
8/29/2024

1

Chapter 0
Introduction

Overview

2

• we will cover three main areas

• automata theory

• mathematical models of computation

• computability theory

• which problems can be solved by computers?

• complexity theory

• what makes some problems computationally hard or
easy?

Automata Theory

3

• finite automata and regular expressions

• string matching (grep in Unix)

• circuit design

• communication protocols

• context-free grammars and pushdown automata

• compilers

• programming languages

• Turing machines

• computers

• algorithms

• why study different models of computation?

Computability Theory

4

• there are algorithms to solve many problems

• but there are some problems for which there is no
algorithm: undecidable problems

• does a program run forever?

• is a program correct?

• are two programs equivalent?

Complexity Theory

5

• for a solvable problem, is there an efficient algorithm to solve
it?

• some problems can be solved efficiently:

• is there a path from A to H with total cost at most 20?

 edge labels are costs

• some problems have no known efficient algorithm:

• is there a path from A to H with total cost at least 50?

Sets

6

• set

• an unordered collection of objects or elements

• example: {0, 2, 5}

• element of: x ∈ S

• set notation: {x | x ∈ R, x > 0 }

• R - set of real numbers

• | - such that

• , - and

1 2

3 4

5 6

8/29/2024

2

Sets

7

• the universal set U is the set containing everything
currently under consideration

• the empty set is the set with no elements: Ø or { }

• Venn diagram

Sets

8

• elements

• the set {0, 2, 5} has elements 0, 2, and 5

• order and duplicates don’t matter

• {2, 0, 0, 5, 5, 5} = {0, 2, 5}

• {0} and 0 are different

• cardinality: |{1, 2, 3}| = 3, |Ø| = 0

• set builder notation

• S = {x | x is a positive integer less than 100}

• subsets

• A ⊆ B

• proper subset: A ⊂ B

Sets

9

• operations

• union: A∪B

• intersection: A ∩ B

• complement: A’ or A

• cartesian product: A×B

• also called cross product

• elements are ordered pairs

• in general, k-tuples (or finite sequences)

• power set: P(A)

Sets

10

• operation examples

• A = {1,2}, B={2,3}, U = {x ∈ N | x < 6}

• A ∪ B = {1,2,3}

• A ∩ B = {2}

• A = {3,4,5}

• A × B = {(1,2), (1,3), (2,2), (2,3)}

• P(A) = {Ø, {1}, {2}, {1,2}}

Some Important Sets

11

• N = natural numbers = {1, 2, 3, …}

• W = whole numbers = {0, 1, 2, 3, …}

• Z = integers = {…, -3, -2, -1, 0, 1, 2, 3, …}

• Z+ = positive integers = {1, 2, 3,…}

• R = set of real numbers

• R+ = set of positive real numbers

• C = set of complex numbers

• Q = set of rational numbers

Functions

12

• function
• operator, operation, or mapping that maps each element in a

domain D to a single element in range R
• f : D → R
• f(a) = b

• sometimes we define a function using a table.
• f : {0, 1, 2, 3, 4} → { 0, 1, 2, 3, 4} as

 n f(n)
 0 1
 1 2
 2 3
 3 4
 4 0

• where f(n) = (n+ 1) mod 5

7 8

9 10

11 12

8/29/2024

3

Functions

13

• example: let A = {ROCK, PAPER, SCISSORS} and
 B = {TRUE, FALSE}

• consider the function beats : A × A → B
 defined by the table

• for example,
 beats (ROCK, SCISSORS) = TRUE
 beats (ROCK, PAPER) = FALSE

beats ROCK PAPER SCISSORS

ROCK FALSE FALSE TRUE

PAPER TRUE FALSE FALSE

SCISSOR FALSE TRUE FALSE

Functions

14

• a function f with k arguments is a k-ary function

• k is called the arity of f

• a unary function has arity k = 1

• f(x) = 3x + 4 or f(w) = |w|

• a binary function has arity k = 2

• beats is a binary function

Functions

15

• a predicate or property is a function whose range is
 {TRUE, FALSE}

• beats is a predicate
• a predicate whose domain is a set A× · · · × A of k-tuples is

called a relation or a k-ary relation
• a 2-ary relation is a binary relation
• beats is a binary relation

• if R is a binary relation, aRb means aRb = TRUE
• for the binary relation "<", 2 < 5 = TRUE

• sometimes more convenient to describe predicates with sets
instead of functions
• beats can be written as
 {(ROCK, SCISSORS), (PAPER, ROCK), (SCISSORS, PAPER)}
• which is the set {(x, y) | (x, y) ∈ D and xRy (i.e., x beats y)}

Functions

16

• equivalence relations are binary relations that are

• reflexive: if for every x, xRx

• symmetric: if for every x and y, xRy if and only if yRx

• transitive: if for every x, y, and z, xRy and yRz → xRz

• example: (=, Z) is an equivalence relation

• reflexive: every integer is = to itself

• symmetric: if x = y, then y = x

• transitive: if x = y and y = z, then x = z

Graphs

17

• undirected graph

• nodes or vertices

• edges

• degree

• left: each node has degree 2

• right: each node has degree 3

• self loops

Graphs

18

• edges represented by (unordered) pairs

• (1, 2) or (2, 1)

• formal definition

• G = (V, E)

• left: ({1, 2, 3, 4, 5}, {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)})

13 14

15 16

17 18

8/29/2024

4

Graphs

19

• often used to represent data

• labeled graph

Graphs

20

• subgraph

Graphs

21

• path

• simple path – no repeated nodes

• connected

• cycle

• tree

• leaves

• root

Graphs

22

• directed graph

• in-degree

• out-degree

• represented by ordered pairs

• (1, 2), (1, 5), (2, 1), (2, 4), (5, 4), (5, 6), (6, 1), (6, 3)

• strongly connected

• weakly connected

Strings and Languages

23

• alphabet – non-empty

• symbols: individual elements

• examples

Strings and Languages

24

• strings

• finite sequence of symbols

• 01001 is a string over Σ1

• length: |w|

• empty string has length 0

• substring

• cad is a substring of abracadabra

• concatenation – xy

• xk means

19 20

21 22

23 24

8/29/2024

5

Strings and Languages

25

• order

• lexicographic - dictionary

• shortlex or string order

• shorter strings first

• prefix

• proper prefix

• language: a set of strings

Boolean Logic

26

• Boolean logic: TRUE and FALSE

• Boolean values: 1 and 0

• Boolean operations

• conjunction (and) ∧

• disjunction (or) ∨

• negation (not) ¬

• exclusive or (xor) ⊕

• biconditional (equality)

• implication →

Boolean Logic

27

• Boolean operations

Definitions, Theorems, and Proofs

28

• definition: describes objects and notations precisely

• mathematical statements: unambiguous statements about
an object and its properties

• proof: logical argument to show a statement is true

• theorem: mathematical statement proven true

• lemma: helping statement in proof

• corollaries: related statements that are true

Strategies for Producing Proofs

29

• no simple set of rules to produce the right proof

• general strategies

• carefully read the statement to prove

• rewrite statement in your own words

• break down statement into parts

• e.g., P iff Q, set A = set B

• experiment with examples and counterexamples

• see next slide for example

• instead of proving the whole problem, try to prove a
special case

• if trying to prove property for k > 0, just try k = 1

Strategies for Producing Proofs

30

• experiment with examples and counterexamples

• e.g., Prove that for every graph G, the sum of the
degrees of all of the nodes is an even number

• examples

• try to find counterexample

25 26

27 28

29 30

8/29/2024

6

Strategies for Producing Proofs

31

• writing a proof

• be patient

• come back to it

• be neat

• be concise

• example: Prove for every graph G, the sum of the
degrees of all the nodes is an even number.

• every edge is connected to two nodes

• therefore, each edge adds 2 to the sum of degrees

• if G contains e edges, then the sum of degrees = 2e,
which is even

Types of Proofs

32

• types of proofs

• Proof by Construction

• Proof by Counterexample

• Proof by Contradiction

• Proof by Induction

• note that a proof may contain more than one type of
argument

Types of Proofs

33

• Proof by Construction

• if claiming an object exists, demonstrate how to
construct the object

• e.g., For each even number n greater than 2, there
exists a 3-regular graph with n nodes

• regular graph: each vertex has the same number of
neighbors

• construct G = (V, E) with n nodes

 V = {0, 1, …, n – 1}

 E = {(i, i + 1) | for 0 ≤ i ≤ n – 2} ∪
 {(n – 1, 0) } ∪
 {(i, i + n/2) | for 0 ≤ i ≤ n/2 – 1}

Types of Proofs

34

• Proof by Counterexample

• e.g., Prove or Disprove: All prime numbers are odd.

• 2 is prime and even

• therefore, the statement is not true

Types of Proofs

35

• Proof by Contradiction

• assume theorem is false and show this assumption leads to a
contradiction

• e.g., Show that √2 is irrational
• Suppose √2 is rational. Then there exists integers a and b with

√2 = a/b, where b ≠ 0 and a and b have no common factors. So

• Therefore a2 must be even. If a2 is even, then a must be even.
Since a is even, a = 2c for some integer c. Thus,

• Therefore b2 is even, and b must be even as well. But then 2 must
divide both a and b. This contradicts our assumption that a and b
have no common factors. We have proved by contradiction that our
initial assumption must be false and therefore √2 is irrational.

2

2
2

a

b
= 2 22b a=

2 22 4b c= 2 22b c=

Types of Proofs

36

• Proof by Induction

• advanced method to show all elements of an infinite
set have a specified property

• structure: 3 parts for proving P(n) for all n ≥ b

• Basis Step: show base case (smallest value) is true;
left-hand and right-hand sides computed
independently

• Inductive Hypothesis: assume P(k) is true for some k

• Inductive Step: Show P(k+1) is true

• explicitly write out Show statement

• start with left-hand side

• use Inductive Hypothesis (and show where!)

• you’re done when you’ve reached the RHS of Show

31 32

33 34

35 36

8/29/2024

7

Types of Proofs

37

• Proof by Induction

Example: Show that:

Solution:

 BASIS: 𝑛=1

 lhs: rhs:

 INDUCTIVE HYPOTHESIS: Assume true for some k

 INDUCTIVE STEP: Show:

 by I.H.

𝑖=1

𝑛

𝑖 =
𝑛(𝑛 + 1)

2

𝑖=1

1

𝑖 = 1
1(1 + 1)

2
= 1 ✓

𝑖=1

𝑘

𝑖 =
𝑘(𝑘 + 1)

2

𝑖=1

𝑘+1

𝑖 =
(𝑘 + 1)(𝑘 + 2)

2

𝑖=1

𝑘+1

𝑖 =

𝑖=1

𝑘

𝑖 + (𝑘 + 1)

=
𝑘(𝑘 + 1)

2
+ (𝑘 + 1)

=
𝑘 𝑘 + 1 + 2(𝑘 + 1)

2

=
𝑘 + 1 (𝑘 + 2)

2
✓

37

	Slide 1: Chapter 0 Introduction
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

