and z, xRy and yRz \rightarrow xRz
- example: (=, Z) is an equivalence relation
 - reflexive: every integer is = to itself
 - symmetric: if x = y, then y = x
 - transitive: if x = y and y = z, then x = z

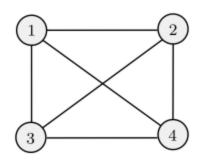
- undirected graph
 - nodes or vertices
 - edges
- degree
 - left: each node has degree 2
 - right: each node has degree 3
 - self loops



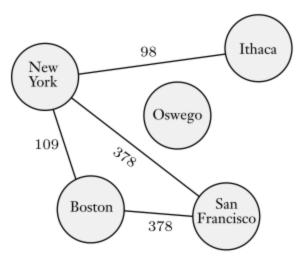
2

- edges represented by (unordered) pairs
 - (1, 2) or (2, 1)
- formal definition
 - $\cdot G = (V, E)$
 - left: $({1, 2, 3, 4, 5}, {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)})$

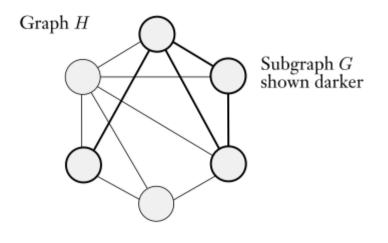




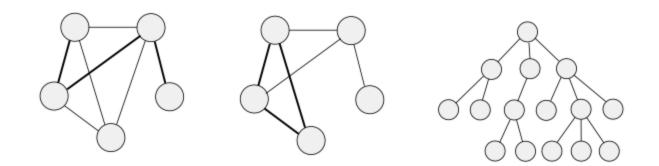
- often used to represent data
 - labeled graph



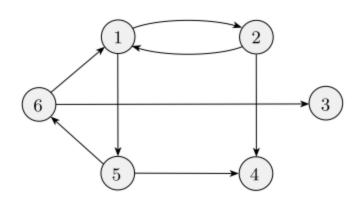
• subgraph

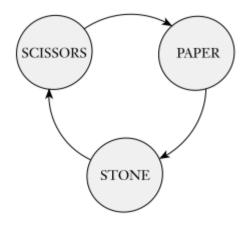


- path
 - simple path no repeated nodes
 - connected
 - cycle
- tree
 - leaves
 - root



- directed graph
 - in-degree
 - out-degree
 - represented by ordered pairs
 - (1, 2), (1, 5), (2, 1), (2, 4), (5, 4), (5, 6), (6, 1), (6, 3)
 - strongly connected
 - weakly connected





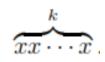
Strings and Languages

- alphabet non-empty
 - symbols: individual elements
 - examples

$$\begin{split} \Sigma_1 &= \{\texttt{0},\texttt{1}\}\\ \Sigma_2 &= \{\texttt{a},\texttt{b},\texttt{c},\texttt{d},\texttt{e},\texttt{f},\texttt{g},\texttt{h},\texttt{i},\texttt{j},\texttt{k},\texttt{l},\texttt{m},\texttt{n},\texttt{o},\texttt{p},\texttt{q},\texttt{r},\texttt{s},\texttt{t},\texttt{u},\texttt{v},\texttt{w},\texttt{x},\texttt{y},\texttt{z}\}\\ \Gamma &= \{\texttt{0},\texttt{1},\texttt{x},\texttt{y},\texttt{z}\} \end{split}$$

Strings and Languages

- strings
 - finite sequence of symbols
 - 01001 is a string over $\boldsymbol{\Sigma}_1$
 - length: |w|
 - empty string has length 0
 - substring
 - cad is a substring of abracadabra
 - concatenation xy
 - x^k means



Strings and Languages

- order
 - lexicographic dictionary
 - shortlex or string order
 - shorter strings first

 $(\varepsilon, 0, 1, 00, 01, 10, 11, 000, \ldots).$

- prefix
 - proper prefix
- language: a set of strings

Boolean Logic

- Boolean logic: TRUE and FALSE
- Boolean values: 1 and 0
- Boolean operations
 - conjunction (and) \land
 - disjunction (or) \vee
 - negation (not) \neg
 - exclusive or (xor) \oplus
 - biconditional (equality) \leftrightarrow
 - $\bullet \text{ implication} \rightarrow$

Boolean Logic

Boolean operations

$0 \wedge 0 = 0$	$0 \lor 0 = 0$	$\neg 0 = 1$
$0 \wedge 1 = 0$	$0 \lor 1 = 1$	eg 1 = 0
$1 \wedge 0 = 0$	$1 \lor 0 = 1$	
$1 \wedge 1 = 1$	$1 \lor 1 = 1$	

$0 \oplus 0 = 0$	$0 \leftrightarrow 0 = 1$	$0 \rightarrow 0 = 1$
$0\oplus 1=1$	$0 \leftrightarrow 1 = 0$	$0 \rightarrow 1 = 1$
$1 \oplus 0 = 1$	$1 \leftrightarrow 0 = 0$	$1 \rightarrow 0 = 0$
$1\oplus 1=0$	$1 \leftrightarrow 1 = 1$	$1 \rightarrow 1 = 1$

Definitions, Theorems, and Proofs

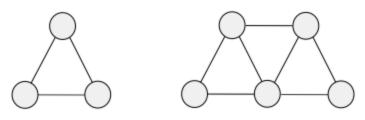
- definition: describes objects and notations precisely
- mathematical statements: unambiguous statements about an object and its properties
- proof: logical argument to show a statement is true
- theorem: mathematical statement proven true
 - lemma: helping statement in proof
 - corollaries: related statements that are true

Strategies for Producing Proofs

- no simple set of rules to produce the right proof
- general strategies
 - carefully read the statement to prove
 - rewrite statement in your own words
 - break down statement into parts
 - e.g., P iff Q, set A = set B
 - experiment with examples and counterexamples
 - see next slide for example
 - instead of proving the whole problem, try to prove a special case
 - if trying to prove property for k > 0, just try k = 1

Strategies for Producing Proofs

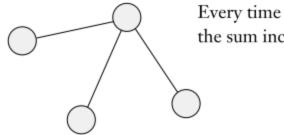
- experiment with examples and counterexamples
 - e.g., Prove that for every graph G, the sum of the degrees of all of the nodes is an even number
 - examples



 $\begin{array}{l} \operatorname{sum} = 2{+}2{+}2\\ = 6 \end{array}$

 $\begin{array}{l} {\rm sum} = 2{+}3{+}4{+}3{+}2\\ = 14 \end{array}$

try to find counterexample



Every time an edge is added, the sum increases by 2.

Strategies for Producing Proofs

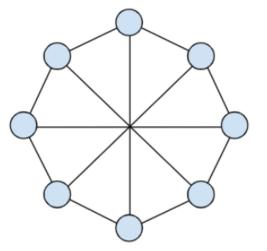
- writing a proof
 - be patient
 - come back to it
 - be neat
 - be concise
- example: Prove for every graph G, the sum of the degrees of all the nodes is an even number.
 - every edge is connected to two nodes
 - therefore, each edge adds 2 to the sum of degrees
 - if G contains e edges, then the sum of degrees = 2e, which is even

- types of proofs
 - Proof by Construction
 - Proof by Counterexample
 - Proof by Contradiction
 - Proof by Induction
- note that a proof may contain more than one type of argument

- Proof by Construction
 - if claiming an object exists, demonstrate how to construct the object
 - e.g., For each even number n greater than 2, there exists a 3-regular graph with n nodes
 - regular graph: each vertex has the same number of neighbors
 - construct G = (V, E) with n nodes

$$V = \{0, 1, ..., n - 1\}$$

E = {(i, i + 1) | for $0 \le i \le n - 2\} \cup$
{(n - 1, 0) } U
{(i, i + n/2) | for $0 \le i \le n/2 -$



- Proof by Counterexample
 - e.g., Prove or Disprove: All prime numbers are odd.
 - 2 is prime and even
 - therefore, the statement is not true

- Proof by Contradiction
 - assume theorem is false and show this assumption leads to a contradiction
 - e.g., Show that $\int 2$ is irrational
 - Suppose $\int 2$ is rational. Then there exists integers a and b with $\int 2 = a/b$, where $b \neq 0$ and a and b have no common factors. So

$$2 = \frac{a^2}{b^2} \qquad \qquad 2b^2 = a^2$$

• Therefore a^2 must be even. If a^2 is even, then a must be even. Since a is even, a = 2c for some integer c. Thus,

$$2b^2 = 4c^2 \qquad b^2 = 2c^2$$

• Therefore b^2 is even, and b must be even as well. But then 2 must divide both a and b. This contradicts our assumption that a and b have no common factors. We have proved by contradiction that our initial assumption must be false and therefore J2 is irrational.

- Proof by Induction
 - advanced method to show all elements of an infinite set have a specified property
 - structure: 3 parts for proving P(n) for all $n \ge b$
 - Basis Step: show base case (smallest value) is true; left-hand and right-hand sides computed independently
 - Inductive Hypothesis: assume P(k) is true for some k
 - Inductive Step: Show P(k+1) is true
 - explicitly write out Show statement
 - start with left-hand side
 - use Inductive Hypothesis (and show where!)
 - you're done when you've reached the RHS of Show

Proof by Induction
 Example: Show that:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Solution:

BASIS:
$$n=1$$

Ihs: $\sum_{i=1}^{1} i = 1$ rhs: $\frac{1(1+1)}{2} = 1$
INDUCTIVE HYPOTHESIS: Assume $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$ true for some k
INDUCTIVE STEP: Show: $\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2}$
 $\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$ $= \frac{k(k+1) + 2(k+1)}{2}$
 $= \frac{k(k+1)}{2} + (k+1)$ by I.H. $= \frac{(k+1)(k+2)}{2}$