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Chapter 0
Introduction

Overview
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• we will cover three main areas

• automata theory

• mathematical models of computation

• computability theory

• which problems can be solved by computers?

• complexity theory

• what makes some problems computationally hard or 
easy?

Automata Theory
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• finite automata and regular expressions

• string matching (grep in Unix)

• circuit design

• communication protocols

• context-free grammars and pushdown automata

• compilers

• programming languages

• Turing machines

• computers

• algorithms

• why study different models of computation?

Computability Theory
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• there are algorithms to solve many problems

• but there are some problems for which there is no 
algorithm: undecidable problems

• does a program run forever?

• is a program correct?

• are two programs equivalent?

Complexity Theory
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• for a solvable problem, is there an efficient algorithm to solve 
it?

• some problems can be solved efficiently:

• is there a path from A to H with total cost at most 20?

                                                                  edge labels are costs

• some problems have no known efficient algorithm:

• is there a path from A to H with total cost at least 50?

Sets
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• set

• an unordered collection of objects or elements

• example: {0, 2, 5}

• element of: x ∈ S

• set notation: {x | x ∈ R, x > 0 } 

• R - set of real numbers

• | - such that

• , - and
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Sets
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• the universal set U is the set containing everything 
currently under consideration

• the empty set is the set with no elements: Ø or { }

• Venn diagram

Sets
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• elements

• the set {0, 2, 5} has elements 0, 2, and 5

• order and duplicates don’t matter

• {2, 0, 0, 5, 5, 5} = {0, 2, 5} 

• {0} and 0 are different

• cardinality: |{1, 2, 3}| = 3, |Ø| = 0

• set builder notation

• S = {x | x is a positive integer less than 100}

• subsets

• A ⊆ B

• proper subset: A ⊂ B

Sets
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• operations

• union: A∪B

• intersection: A ∩ B

• complement: A’ or A

• cartesian product: A×B

• also called cross product

• elements are ordered pairs

• in general, k-tuples (or finite sequences)

• power set: P(A)

Sets
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• operation examples

• A = {1,2}, B={2,3}, U = {x ∈ N | x < 6}

• A ∪ B = {1,2,3}

• A ∩ B = {2}

• A = {3,4,5}

• A × B = {(1,2), (1,3), (2,2), (2,3)}

•  P(A) = {Ø, {1}, {2}, {1,2}}

Some Important Sets
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• N = natural numbers = {1, 2, 3, …}

• W = whole numbers = {0, 1, 2, 3, …}

• Z = integers = {…, -3, -2, -1, 0, 1, 2, 3, …}

• Z+ = positive integers = {1, 2, 3,…}

• R = set of real numbers

• R+ = set of positive real numbers

• C =  set of complex numbers

• Q = set of rational numbers

Functions
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• function
• operator, operation, or mapping that maps each element in a 

domain D to a single element in range R
• f : D → R
• f(a) = b

• sometimes we define a function using a table.
• f : {0, 1, 2, 3, 4} → { 0, 1, 2, 3, 4} as

         n   f(n)
         0  1
         1  2
         2    3
         3    4
         4    0

• where f(n) = (n+ 1) mod 5
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Functions
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• example: let A = {ROCK, PAPER, SCISSORS} and
   B = {TRUE, FALSE}

• consider the function beats : A × A → B
  defined by the table

 
• for example,
        beats (ROCK, SCISSORS) = TRUE
        beats (ROCK, PAPER) = FALSE

beats ROCK PAPER SCISSORS

ROCK FALSE FALSE TRUE

PAPER TRUE FALSE FALSE

SCISSOR FALSE TRUE FALSE

Functions
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• a function f with k arguments is a k-ary function

• k is called the arity of f

• a unary function has arity k = 1

• f(x) = 3x + 4 or f(w) = |w|

• a binary function has arity k = 2 

• beats is a binary function

Functions
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• a predicate or property is a function whose range is
      {TRUE, FALSE}

• beats is a predicate
• a predicate whose domain is a set A× · · · × A of k-tuples is 

called a relation or a k-ary relation
• a 2-ary relation is a binary relation
• beats is a binary relation

• if R is a binary relation, aRb means aRb = TRUE
• for the binary relation "<", 2 < 5 = TRUE

• sometimes more convenient to describe predicates with sets 
instead of functions
• beats can be written as 
   {(ROCK, SCISSORS), (PAPER, ROCK), (SCISSORS, PAPER)}
• which is the set {(x, y) | (x, y) ∈ D and xRy (i.e., x beats y)}

Functions
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• equivalence relations are binary relations that are

• reflexive: if for every x, xRx

• symmetric: if for every x and y, xRy if and only if yRx

• transitive: if for every x, y, and z, xRy and yRz → xRz

• example: (=, Z) is an equivalence relation

• reflexive: every integer is = to itself

• symmetric: if x = y, then y = x

• transitive: if x = y and y = z, then x = z

Graphs
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• undirected graph

• nodes or vertices

• edges

• degree

• left: each node has degree 2

• right: each node has degree 3

• self loops

Graphs
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• edges represented by (unordered) pairs

• (1, 2) or (2, 1)

• formal definition

• G = (V, E)

• left: ({1, 2, 3, 4, 5}, {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)})
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Graphs
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• often used to represent data

• labeled graph

Graphs
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• subgraph

Graphs
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• path

• simple path – no repeated nodes

• connected

• cycle

• tree

• leaves

• root

Graphs
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• directed graph

• in-degree

• out-degree

• represented by ordered pairs

• (1, 2), (1, 5), (2, 1), (2, 4), (5, 4), (5, 6), (6, 1), (6, 3)

• strongly connected

• weakly connected

Strings and Languages
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• alphabet – non-empty

• symbols: individual elements

• examples

Strings and Languages

24

• strings

• finite sequence of symbols

• 01001 is a string over Σ1 

• length: |w|

• empty string has length 0

• substring

• cad is a substring of abracadabra

• concatenation – xy

• xk means 
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Strings and Languages
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• order

• lexicographic - dictionary

• shortlex or string order

• shorter strings first

• prefix

• proper prefix

• language: a set of strings

Boolean Logic
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• Boolean logic: TRUE and FALSE

• Boolean values: 1 and 0

• Boolean operations

• conjunction (and) ∧

• disjunction (or) ∨

• negation (not) ¬

• exclusive or (xor) ⊕

• biconditional (equality) 

• implication →

Boolean Logic
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• Boolean operations

Definitions, Theorems, and Proofs
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• definition: describes objects and notations precisely

• mathematical statements: unambiguous statements about 
an object and its properties

• proof: logical argument to show a statement is true

• theorem: mathematical statement proven true

• lemma: helping statement in proof

• corollaries: related statements that are true

Strategies for Producing Proofs
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• no simple set of rules to produce the right proof

• general strategies

• carefully read the statement to prove

• rewrite statement in your own words

• break down statement into parts

• e.g., P iff Q, set A = set B

• experiment with examples and counterexamples

• see next slide for example

• instead of proving the whole problem, try to prove a 
special case

• if trying to prove property for k > 0, just try k = 1

Strategies for Producing Proofs
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• experiment with examples and counterexamples

• e.g., Prove that for every graph G, the sum of the 
degrees of all of the nodes is an even number

• examples

• try to find counterexample

25 26
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Strategies for Producing Proofs
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• writing a proof

• be patient

• come back to it

• be neat

• be concise

• example:  Prove for every graph G, the sum of the 
degrees of all the nodes is an even number.

• every edge is connected to two nodes

• therefore, each edge adds 2 to the sum of degrees

• if G contains e edges, then the sum of degrees = 2e, 
which is even

Types of Proofs
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• types of proofs

• Proof by Construction

• Proof by Counterexample

• Proof by Contradiction

• Proof by Induction

• note that a proof may contain more than one type of 
argument

Types of Proofs
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• Proof by Construction

• if claiming an object exists, demonstrate how to 
construct the object

• e.g., For each even number n greater than 2, there 
exists a 3-regular graph with n nodes

• regular graph: each vertex has the same number of 
neighbors

• construct G = (V, E) with n nodes

   V = {0, 1, …, n – 1}

   E = {(i, i + 1) | for 0 ≤ i ≤ n – 2} ∪
         {(n – 1, 0) } ∪
         {(i, i + n/2) | for 0 ≤ i ≤ n/2 – 1}

Types of Proofs

34

• Proof by Counterexample

• e.g., Prove or Disprove: All prime numbers are odd.

• 2 is prime and even

• therefore, the statement is not true

Types of Proofs
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• Proof by Contradiction

• assume theorem is false and show this assumption leads to a 
contradiction

• e.g., Show that √2 is irrational
• Suppose √2 is rational. Then there exists integers a and b with 

√2  = a/b, where b ≠ 0 and a and b have no common factors.  So

• Therefore a2 must be even. If a2 is even, then a must be even. 
Since a is even, a = 2c  for some integer c. Thus,

• Therefore b2 is even, and b must be even as well. But then 2 must 
divide both a and b. This contradicts our assumption that a and b 
have no common factors. We have proved by contradiction that our 
initial assumption must be false and therefore √2 is irrational.

2

2
2

a

b
= 2 22b a=

2 22 4b c= 2 22b c=

Types of Proofs
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• Proof by Induction

• advanced method to show all elements of an infinite 
set have a specified property

• structure: 3 parts for proving P(n) for all n ≥ b

• Basis Step: show base case (smallest value) is true; 
left-hand and right-hand sides computed 
independently

• Inductive Hypothesis: assume P(k) is true for some k

• Inductive Step: Show P(k+1) is true

• explicitly write out Show statement

• start with left-hand side

• use Inductive Hypothesis (and show where!)

• you’re done when you’ve reached the RHS of Show

31 32

33 34
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Types of Proofs

37

• Proof by Induction

Example: Show that:

Solution:

   BASIS: 𝑛=1

 lhs:                           rhs:

   INDUCTIVE HYPOTHESIS:  Assume                        true for some k

   INDUCTIVE STEP: Show:

                                        

                                              by I.H.



𝑖=1

𝑛

𝑖 =
𝑛(𝑛 + 1)

2



𝑖=1

1

𝑖 = 1
1(1 + 1)

2
= 1 ✓



𝑖=1

𝑘

𝑖 =
𝑘(𝑘 + 1)

2



𝑖=1

𝑘+1

𝑖 =
(𝑘 + 1)(𝑘 + 2)

2



𝑖=1

𝑘+1

𝑖 =

𝑖=1

𝑘

𝑖 + (𝑘 + 1)

=
𝑘(𝑘 + 1)

2
+ (𝑘 + 1)

=
𝑘 𝑘 + 1 + 2(𝑘 + 1)

2

=
𝑘 + 1 (𝑘 + 2)

2
✓
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